
IJMMS 2004:43, 2273–2278
PII. S0161171204310124

http://ijmms.hindawi.com
© Hindawi Publishing Corp.

OPERATORS COMMUTING WITH THE SHIFT
ON SEQUENCE SPACES

J. PRADA

Received 13 October 2003

A complete characterization of shift-invariant operators that are isomorphisms is given in
certain sequence spaces. Also given is a sufficient condition for an operator commuting with
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1. Introduction. There is a long-standing interest in linear continuous operators

commuting with the right shift operator, weighted or not. The study of these op-

erators is closely related to the study of operators commuting with the differentia-

tion operator (weighted left shift). Several authors have treated topics connected with

these operators; for instance, for unweighted shifts, a good reference is [10], while a

good source for weighted shift operators is the papers [13, 14, 15] and the book of

Halmos [9].

The concrete problem of determining the spectrum of a weighted right shift oper-

ator was studied mainly by Gellar [3, 4, 5]. There is a strong relationship between the

spectrum of such an operator and the question of whether or not an operator which

commutes with it is an isomorphism. In [17] the spectrum of the differentiation oper-

ator on certain sequence spaces was computed directly, although it could have been

deduced using [4, theorem 10].

In the so-called umbral calculus appears the concept of a delta operator [2], which

is invariant by differentiation and so connected with shift-invariant operators. In fact,

in [2], the relationship between Sheffer operators, differentiation-invariant operators,

and shift-invariant operators, as well as the importance of the spectrum in the charac-

terization of isomorphisms, was shown. Similar questions were studied in the papers

[6, 7, 8]; for differentiation-invariant operators, see [1, 2, 12, 16].

In the present paper, we consider shift-invariant operators on infinite power series

spaces. Necessary and sufficient conditions for an operator to be continuous are given

for any infinite power series space. Also given is a complete characterization of isomor-

phisms when the space is nuclear and a projective limit of Banach algebras. In addition,

we give a sufficient condition for an operator commuting with a shift-invariant operator

also to be shift invariant.

2. Definitions and notations. Let Λ∞(α) be the infinite power series space with the

usual topology, that is,
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Λ∞(α)=
{(
xn
)
, xn ∈ C,

∞∑
n=0

∣∣xn∣∣ekαn <∞, k= 1,2,3, . . .
}
,

∥∥(xn)∥∥k =
∞∑
n=0

∣∣xn∣∣ekαn,
(2.1)

where α0 ≤ α1 ≤ ··· ≤ αn ≤ ··· →∞. Λ∞(α) is a Fréchet space with a canonical basis,

noted by (en); its topological dual can be identified with the sequence space

Λ×∞(α)=
∞⋃
k=1

l∞
(
e−kαn

)
(2.2)

and the coordinate operators are continuous. These spaces are nuclear if and only if

∀k, ∃N(k) such that

(
ekαn

eN(k)αn

)
∈ l1. (2.3)

They are projective limits of the Banach spaces l1(ekαn), k ∈ N, which are Banach

algebras (with the convolution multiplication) if and only if there exists C > 0 such that

αn+m ≤ C+αn+αm, for everym and n. Well-known examples of nuclear infinite power

series spaces that are projective limits of Banach algebras are the space H(C) of entire

functions on the complex plane (in this case, αn = n) and s, the space of sequences

rapidly decreasing to zero (for αn = lnn).

S denotes the shift operator S(en)= en+1; it is assumed that S is a continuous oper-

ator from Λ∞(α) to Λ∞(α), so we have the condition supαn+1/αn <∞.

3. Continuous operators commuting with S

Theorem 3.1. A linear operator T is continuous on Λ∞(α) and commutes with S if

and only if

T =
∞∑
s=0

tsSs, (3.1)

and satisfies the following condition: for all k, there exists N(k) such that

sup
n

( ∞∑
s=0

∣∣ts∣∣ ekαs+neN(k)αn

)
<∞. (3.2)

Proof. Observe that the matrix (ts,k)∞s,k=0 defining T is lower triangular, ts,k = 0,

k > s, and ts,k = ts−k, k≤ s.
Therefore compute Ten for all n and the result follows.
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Condition (3.2) can be simplified for certain infinite power series spaces as it is shown

in the propositions below whose proofs are omitted.

