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FLORIN CARAGIU and MIHAI CARAGIU

Received 3 December 2003

Let a > 1 be a fixed integer. We prove that there is no first-order formula φ(X) in one free
variable X, written in the language of rings, such that for any prime p with gcd(a,p) = 1
the set of all elements in the finite prime field Fp satisfying φ coincides with the range of
the discrete exponential function t� at(modp).
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1. Introduction. Let φ(X) be a formula in one free variable X, written in the first-

order language of rings. Then for every ring R with identity,φ(X) defines a subset of R
consisting of all elements of R satisfyingφ(X). For example, the formula (∃Y)(X = Y 2)
will define in every ring R the set of perfect squares in R (for an introduction to the

basic concepts arising in model theory of first-order languages, we refer to [5]).

The value sets (ranges) of polynomials over finite fields have been studied by various

authors, and many interesting results have been proved (see [3, pages 379–381]). Note

that if f(X) is a polynomial with integer coefficients, the formula (∃Y)(X = f(Y)) will

define in every finite field Fq the value set of the function from Fq to Fq induced by

f . The value sets of the discrete exponentials are no less interesting. For example, if

a> 1 is an integer that is not a square, Artin’s conjecture for primitive roots [4] implies

that the range of the function t → at(modp) has p−1 elements for infinitely many

primes p. In the present note, we investigate the ranges of exponential functions

expa : Z �→ Fp, expa(t)= at(modp), (1.1)

from the point of view of definability. Note that the range of expa : Z → Fp coincides

with 〈a〉, the cyclic subgroup of F∗p generated by a (modulo p). Our main result will be

the following.

Theorem 1.1. Let a> 1 be a fixed integer. Then there is no formulaφ(X) in one free

variable X, written in the first-order language of rings, such that for any prime p with

gcd(a,p) = 1, the set of all elements in the finite prime field Fp satisfying φ coincides

with the range of the discrete exponential expa : Z → Fp .

Here is a brief outline of the proof. We will first prove a result (Theorem 2.1) concern-

ing the existence of primes with respect to which a fixed integer a > 1 has sufficiently

small orders. This, in conjunction with a seminal result of Chatzidakis et al. [1] on

definable subsets over finite fields, will lead to the proof of Theorem 1.1.
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2. Small orders modulo p. In what follows, we will prove that there exist infinitely

many primes with respect to which a given integer a > 1 has “small order.” More pre-

cisely, the following result holds true.

Theorem 2.1. Let a > 1 be an integer. Then, for every ε > 0, there exist infinitely

many primes q such that ordq(a), the order of a modulo q, satisfies

ordq(a) < qε. (2.1)

Proof. Let k be an integer satisfying

1
k
< ε, (2.2)

and let p be a prime satisfying

p > a, (2.3)

p ≡ 1
(
mod(k+1)!

)
. (2.4)

Due to Dirichlet’s theorem on primes in arithmetic progressions [2], there are infinitely

many primes p satisfying (2.3) and (2.4). We select a prime q with the property

q | 1+a+a2+···+ap−1. (2.5)

Note that both p and q are necessarily odd. Since from (2.5) it follows that

ap ≡ 1(modq), (2.6)

the order ordq(a) can be either 1 or p. We will rule out the possibility ordq(a) = 1.

Indeed, if ordq(a)= 1, then

q | a−1. (2.7)

On the other hand, 1+X+X2+···+Xp−1 = (X−1)Q(X)+p with Q(X) a polynomial

with integer coefficients, and therefore

1+a+a2+···+ap−1 = (a−1)Q(a)+p. (2.8)

From (2.5), (2.7), and (2.8) it follows q | p and, sincep, q are primes, q = p. This, together

with (2.7), leads us to p | a−1, and therefore a> p, which contradicts assumption (2.3).

This leaves us with

ordq(a)= p. (2.9)

From (2.9) and from aq−1 ≡ 1(modq) it follows that p | q−1, so that

q = tp+1 (2.10)
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for some positive integer t. We will show that t > k, so that

q > kp+1. (2.11)

Indeed, we assume, for contradiction, that t ≤ k. From (2.4), we get p = (k+1)!s+1 for

some positive integer s. Then

q = tp+1= t((k+1)!s+1
)+1= t(k+1)!s+(t+1). (2.12)

Note that t+1 is, under the assumption t ≤ k, a divisor of (k+1)!. Then, from (2.12),

q will be a multiple of t+1, a contradiction, since 2≤ t+1< q. Thus, (2.11) holds true

and, consequently, since 1/k < ε, we get

ordq(a)
q

= p
q
<

p
kp+1

<
1
k
< ε, (2.13)

which implies

liminf
ordq(a)

q
= 0, (2.14)

where the infimum is taken over all primes q > a. This completes the proof of

Theorem 2.1.

3. Proof of the main result. We now proceed to the proof of Theorem 1.1. We will

use the following result which is a corollary of the main theorem in [1, page 108].

Theorem 3.1. Ifφ(X) is a formula in the first-order language of rings, then there are

constants A,C > 0, such that for every finite field K, either |(φ(K))| ≤ A or |(φ(K))| ≥
C|K|, where φ(K) is the set of elements of K satisfying φ.

We are now ready to proceed to the proof of Theorem 1.1. Assume, for contradiction,

that for some integer a > 1 there exists a first-order formula φ(X) in the language of

rings such that for every prime p�a, we have

φ
(
Fp
)= expa

(
Fp
)
. (3.1)

From (3.1) we get

∣
∣φ
(
Fp
)∣∣= ordp(a) (3.2)

for all p�a. Clearly,

ordp(a) > loga(p) (3.3)

for all p�a. From (3.2), (3.3), and Theorem 3.1, it follows that for every large enough

prime p, we have

ordp(a)≥ Cp. (3.4)
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Clearly, (3.4) is in contradiction to Theorem 2.1 proved above, which implies that

liminf
ordp(a)
p

= 0. (3.5)

Remark 3.2. From Theorem 1.1, it follows as an immediate corollary that, if a > 1

is a fixed integer, then there is no first-order formula φ(X) in the first-order lan-

guage of rings, such that for any prime p, the set of all elements in Fp satisfying φ
is {atmodp | t ≥ 1}. Indeed, assuming such a formula exists, it would define in any Fp
with gcd(a,p)= 1 the range of the discrete exponential expa : Z → Fp .
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