*I***-LINDELOF SPACES**

KHALID AL-ZOUBI and BASSAM AL-NASHEF

Received 15 July 2003

We define a space (X,T) to be *I*-Lindelof if every cover \mathscr{A} of X by regular closed subsets of the space (X,T) contains a countable subfamily \mathscr{A}' such that $X = \bigcup \{ int(A) : A \in \mathscr{A}' \}$. We provide several characterizations of *I*-Lindelof spaces and relate them to some other previously known classes of spaces, for example, rc-Lindelof, nearly Lindelof, and so forth. Our study here of *I*-Lindelof spaces also deals with operations on *I*-Lindelof spaces and, in its last part, investigates images and inverse images of *I*-Lindelof spaces under some considered types of functions.

2000 Mathematics Subject Classification: 54C08, 54C10, 54D20, 54G05.

1. Definitions and characterizations. In [2], a topological space (X, T) is called *I*-compact if every cover \mathcal{A} of the space by regular closed subsets contains a finite subfamily $\{A_1, A_2, \ldots, A_n\}$ such that $X = \bigcup_{k=1}^n \operatorname{int}(A_k)$. Recall that a subset *A* of (X, T) is regular closed (regular open, resp.) if $A = \operatorname{cl}(\operatorname{int}(A))$ ($\operatorname{int}(\operatorname{cl}(A_k))$), resp.). We let $\operatorname{RC}(X, T)$ ($\operatorname{RO}(X, T)$, resp.) denote the family of all regular closed (all regular open, resp.) subsets of a space (X, T). A study that contains some properties of *I*-compact spaces appeared in [10]. In the present work, we study the class of *I*-Lindelof spaces.

DEFINITION 1.1. A space (X, T) is called *I*-Lindelof if every cover \mathcal{A} of the space (X, T) by regular closed subsets contains a countable subfamily $\{A_n : n \in N\}$ such that $X = \bigcup_{n \in N} \operatorname{int}(A_n)$.

To obtain characterizations of *I*-Lindelof spaces, we need the definitions of some classes of generalized open sets.

DEFINITION 1.2. A subset *G* of a space (X, T) is called semiopen (preopen, semipreopen, resp.) if $G \subseteq cl(int(G))(G \subseteq int(cl(G)), G \subseteq cl(int(cl(G))), resp.)$. SO(*X*, *T*)(SPO(*X*,*T*), resp.) is used to denote the family of all semiopen (all semi-preopen, resp.) subsets of a space (X, T). The complement of a semiopen subset (semi-preopen subset, resp.) is called semiclosed (semi-preclosed, resp.). It is clear that a subset *G* is semiopen if and only if $U \subseteq G \subseteq cl(U)$, for some open set *U*. A subset *G* is called regular semiopen if there exists a regular open set *W* such that $W \subseteq G \subseteq cl(W)$.

The following diagram relates some of these classes of sets:

regular closed
$$\Rightarrow$$
 regular semiopen \Rightarrow semiopen \Rightarrow semi-preopen. (1.1)

It is well known that if G is a semi-preopen set, then cl(G) is regular closed (see [6]). The next result gives several characterizations of I-Lindelof spaces and its proof is now clear.

THEOREM 1.3. The following statements are equivalent for a space (X,T).

- (a) (X,T) is *I*-Lindelof.
- (b) Every cover A of the space (X,T) by semi-preopen subsets contains a countable subfamily A' such that X = ∪{int(cl(A)): A ∈ A'}.
- (c) Every cover A of the space (X,T) by semiopen subsets contains a countable sub-family A' such that X = ∪{int(cl(A)): A ∈ A'}.
- (d) Every cover A of the space (X, T) by regular semiopen subsets contains a countable subfamily A' such that X = ∪{int(cl(A)) : A ∈ A'}.

Next we give another characterization of *I*-Lindelof spaces using the fact that a subset *G* is regular closed if and only if its complement is regular open.

THEOREM 1.4. A space (X,T) is *I*-Lindelof if and only if every family \mathfrak{U} of regular open subsets of (X,T) with $\bigcap \{U : U \in \mathfrak{U}\} = \emptyset$ contains a countable subfamily \mathfrak{U}' such that $\bigcap \{cl(U) : U \in \mathfrak{U}'\} = \emptyset$.