Proposition 3.2. Assume that Λ∞(α) is a nuclear space. Then condition (3.2) is

equivalent to the following one: for all k, there exists N(k) and there exists C(k) > 0 such

that

∣∣ts∣∣≤ C(k)eN(k)αnekαn+s
, ∀s,n. (3.3)

Proposition 3.3. Assume that Λ∞(α) is a nuclear space and a projective limit of

Banach algebras. Then conditions (3.2) and (3.3) are equivalent to saying that the se-

quence (ts) is an element of Λ∞(α).

Observing that if T commutes with S, T(xs) = (ts)∗ (xs), where ∗ represents the

convolution product, (or T(
∑
xszs) =

∑
tszs ·

∑
xszs ) [4, theorem 2], then we have the

following proposition.

Proposition 3.4. If T is a continuous linear operator on Λ∞(α) commuting with S,

then the function φ(z) =∑tszs is holomorphic on a disk whose radius (finite or not) is

greater than or equal to 1.

Proof. If T is continuous, condition (3.3) is true, and so

∣∣ts∣∣≤ C(k)eN(k)α0

ekαs
, ∀s. (3.4)

Therefore

limsup
∣∣ts∣∣1/s ≤ e−k liminfαs/s . (3.5)

As liminfαs/s = 0, or is equal to a number a> 0, or ∞, the result follows.

It is obvious that two operators commuting with S commute with each other [4,

Corollary 1], but it is not true, in general, that if T1 commutes with T2 and T2 commutes

with S, it follows that T1 commutes with S; take T2 = S2 and T1 given by an infinite

two-block matrix
(a00 a01
a10 a11

)
, where a01, a10 are different from zero and a00 ≠ a11. We

show in the following proposition that for certain operators T2 the result is true.

Theorem 3.5. Let T2 be a continuous linear operator from Λ∞(α) to Λ∞(α) commut-

ing with S, T2 =
∑∞
s=0 tsSs , verifying the condition that the sequence t(0) = (t1, t2,t3, . . .),

t(1) = (0, t1, t2,t3, . . .), t(2) = (0,0, t1, t2,t3, . . .), . . . is a basis of the power series space

Λ∞(α).
Then any linear continuous operator T1 commuting with T2 commutes with S.

Proof. The matrix corresponding to the operator T2 verifies ts,k = 0, k > s, and

ts,k = ts−k, k ≤ s. Then, if (as,k)s,k=0,1,2,... is the matrix of the operator T1, we have the
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following equations (a consequence of (as,k)×(ts,k)= (ts,k)×(as,k)):

∞∑
k=j+1

a0,ktk−j,0 = 0, j = 0,1,2,3, . . . ,

t1,0a0,j+t0,0a1,j =
∞∑
k=j
a1,ktk−j,0, j = 0,1,2, . . . ,

t2,0a0,j+t1,0a1,j+t0,0a2,j =
∞∑
k=j
a2,ktk−j,0, j = 0,1,2, . . . ,

(3.6)

and so on.

Observe that the operator given by the matrix (a0,0,a0,1,a0,2, . . .) is continuous be-

cause of the continuity of T1 and so an element of Λ×∞(α); therefore, as supαn+1/αn <
∞, the element (a0,1,a0,2, . . .) belongs to Λ×∞(α) too. As t(0), t(1), t(2), . . . is a basis of

Λ∞(α), the first set of equations implies that a0,1 = a0,2 = a0,3 = ··· = 0. Then the

second set of equations can be written as

t1,0a0,j+t0,0a1,j =
∞∑
k=j
a1,ktk−j,0, j = 0,

t0,0a1,j =
∞∑
k=j
a1,ktk−j,0, j = 1,2, . . . .

(3.7)

Observing as before that (a11−a00,a12,a13, . . .) is an element of Λ×∞(α) (the operator

given by the matrix (a10,a11,a12, . . .) is continuous by the continuity of T1), it follows

that a11 = a00, a12 = a13 = a14 = ··· = 0.

