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REAL QUARTIC SURFACES CONTAINING 16 SKEW LINES
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It is well known that there is an open three-dimensional subvarietyMs of the Grassmannian
of lines in P3 which parametrizes smooth irreducible complex surfaces of degree 4 which
are Heisenberg invariant, and each quartic contains 32 lines but only 16 skew lines, being
determined by its configuration of lines, are called a double 16. We consider here the problem
of visualizing in a computer the real Heisenberg invariant quartic surface and the real double
16. We construct a family of points l∈Ms parametrized by a two-dimensional semialgebraic
variety such that under a change of coordinates of l into its Plüecker, coordinates transform
into the real coordinates for a line L in P3, which is then used to construct a program in
Maple 7. The program allows us to draw the quartic surface and the set of transversal lines to
L. Additionally, we include a table of a group of examples. For each test example we specify
a parameter, the viewing angle of the image, compilation time, and other visual properties
of the real surface and its real double 16. We include at the end of the paper an example
showing the surface containing the double 16.

2000 Mathematics Subject Classification: 14N15, 14P10, 14Q10, 68U05.

1. Introduction. Let Ht be the well-known Heisenberg group of level 2 (for the pre-

cise definition, we refer to Section 3). We consider Ht-invariant quartic surfaces Xf =
{f(z0,z1,z2,z3) = 0}, where f is a homogeneous polynomial of degree 4 in the vari-

ables z0, z1, z2, z3, which is Ht-invariant over the complex numbers field. One of the

problems posed in [1] is that if such a quartic surface contains a complex line, then

determine the configuration of lines or find a characterization of Xf in terms of the

configuration of lines contained in it. It is a classical fact of line geometry that the lines

in P3 are parametrized by the Grassmannian variety denoted here by Gr. In order to

formulate the problem more precisely, we introduce the complex vector space W of

polynomials of degree 4 in the variables z0, . . . ,z3 which are Ht-invariant. The condi-

tion that Xf contains a line is stated as l ⊂ Xf if and only if f |l = 0. It is not difficult

to prove (see, e.g., [1, Section 4]) that dimC(W) = 5 (in [1], one can give an explicit set

of generators for W ), and for a “generic” l, the last condition implies that there exist a

5×5 matrix M(l) and ν ∈ CP4 such that M(l)·ν = 0, which implies that det(M(l))= 0.

By choosing the so-called K-coordinates associated to a line, l transforms into a point

(x0 : ··· : x5) such that x2
0 +···+x2

5 = 0 which is the well-known equation for Gr in

the K-coordinates (c.f. Section 3). The equation involving the matrix M(l) is written in

the K-coordinates as Σ5
i=0Πj≠ix

2
j = 0. The previous arguments are only heuristical and

will be made precise in Section 3. Both equations above are the equations which define

the threefold M ⊂ Gr. In this paper, we consider the converse problem. Namely, we are
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interested in finding points in a subvariety of Ms ⊂ M (for which a precise definition

will be given in Section 2) such that each point in Ms arises as a real line in P3 (i.e.,

defined by real coordinates), the quartic Xf determined by l is real (i.e., the points

are defined in real three-dimensional projective space), and the coefficients of f are

defined over the real numbers field. Moreover, if according to the theory of [1, Sec-

tion 4], a point in Ms generates a complex line which determines a smooth, irreducible

complex Ht-invariant quartic surface containing it and its Ht orbit, then an easy ex-

tension of the theory to the real case shows that for the special case treated here, the

Ht-invariant quartic surface Xf is real and its defining polynomial f is real. The next

problem is to find a special hyperplane H ⊂ RP3 to be able to graph Xf ∩H and visu-

alize it along with its configuration of lines called here a double 16 on a computer. It

is of interest to note that the Ht-invariant quartic surfaces containing a complex line

form a three-dimensional complex parameter space within the 34-dimensional space of

quartic surfaces in CP3. Such surfaces of degree 4 defined over the complex field arise

as projective models of linear systems of abelian surfaces of polarization type (1,3)
(c.f. [1, 5]).