PROOF. To prove necessity, let $\mathcal{U} = \{U_{\alpha} : \alpha \in A\}$ be a family of regular open subsets of (X, T) such that $\bigcap \{U_{\alpha} : \alpha \in A\} = \emptyset$. Then the family $\{X - U_{\alpha} : \alpha \in A\}$ forms a cover of the *I*-Lindelof space (X, T) by regular closed subsets and therefore *A* contains a countable subset *A'* such that $X = \bigcup \{\operatorname{int}(X - U_{\alpha}) : \alpha \in A'\}$. Then

$$\emptyset = X - \bigcup \{ \operatorname{int}(X - U_{\alpha}) : \alpha \in A' \}$$

= $\bigcap \{ X - \operatorname{int}(X - U_{\alpha}) : \alpha \in A' \} = \bigcap \{ \operatorname{cl}(U_{\alpha}) : \alpha \in A' \}.$ (1.2)

To prove sufficiency, let $\mathcal{G} = \{G_{\alpha} : \alpha \in A\}$ be a cover of the space (X, T) by regular closed subsets. Then $\{X - G_{\alpha} : \alpha \in A\}$ is a family of regular open subsets of (X, T) with $\bigcap \{X - G_{\alpha} : \alpha \in A'\} = \emptyset$. By assumption, there exists a countable subset A' of A such that $\bigcap \{\operatorname{cl}(X - G_{\alpha}) : \alpha \in A\} = \emptyset$. So $X = X - \bigcap \{\operatorname{cl}(X - G_{\alpha}) : \alpha \in A'\} = \bigcup \{X - \operatorname{cl}(X - G_{\alpha}) : \alpha \in A'\} = \bigcup \{\operatorname{int}(G_{\alpha}) : \alpha \in A'\}$. This proves that (X, T) is *I*-Lindelof.

In [7], a space (X,T) is called rc-Lindelof if every cover \mathcal{A} of the space (X,T) by regular closed subsets contains a countable subcover for X. It is clear, by definitions, that every *I*-Lindelof space is rc-Lindelof. However, the converse is not true as we show in Example 1.7.

Recall that a space (X, T) is extremally disconnected (e.d.) if cl(U) is open for each open $U \in T$. It is easy to show that a space (X, T) is e.d. if and only if, given any two regular open subsets U and V with $U \cap V = \emptyset$, $cl(U) \cap cl(V) = \emptyset$.

PROPOSITION 1.5. Every I-Lindelof space (X, T) is e.d.

PROOF. Suppose that (X,T) is not e.d. Then we find $U, V \in \text{RO}(X,T)$ such that $U \cap V = \emptyset$ but $cl(U) \cap cl(V) \neq \emptyset$, say $t \in cl(U) \cap cl(V)$. Now, the family $\{X - U, X - V\}$ forms a cover of the *I*-Lindelof space (X,T) by regular closed subsets. Thus $X = int(X - U) \bigcup int(X - V)$. Assume $t \in int(X - U)$. But $t \in cl(U)$ and therefore $\emptyset \neq int(X - U) \cap U \subseteq (X - U) \cap U$, a contradiction. The proof is now complete.

THEOREM 1.6. A space (X,T) is I-Lindelof if and only if it is an e.d. rc-Lindelof space.

PROOF. As necessity is clear, we prove only sufficiency. We let \mathcal{A} be a cover of (X, T) by regular closed subsets. If $A \in \mathcal{A}$, then A is regular closed and can be written as $A = \operatorname{cl}(U)$ for some $U \in T$. Since (X, T) is e.d., the set $A = \operatorname{cl}(U)$ is open. Now, since (X, T) is rc-Lindelof, the cover \mathcal{A} contains a countable subfamily \mathcal{A}' such that $X = \bigcup \{A : A \in \mathcal{A}'\} = \bigcup \{\operatorname{int}(A) : A \in \mathcal{A}'\}$ because $A = \operatorname{int}(A)$ for each $A \in \mathcal{A}$. This proves that (X, T) is *I*-Lindelof as required.