Proceeding in an analogous way, the third set of equations can be written as

t2,0a0,j+t1,0a1,j+t0,0a2,j =
∞∑
k=j
a2,ktk−j,0, j = 0,

t1,0a1,j+t0,0a2,j =
∞∑
k=j
a2,ktk−j,0, j = 1,

t2,0a0,j+t1,0a1,j+t0,0a2,j =
∞∑
k=j
a2,ktk−j,0, j = 2,3, . . . ,

(3.8)

and we get a21 = a10, a22 = a11, a23 = a24 = ··· = 0.

Thus the operator T1 is given by a matrix that commutes with the matrix of S.

It is then of interest to determine a basis in Λ∞(α) of the previous form; noting

that t(1) = St(0), t(2) = St(1), t(3) = St(2), . . . , it is enough to find isomorphisms between

infinite power series spaces that commute with S; in fact, given such an isomorphism T ,

it follows that Te0 = t(0), Te1 = TSe0 = STe0 = St(0) = t(1), Te2 = TSe1 = STe1 = St(1) =
S2t(0) = t(2), . . . and obviously we get a basis.
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4. Isomorphisms commuting with S. In this section, we consider isomorphisms be-

tween infinite power series spaces (nuclear and projective limits of Banach algebras).

A complete characterization of such isomorphisms that commute with S is given. In

[11], the problem was dealt with for the space of holomorphic functions on a disc and,

in [8], in the study of Sheffer operators, for certain spaces of entire functions.

Theorem 4.1. Assume thatΛ∞(α) is a nuclear space and a projective limit of Banach

algebras; let T be a linear operator commuting with S. Then T is an isomorphism if and

only if any of the following two equivalent conditions is satisfied:

(1) the sequence (ts) belongs to Λ∞(α) and (ts) = e(gs), where (gs) is an element of

Λ∞(α), that is, (ts) is an exponential (or invertible) element of the Banach algebra

l1(ekαn) for all k,

(2) the sequence (ts) belongs to Λ∞(α) and
∑∞
s=0 tszs ≠ 0 on the maximal ideal space

of the Banach algebra l1(ekαn) for all k.

Proof. Assume that the operator T =∑∞
s=0 tsSs is an isomorphism. Then the oper-

ator T−1 commutes with S, so T−1 =∑∞
s=0 rsSs ; as (ts) and (rs) belong to Λ∞(α) and

(ts)∗(rs)= 1, it follows that (ts) is an invertible (and exponential) element of all Banach

algebras l1(ekαn), for all k (see [2, page 88]).

Conversely, assume that (ts) belongs to Λ∞(α) and (ts) = e(gs), (gs) ∈ Λ∞(α). Then

the operator T =∑∞
s=0 tsSs is continuous; as (ts) is an exponential (invertible) element

of all algebras l1(ekαn), taking (rs)= (ts)−1, we have that T−1 =∑∞
s=0 rsSs is continuous,

implying that T is an isomorphism.

Finally, note that conditions (1) and (2) are obviously equivalent as {x ∈ l1(ekαn) :∑∞
s=0xszs ≠ 0 for all |z| ≤ eρ} = invl1(ekαn)= expl1(ekαn), where ρ= limn→∞ logekαn/n

(see [2, page 88]).

Observe that limαn/n = 0 or is equal to a number a > 0. Then the maximal ideal

space of l1(ekαn) is, in the first case, the closed disc D(1) (for all k) and, in the second

case, D(eka). Therefore condition (2) could be reformulated as follows:

(2) the sequence (ts) belongs to Λ∞(α) and
∑∞
s=0 tszs ≠ 0 on D(1) (if limαn/n = 0)

or on the whole complex plane (if limαn/n > 0).

Remark 4.2. In the conditions of the previous theorem, any exponential element

of Λ∞(α) gives a basis; ez is a very simple example, and therefore the operator I +∑∞
s=1(1/(s−1)!)Ss satisfies the condition of Theorem 3.5.

Remark 4.3. If Λ∞(α) = H(C), the isomorphisms are given by all entire functions

without zeros on the complex plane; if Λ∞(α) = s, all elements of s without zeros on

D(1) give isomorphisms (these include, in particular, all nonvanishing holomorphic

functions on a disc with radius greater than 1).
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