We give an outline of the paper. In Section 2, we state sufficient conditions for an

arbitrary point l ∈ M to be in Ms (Proposition 2.7). We then construct a subset of Ms

parametrized by a two-dimensional semialgebraic set (Remark 2.9). In Section 3, after

giving a few basic facts of line geometry and the definition of the Heisenberg group, we

show that theHt-invariant quartic surfaces defined by the points of Proposition 2.7 are

real quartic surfaces and contain the double 16 with real lines, and that the quartics

are determined by the configuration.

In Section 4, we give a detailed description of how the Maple program works and is

used to visualize these surfaces along with their line configurations (to the extent to

which they can be shown) on the computer. In Section 5, we describe the results given

by the program for a group of examples in a table which describes, for the surface

drawn with its ten transversals, the following parameters: d (which defines the quartic

surface; this is the value λ of (2.8)), the angle (u,v) of the image surface, compilation

time for each surface, and the visual description of the double 16. We printed one test

example of a surface for which one can see a line and most of the double 16, at one

specific angle, and it is given at the end of the paper. The program can be used as a

guide to produce Heisenberg invariant Kummer quartic surfaces, which contain other

types of curves, not necessarily rational ones, and can be useful for other researchers

working on similar problems.

2. An elementary proposition and a locus of real solutions. Another more sugges-

tive way of writing the equation for M as defined in [1, Section 4] is

Σ5
i=0x

2
i = Σ5

i=0
1

x2
i
= 0. (2.1)

In the sequel, the following set of equations, derived from the above definition, will be

more useful to us:
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x2
0+x2

1+x2
2 =−x2

3−x2
4−x2

5 , (2.2)

1

x2
0

+ 1

x2
2

+ 1

x2
4

=− 1

x2
3

− 1

x2
5

− 1

x2
1

, (2.3)

which is of course defined away from {xi = 0} for i= 0, . . . ,5. Otherwise, (2.3) becomes

Σ5
i=0Πj≠ix

2
j = 0. According to [1, Section 4], there exists an open subvariety of M , a

threefold denoted in [1] as Ms , defined as follows. For this, we let η=√−1,

x1 = ηy1, x3 = ηy3, x5 = ηy5. (2.4)

We also introduce the following change of variables:

qi =

x

2
i for i even,

y2
i for i odd.

(2.5)

We fix

Qjk =
{
xj = xk = 0= Σi≠j,i≠kx2

i = 0
}
,

P = (ε1 : ε2 : ε3 : ηε4 : ε5η : ε6η
)
, εi ∈ {±1}, i= 1, . . . ,6,

�1 =
{
q0−q1 = q2−q3 = q4−q5 = 0

}
.

(2.6)

By defining

� =
⋃
j≠k
Qjk, Σ= {σ(P) | σ ∈ S6

}
, �=

⋃
σ∈S6

σ�1, (2.7)

then Ms = M −�−Σ−�. Ms has the property that for each l ∈ Ms , there exists an

equation of degree 4 invariant under the Heisenberg groupHt , irreducible, and uniquely

determined by its configuration of lines, and the surface defined by it is smooth (see

[1, Proposition 4.4]).

We can find the solutions to (2.2), (2.3) as a particular case of the following one-

parameter set of equations for q0 > 0, q1 > 0, q2 > 0, q3 > 0, q4 > 0, q5 > 0, λ > 0:

λ= 1
q2
+ 1
q0
+ 1
q4
= 1
q3
+ 1
q1
+ 1
q5
,

1= q0+q2+q4 = q1+q3+q5.
(2.8)

To solve the last set of equations is to solve, for real variables x, y , z and a real param-

eter λ, the system of equations

xy+xz+yz = λxyz,
x+y+z = 1,

x > 0, y > 0, z > 0,
(2.9)

and solve them for the case (x,y,z) = (q0,q2,q4) and (q1,q3,q5). We obtain the fol-

lowing elementary proposition.
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Proposition 2.1. The system of equations (2.9) has a solution if and only if λ > 9.