EXAMPLE 1.7. We construct an rc-Lindelof space which is not *I*-Lindelof. We let *X* be a countable infinite set and we fix a point $t \in X$. We provide *X* with the topology $T = \{U \subseteq X : t \notin U\} \bigcup \{U \subseteq X : t \in U \text{ and } X - U \text{ is finite}\}$. It is immediate that (X, T) is rc-Lindelof. However, (X, T) is not e.d. and therefore, by Theorem 1.6, is not *I*-Lindelof. To see that (X, T) is not e.d., we write $X = A \bigcup B$, where *A* and *B* are disjoint infinite subsets. Assume that $t \in A$. Then *B* is an open subset of (X, T) and $cl(B) = B \bigcup \{t\}$. But cl(B) is not open and hence (X, T) is not e.d.

DEFINITION 1.8. A space (X, T) is called:

- (a) nearly Lindelof if every open cover \mathcal{U} of (X, T) contains a countable subfamily \mathcal{U}' such that $X = \bigcup \{ int(cl(U)) : U \in \mathcal{U}' \}$ (see [3]);
- (b) countably nearly compact if every countable open cover \mathfrak{U} of (X, T) contains a finite subfamily \mathfrak{U}' such that $X = \bigcup \{ \operatorname{int}(\operatorname{cl}(U)) : U \in \mathfrak{U}' \}.$

It is clear that a space (X, T) is *I*-compact if and only if it is *I*-Lindelof and countably nearly compact.

THEOREM 1.9. A space (X,T) is I-Lindelof if and only if it is an e.d. nearly Lindelof space.

PROOF. To prove necessity, we see that (X, T) is, by Proposition 1.5, e.d. Now, let \mathcal{U} be an open cover of (X, T). Then $\{cl(U) : U \in \mathcal{U}\}$ is a cover of the *I*-Lindelof space(X, T) by regular closed subsets. So \mathcal{U} contains a countable subfamily \mathcal{U}' such that $X = \bigcup\{int(cl(U)) : U \in \mathcal{U}'\}$. This proves that (X, T) is nearly Lindelof. Next, to prove sufficiency, we let \mathcal{A} be a cover of (X, T) by regular closed subsets. Since (X, T) is e.d., then each $A \in \mathcal{A}$ is open. So \mathcal{A} is an open cover of the nearly Lindelof space (X, T) and therefore \mathcal{A} contains a countable subfamily \mathcal{A}' such that $X = \bigcup\{int(cl(A)) : A \in \mathcal{A}'\} = \bigcup\{int(A) : A \in \mathcal{A}'\}$ and we conclude that (X, T) is *I*-Lindelof.

THEOREM 1.10. Let (X,T) be e.d. Then the following statements are equivalent:

- (a) (X,T) is *I*-Lindelof;
- (b) (X,T) is rc-Lindelof;
- (c) (X,T) is nearly Lindelof.

Recall that the family of all regular open subsets of a space (X, T) is a base for a topology T_s on X, weaker than T. The space (X, T_s) is called the semiregularization of (X, T) (see [7]). A property P of topological spaces is called a semiregular property if a space (X, T) has property P if and only if (X, T_s) has property P.

We will prove that *I*-Lindelofness is a semiregular property. First, we need the following result.

PROPOSITION 1.11 [8, Proposition 2.2]. *Given a space* (X,T), *let* $G \in SO(X,T)$. *Then* $cl_T(G) = cl_{T_s}(G)$.

THEOREM 1.12. The property of being an I-Lindelof space is a semiregular property.