For such λ, set ρ = (λ−9)(λ−1)/4λ2 and σ = (λ−3)/2λ; then

1
λ
< σ −√ρ < σ +√ρ < 1 (2.10)

and the system of equations has a real solution if and only if z ∈ (σ −√ρ,σ +√ρ) or

z < 1/λ when the solutions for x and y are given by positive

x =1
2
(1−z)

(
1±

√
−Ω
N

)
,

y =1
2
(1−z)

(
1∓

√
−Ω
N

)
,

(2.11)

where Ω= λz2−(λ−3)z+1, N = (λz−1)(1−z).
Proof. Fixing λ > 0 and 1/λ < z < 1, we must find the intersection points of the line

x+y = 1−z and the hyperbola αxy+x+y = 0 (where α = (1−λz)/z). Solving these

yields the expressions forx andy as stated above. These solutions are real exactly when

1±√−Ω/N > 0. But
√−Ω/N is positive if and only ifΩ < 0,N > 0 orΩ > 0,N < 0, which

are equivalent to Ω < 0, z > 1/λ or Ω > 0, z < 1/λ. The condition Ω > 0 (resp., Ω < 0)

is equivalent to saying that z > σ +√ρ or z < σ −√ρ (resp., z ∈ (σ −√ρ,σ +√ρ)),
hence the claim. Clearly, ρ > 0 if and only if λ > 9 or λ < 1, but (2.10) rules out the

second possibility. Equation (2.10) can easily be verified if λ > 0. This can be applied

with (x,y,z)= (q0,q2,q4) or (q1,q3,q5).

Proposition 2.2. The case λ= 9 in Proposition 2.1 is exceptional. Fix the affine plane

H = {g = q0+q2+q4−1= 0} in the R3 defined by the coordinates q0, q2, q4, and define,

for each λ∈R≥0,

fλ = q2q4+q0q4+q0q2−λq0q2q4 (2.12)

which is a surface in the A3 defined by the coordinates q0, q2, q4. Let Cλ =H∩{fλ = 0}.
Then the linear system of curves {Cλ = {fλ = g = 0}}λ∈R≥0 is always smooth except for

λ= 1,9 with singularities

Sing
(
C9
)= {(1

3
,
1
3
,
1
3

)}
, Sing

(
C1
)= {Q= (−1,1,1)

}
. (2.13)

Proof. To simplify the computations, let ∂ifλ = ∂fλ/∂qi. Recall that fλ = q2q4+
q0q2+q0q4−λq0q2q4 and −g = 1−q0−q2−q4. Note that ∂ifλ = qj +qk−λqjqk for

i,j,k∈ {0,2,4} with i≠ j ≠ k and ∂ig = 1. The Jacobian matrix is

(
∂2fλ ∂0fλ ∂4fλ

1 1 1

)
. (2.14)

It is of rank less than 1 if and only if

0= (∂i−∂j)fλ = 0 for i,j ∈ {0,2,4}. (2.15)
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It follows that

(
q0−q2

)(
1−λq4

)= (q2−q4
)(

1−λq0
)= (q4−q0

)(
1−λq2

)= 0. (2.16)

It is enough to prove the following three cases (the others are derived from these).

(I) 1−λq4=q0−q4=q2−q4=0. Thus q2=q4=q0. q4=1/λ. Substituting in g = 0,

one obtains g = 1−3q0. Therefore, q0 = 1/3. Substituting this value of q0 in

0= fλ, one obtains 0= 2q2
2, a contradiction.

(II) 0= q2−q0 = q0−q4 = q2−q4. It follows that q0 = q4 = q2. Hence g = 1−3q0 = 0.

Substituting q0 = 1/3 in fλ, one obtains fλ = 3/9−λ/27= 0, therefore λ= 9.

(III) 1−λq4 = 1−λq0 = q4−q0 = 0. Therefore, q0 = q4 = 1/λ. From 0= g = 1−2/λ−
q2, it follows that q2 = 1−2/λ and 0= fλ = q4(1−1/λ), hence λ= 1.

Fix once again the R3 defined by the coordinates x, y , z. Then an easy computation

shows that the equation of {Cλ = {0= fλ(x,y,z)= 1−(x+y+z)}}λ∈R>0 can be written

for λ= 1,9 as

f9 = 9
(
x2y+xy2)+x+y−10xy−(x2+y2),

f1 = x2y+xy2+x+y−2xy−(x2+y2). (2.17)

For the next lemma, recall that P = (1/3,1/3,1/3) is a singular point for C9 and

Q= Sing(C1).

Lemma 2.3. The equation for the tangent cone of C9 (resp., of C1) passing through P
(resp., Q of C1) is (x−1/3)2+(x−1/3)(y−1/3)+(y−1/3)2 (resp., 4(y−1)(x+y)). In

particular, P (resp., Q) is a nonordinary double point of C9 at P (resp., Q of C1).

Proof. The second partial derivatives at P are given as ∂2
xf9 = −2+18y , ∂2

xyf9 =
−10+18x+18y , ∂2

yf9 =−2+18x. Summarizing, ∂2
xf9(P)= 4, ∂2

yf9(P)= 4, ∂2
xyf9(P)=

2. The equation for the tangent cone at P is then

4
(
x− 1

3

)2

+4
(
x− 1

3

)(
y− 1

3

)
+4

(
y− 1

3

)2

. (2.18)

The calculation for C1 can be done analogously.

Remark 2.4. A direct computation shows that f9 is irreducible over R. Under the

linear change of coordinates u= x−1/3, v =y−1/3, the equation for f9 = 0 is trans-

formed into f9 = 9uv(u+v)+2uv +2(u2+v2). Under this linear change of coordi-

nates, the cubic curve C9 is transformed into a real cubic with isolated singularity at

the origin which is to be expected from the classification of irreducible cubic curves

over the real numbers field.

Useful notation. Let e= √(λ−9)(λ−1), R = (λ−3−e)/2λ, S = (λ−3+e)/2λ. By

Proposition 2.1, R < S, for x,u ∈ (R,S), we will adapt the convention of writing these

numbers as x = (R(n−1)+S)/n, u= (R(m−1)+S)/m for some n,m> 1.
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We need the following lemma.

Lemma 2.5. (1) If n,m ∈ R are chosen so that 1 < n < M =me/(3m+ e(m−1)),
2<m, then M < 2<m< e/3 and for such n, m, the numbers x,u satisfy 1−u< x. In

particular, e > 6, which is equivalent to λ > 5(1+√2).
(2) If (u,v,w), (x,y,z) are solutions to (2.9) and are chosen so that x > 1−u and

x �∈ {(λ+3±e)/4λ}, then x ≠ v , x ≠w, x ≠y , x ≠ z. Indeed, x ∈ {(λ+3±e)/4λ} only

if n= (3(λ−1)+e)/2λ or n= (λ−1+e)/2. In particular, if 1<n< 2 only, the value for

λ= (3n−2)/(n−1)(2−n) is possible.

Proof of part (1). 1−u < x if and only if (m− (R(m−1)+S))/m < (R(n−1)+
S)/n, hence n < (S−R)/(1− (R(2m−1)+S)/m). Substitute the values for S, R. The

value for the numerator S−R = e/λ and the denominator is equal to (m(3+e)−e)/mλ,

hence, by substituting in the original expression, we obtain n <M . The last inequality

follows from 1<M if and only if m< e/3. To prove the inequality, m>M if and only

if m> 2e/(e+3) and note that the last number is always less than 2. Thus, if m> 2, it

is sufficient. We finally note that M < 2 if and only if m> 2e/(e+6), but if m> 2, then

m> 2e/(e+3) > 2e/(e+6).

Proof of part (2). Note that

Ω = t(λt+3)−(λt−1),

Ω
λt−1

= t(λt+3)
λt−1

−1> t−1.
(2.19)

Fix u as one solution to (2.11); namely, v = (1/2)(1 − u) + Z/2, where Z =√−(1−u)Ω/(λu−1). Assume to the contrary that x = v , therefore 2x− (1−u) = Z .

By (2.19), we obtain −Z2 = (1−u)(u(λu+ 3)/(λu− 1)− 1) > (1−u)(u− 1), hence

(1− u)2 > Z2. For u > 1/λ, the quantity on the right-hand side is positive, hence

(1−u)2 −Z2 = (1−u+Z)(1−u−Z) > 0, which is equal to 2x(2(1−u)− 2x) > 0.

Since x > 0, x < 1−u, which is a contradiction.

Assuming x =w = 1−(u+v), substituting in v , we obtain 2x−(1−u)=−Z ≤ 0. If

x > 1−u, then 0≥ 2x−(1−u) > 2(1−u)−(1−u)= 1−u> 0, again a contradiction.

To see that none of u,v,w (resp., x, y , z) is equal to the other using the equation

v2(λu−1)+v(1−u)(1−λu)+u(1−u)= 0, (2.20)

we consider the following cases.