PROOF. First, the property of being an e.d. space is a semiregular property (see [7, page 99]). Now let (X, T) be an *I*-Lindelof space. Then (X, T) is, by Proposition 1.5, e.d. and hence (X, T_s) is also e.d. So $\operatorname{RC}(X, T) = \operatorname{RO}(X, T)$ and $\operatorname{RC}(X, T_s) = \operatorname{RO}(X, T_s)$. To show that (X, T_s) is rc-Lindelof, let \mathcal{A} be a cover of (X, T) by regular closed subsets. Then each $A \in \mathcal{A}$ is T_s -open and $\mathcal{A} \subseteq T_s \subseteq T$. Thus \mathcal{A} contains a countable subfamily \mathcal{A}' such that $X = \bigcup \{\operatorname{cl}_T(A) : A \in \mathcal{A}'\} = (\operatorname{Proposition} 1.11) \bigcup \{\operatorname{cl}_{T_s}(A) : A \in \mathcal{A}'\} = \bigcup \{A : A \in \mathcal{A}'\}$ and therefore (X, T_s) is rc-Lindelof and hence *I*-Lindelof. Conversely, let (X, T_s) be *I*-Lindelof. Then both (X, T) and (X, T_s) are e.d. We show that (X, T) is rc-Lindelof. We let \mathcal{A} be a cover of (X, T) by regular closed subsets, that is, $\mathcal{A} \subseteq \operatorname{RC}(X, T) = \operatorname{RO}(X, T) \subseteq T_s$. Since (X, T_s) is rc-Lindelof, there exists a countable subfamily \mathcal{A}' of \mathcal{A} such that $X = \bigcup \{\operatorname{cl}_{T_s}(A) : A \in \mathcal{A}'\} = (\operatorname{Proposition} 1.11) \bigcup \{\operatorname{cl}_T(A) : A \in \mathcal{A}'\} = \bigcup \{A : A \in \mathcal{A}'\}$. This shows that (X, T) is rc-Lindelof and the proof is complete.

2. Operations on *I*-**Lindelof spaces.** We note that the property of being an *I*-Lindelof space is not hereditary. Consider the discrete space *N* of all natural numbers and let βN be its Stone-Čech compactification. Then βN is an rc-compact Hausdorff space (see [7, page 102]) and therefore βN is e.d. (see [11]). So βN is an *I*-Lindelof space. However, the subspace $\beta N - N$ is not *I*-Lindelof as it is not e.d. (see [7, page 102]). Here, (*X*, *T*) is called rc-compact or *S*-closed if every cover of *X* by regular closed subsets contains a finite subcover (see [7]).

Recall that a subset *A* of a space (X,T) is called preopen if $A \subseteq int(cl(A))$. We let PO(X,T) denote the family of all preopen subsets of (X,T).

PROPOSITION 2.1 [4, Corollary 2.12]. Let (X, T) be rc-Lindelof and let $U \in RO(X, T)$. Then the subspace $(U, T|_U)$ is rc-Lindelof.

PROPOSITION 2.2 [8, Proposition 4.2]. *The property of being an e.d. space is hereditary with respect to preopen subspaces.*

REMARK 2.3. It is well known that a space (X,T) is e.d. if and only if RC(X,T) = RO(X,T) if and only if $SO(X,T) \subseteq PO(X,T)$. Thus if (X,T) is e.d., then

$$RO(X,T) = RC(X,T) \subseteq SO(X,T) \subseteq PO(X,T).$$
(2.1)

In view of Propositions 2.1, 2.2, and Remark 2.3, the proof of the following result is now clear.

THEOREM 2.4. Every regular open (and hence every regular closed) subspace of an *I*-Lindelof space is *I*-Lindelof.

THEOREM 2.5. If a space (X,T) is a countable union of open I-Lindelof subspaces, then it is I-Lindelof.

PROOF. Assume that $X = \bigcup \{U_n : n \in N\}$, where $(U_n, T|_{U_n})$ is an *I*-Lindelof subspace for each $n \in N$. Let \mathcal{A} be a cover of the space (X, T) by regular closed subsets. For each $n \in N$, the family $\{A \cap U_n : A \in \mathcal{A}\}$ is a cover of U_n by regular closed subsets of the *I*-Lindelof subspace $(U_n, T|_{U_n})$ (see [4, Lemma 2.5]). So we find a countable subfamily \mathcal{A}_n of \mathcal{A} such that $U_n = \bigcup \{ \operatorname{int}_{U_n}(A \cap U_n) : A \in \mathcal{A}_n \}$. Put $\mathcal{B} = \bigcup \{\mathcal{A}_n : n \in N\}$. Then \mathcal{B} is a countable subfamily of \mathcal{A} such that $X = \bigcup \{U_n : n \in N\} = \bigcup_{n \in N} \bigcup \{ \operatorname{int}_{U_n}(A \cap U_n) : A \in \mathcal{A}_n \} = \bigcup_{n \in N} \bigcup \{ \operatorname{int}_{U_n}(A \cap U_n) : A \in \mathcal{A}_n \} = \bigcup_{n \in N} \bigcup \{ \operatorname{int}_X(A \cap U_n) : A \in \mathcal{A}_n \} \subseteq \bigcup \{ \operatorname{int}_X(A) : A \in \mathcal{B} \} \subseteq X$, that is, $X = \bigcup \{ \operatorname{int}(A) : A \in \mathcal{B} \}$. Therefore (X, T) is *I*-Lindelof.

If $\{(X_{\alpha}, T_{\alpha}) : \alpha \in A\}$ is a family of spaces, we let $\bigoplus_{\alpha \in A} X_{\alpha}$ denote their topological sum. Now we have, as a consequence of Theorem 2.5, the following result.

THEOREM 2.6. The topological sum $\oplus_{\alpha \in A} X_{\alpha}$ of a family $\{(X_{\alpha}, T_{\alpha}) : \alpha \in A\}$ is *I*-Lindelof *if and only if* (X_{α}, T_{α}) *is I*-Lindelof for each $\alpha \in A$ and that A is a countable set.

PROOF. It is clear that sufficiency is a direct consequence of Theorem 2.5. To prove necessity, we note that (X_{α}, T_{α}) is a clopen (and hence regular open) subspace of the *I*-Lindelof space $\bigoplus_{\alpha \in A} X_{\alpha}$ and therefore (X_{α}, T_{α}) is, by Theorem 2.5, *I*-Lindelof for each $\alpha \in A$. Moreover, the family $\{X_{\alpha} : \alpha \in A\}$ forms a cover of the rc-Lindelof space $\bigoplus_{\alpha \in A} X_{\alpha}$ by mutually disjoint regular closed subsets and therefore must contain a countable subfamily whose union is $\bigoplus_{\alpha \in A} X_{\alpha}$. Thus *A* must be a countable set.

We now turn to products of *I*-Lindelof spaces. As noted earlier, the space βN is *I*-Lindelof while $\beta N \times \beta N$ is not even e.d. However, we have the next special case.

THEOREM 2.7. Let (X,T) be a compact space and (Y,M) an I-Lindelof space. If the product $X \times Y$ is e.d., then it is I-Lindelof.

PROOF. By [1, Theorem 2.4], the space $X \times Y$ is rc-Lindelof. Since it is, by assumption, e.d., then it is, by Theorem 1.6, *I*-Lindelof.

3. Images and inverse images of *I*-Lindelof spaces. Let $f : (X,T) \to (Y,M)$. Recall that f is semicontinuous (see [9]) if $f^{-1}(V) \in SO(X,T)$ whenever $V \in M$, and f is almost open (see [8, page 86]) if $f^{-1}(cl(V)) \subseteq cl(f^{-1}(V))$ for each $V \in M$. Finally, f is preopen (see [8, page 86]) if f(U) is a preopen subset of (Y,M) for each $U \in T$. It is mentioned in [8] that preopenness and almost openness coincide. Accordingly, we have the following result.

THEOREM 3.1. Let $f : (X,T) \rightarrow (Y,M)$ be semicontinuous almost open and let (X,T) be *I*-Lindelof. Then (Y,M) is *I*-Lindelof.

PROOF. First we have, by [8, Proposition 4.4], that (Y, M) is e.d. Next, by [1, Theorem 3.4], we have that (Y, M) is rc-Lindelof. Then, by Theorem 1.6, (Y, M) is *I*-Lindelof.

COROLLARY 3.2. Every open continuous image of an I-Lindelof space is I-Lindelof.

COROLLARY 3.3. If a product space $\prod_{\alpha \in I} X_{\alpha}$ is *I*-Lindelof, then (X_{α}, T_{α}) is *I*-Lindelof, for each $\alpha \in I$.

We recall that a function $f : (X,T) \to (Y,M)$ is irresolute if $f^{-1}(S) \in SO(X,T)$ for each $S \in SO(Y,M)$. Each irresolute is semicontinuous (see [1, Lemma 3.8]).

COROLLARY 3.4. Every preopen irresolute image of an I-Lindelof space is I-Lindelof.

We turn now to the inverse image of *I*-Lindelof spaces under certain class of functions. Recall that *A* is a semi-preclosed subset of a space (X,T) if its complement is semi-preopen.

DEFINITION 3.5. A function $f : (X, T) \to (Y, M)$ is called (weakly) semi-preclosed if f(A) is a semi-preclosed subset of (Y, M) for each (regular) closed subset A of (X, T).

The easy proof of the next result is omitted.

LEMMA 3.6. A function $f : (X,T) \to (Y,M)$ is (weakly) semi-preclosed if and only if, for every $y \in Y$ and for each $(U \in \operatorname{RO}(X,T))$ $U \in T$ with $f^{-1}(y) \subseteq U$, there exists $W \in \operatorname{SPO}(Y,M)$ such that $y \in W$ and $f^{-1}(W) \subseteq U$.

COROLLARY 3.7. Let $f : (X,T) \to (Y,M)$ be weakly semi-preclosed. If $B \subseteq Y$ and $f^{-1}(B) \subseteq U$, with $U \in \operatorname{RO}(X,T)$, then there exists $W \in \operatorname{SPO}(Y,M)$ such that $B \subseteq W$ and $f^{-1}(W) \subseteq U$.

We recall that a space (X,T) is km-perfect (see [5]) if, for each $U \in \operatorname{RO}(X,T)$ and each point $x \in X - U$, there exists a sequence $\{U_n : n \in N\}$ of open subsets of (X,T) such that $\bigcup \{U_n : n \in N\} \subseteq U \subseteq \bigcup \{\operatorname{cl}(U_n) : n \in N\}$ and $x \notin \bigcup \{\operatorname{cl}(U_n) : n \in N\}$.

It is easy to see that every e.d. space is km-perfect. The converse, however, is not true as the space constructed in Example 1.7 is easily seen to be km-perfect but not e.d.

LEMMA 3.8. If (X,T) is a km-perfect P-space (\equiv the countable union of closed subsets is closed), then (X,T) is e.d.

PROOF. We show that cl(U) is open for each $U \in T$. Note that int(cl(U)) is regular open and if $x \notin int(cl(U))$, then, since (X,T) is km-perfect, there exists a sequence $\{U_n : n \in N\}$ of open subsets such that $\bigcup \{U_n : n \in N\} \subseteq int(cl(U)) \subseteq \bigcup \{cl(U_n) : n \in N\}$ and $x \notin \bigcup \{cl(U_n) : n \in N\}$. Since (X,T) is a *P*-space, then $\bigcup \{cl(U_n) : n \in N\}$ is closed and contains int(cl(U)) and so it contains cl(int(cl(U))). Thus $x \notin cl(int(cl(U)))$ and we obtain that cl(int(cl(U))) = int(cl(U)). But $U \subseteq int(cl(U))$ and therefore $cl(U) \subseteq int(cl(U)) = cl(int(cl(U))) \subseteq cl(U)$, that is, cl(U) = int(cl(U)), which shows that cl(U) is open.

DEFINITION 3.9. A subset *A* of a space (X, T) is called an rc-Lindelof set (see [4]) if each cover of *A* by regular closed subsets of (X, T) contains a countable subcover of *A*.

We now state our final result which deals with an inverse image of an *I*-Lindelof space.

THEOREM 3.10. Let (X,T) be a km-perfect P-space. Let $f : (X,T) \rightarrow (Y,M)$ be weakly semi-preclosed almost open with $f^{-1}(y)$ an rc-Lindelof set for each $y \in Y$. If (Y,M) is *I*-Lindelof, then so is (X,T).

I-LINDELOF SPACES

PROOF. It is clear, by Lemma 3.8, that (X, T) is e.d. and therefore we only show that (X, T) is rc-Lindelof (Theorem 1.6). We let \mathscr{A} be a cover of X by regular closed subsets of the space (X, T). For each $y \in Y$, \mathscr{A} forms a cover of the rc-Lindelof subset $f^{-1}(y)$ so we find a countable subfamily \mathscr{A}_y of \mathscr{A} such that $f^{-1}(y) \subseteq \bigcup \{A : A \in \mathscr{A}_y\} = G_y$. Then G_y is open, because (X, T) is e.d. and therefore $\operatorname{RC}(X, T) = \operatorname{RO}(X, T)$. But $f^{-1}(y) \subseteq G_y$, then we find, by Lemma 3.6, a subset $V_y \in \operatorname{SPO}(X, T)$ such that $y \in V_y$ and $f^{-1}(V_y) \subseteq G_y$. Now, the family $\{V_y : y \in Y\}$ forms a cover of Y by semi-preopen subsets of the rc-Lindelof space (Y, M). By [1, Theorem 1.9], it contains a countable subfamily $\{V_{y_n} : n \in N\}$ such that $Y = \bigcup \{\operatorname{cl}(V_{y_n}) : n \in N\}$. We put $\mathscr{A}' = \bigcup \{\mathscr{A}_{y_n} : n \in N\}$. Then \mathscr{A}' is countable and \mathscr{A}' is a cover of X. To see this, let $x \in X$ and let y = f(x). Choose $k \in N$ such that $y \in \operatorname{cl}(V_{y_k})$. Then $x \in f^{-1}(\operatorname{cl}(V_{y_k})) \subseteq (f$ is almost open) $\operatorname{cl}(f^{-1}(V_{y_k})) \subseteq \operatorname{cl}(G_{y_k}) = G_{y_k}$ (because (X, T) is a P-space and G_{y_k} is a countable union of closed subsets). We have $x \in G_{y_k} = \bigcup \{A : A \in \mathscr{A}_{y_k}\} \subseteq \bigcup \{A : A \in \mathscr{A}'\}$. The proof is now complete.

ACKNOWLEDGMENT. The publication of this paper was supported by Yarmouk University Research Council.

REFERENCES

- B. Al-Nashef and K. Al-Zoubi, A note on rc-Lindelöf and related spaces, Questions Answers Gen. Topology 21 (2003), no. 2, 159–170.
- D. E. Cameron, Some maximal topologies which are QHC, Proc. Amer. Math. Soc. 75 (1979), no. 1, 149–156.
- F. Cammaroto and G. Santoro, *Some counterexamples and properties on generalizations of Lindelöf spaces*, Int. J. Math. Math. Sci. 19 (1996), no. 4, 737–746.
- K. Dlaska, rc-Lindelöf sets and almost rc-Lindelöf sets, Kyungpook Math. J. 34 (1994), no. 2, 275-281.
- [5] K. Dlaska, N. Ergun, and M. Ganster, *Countably S-closed spaces*, Math. Slovaca 44 (1994), no. 3, 337-348.
- [6] D. Andrijević, Semipreopen sets, Mat. Vesnik 38 (1986), no. 1, 24-32.
- [7] D. Janković and C. Konstadilaki, On covering properties by regular closed sets, Math. Pannon. 7 (1996), no. 1, 97-111.
- [8] D. Janković, A note on mappings of extremally disconnected spaces, Acta Math. Hungar. 46 (1985), no. 1-2, 83–92.
- [9] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41.
- [10] D. Sivaraj, A note on S-closed spaces, Acta Math. Hungar. 44 (1984), no. 3-4, 207-213.
- [11] T. Thompson, *S-closed spaces*, Proc. Amer. Math. Soc. **60** (1976), 335–338.

Khalid Al-Zoubi: Department of Mathematics, Faculty of Science, Yarmouk University, Irbid, Jordan

E-mail address: khalidz@yu.edu.jo

Bassam Al-Nashef: Department of Mathematics, Faculty of Science, Yarmouk University, Irbid, Jordan

E-mail address: abassam@yu.edu.jo