(I) If v = u such that u(λu− 1)+ (1−u)(1− λu)+ (1−u) = 0, hence 2λu2 −
u(λ+3)+2= 0. It follows that u= (λ+3±e)/4λ.

(II) If u = w = 1−u−v , v = 1−2u, thus v2 = 1−4u(1−u) and, substituting in

(2.20), we obtain again the same quadratic equation in u as in case (I).

A completely analogous reasoning applies to the variables x, y , z. The verification of

(2.20) is an easy verification using (2.9).
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To conclude the proof, if we write x = ((σ −√ρ)(n−1)+σ +√ρ)/n, then n is to be

eliminated from

(
σ −√ρ)(n−1)+σ +√ρ =n

(
σ ±√ρ

2
+ 3

2λ

)
, (2.21)

where the right-hand side is {(λ+3±e)/4λ}. Hence, n(σ −2
√ρ±√ρ−3/λ) = −4

√ρ.

We are to solve two cases corresponding to the sign in the last expression.

(I) n(σ −3
√ρ−3/λ)=−4

√ρ; then substituting the definitions for σ , ρ in the last

expression gives n = −4e/(λ−9−3e) or, by multiplying the denominator by

λ−9+3e, we obtain n = e(λ−9+3e)/2λ(λ−9) and, after simplification, we

obtain the claimed value. To obtain the value for n, one solves the quadratic

equation in terms of λ by the value found for n and obtains λ = −(n−1)(n+
2)/(2−n) < 0.

(II) n(σ −√ρ−3/λ) = −4
√ρ; then as in case (I), we obtain n = −4e/(λ−9−e) by

multiplying again by λ−9+ e, and, simplifying the expression, we obtain the

claimed value. The value for n is obtained in the same way as in case (I).

An application of Lemma 2.5 is the following.

Corollary 2.6. 7 < e/3 if and only if e > 21 if and only if λ > 5+√407 and the

last number is greater than 25. For example, if λ= 30.0000, then e= 24.6779. Consider

values for m< e/3= 8.2259, say, for example, m= 7; then M = 7e/(21+6e)= 1.0217,

so choosing n= 1.01 will suffice.

Proposition 2.7. Let l = (√q0 : η√q1 :
√q2 : η√q3 :

√q4 : η√q5) be such that qi ∈
R>0 for all i = 0, . . . ,5 with q0 > 1−q1 such that n = 1.01, m = 7 for λ ≥ 30.00, λ ≠
104.04, and the triples (q0,q2,q4), (q1,q3,q5) are solutions to (2.9); then l∈Ms .

Proof. The point l is not in

(1) � trivially since Π5
i=0qi ≠ 0;

(2) Σ since l∈ Σ, then
√q0 =√q1, hence q0 = q1, contrary to the assumption;

(3) �; indeed, we need to check that q0 �∈ {q2,q3,q4,q5} since already q0 ≠ q1.

But this is the statement of Lemma 2.5; we only need to verify that n, λ are

not the exceptional case of the statement of Lemma 2.5(2). For that, note that

only λ = 104.04 is possible. The chosen value for m = 7 is in accordance with

Corollary 2.6.

By hypothesis, l∈M and (1), (2), (3) above show that l∈Ms .

Remark 2.8. It is interesting to note that by relaxing the condition, Π5
i=0qi ≠ 0. That

is, if one qi = 0, then another qj = 0 with j ≠ i (see the commentary after (2.3)), then

the quartic surfaces obtained are singular along two skew lines. They have already been

studied in [1, Proposition 7.2(a)] and in [6, Proposition 5.1].

Remark 2.9. Fix λ > 9. We will follow the convention previous to Lemma 2.5 in

writing the elements of (R,S) in the sequel. Let � = {x ∈ (R,S) | 1 < n < M, n ≠
(λ−1+e)/2} and � = {u ∈ (R,S) | 2 <m < e/3}, for z ∈ R, let Rz = {x ∈ R | x > z}
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and

�= {(r ,s)∈R3
>0×R3

>0 | r = (x,y,z), s = (u,v,w),v,y as in (2.11)
}
, (2.22)

and consider π : � → �×� such that π(r ,s) = (x,u). The construction of � implies

that π maps bijectively onto � = �×�, hence dim(�) = dim(π(�)) by [2, Theorem

2.2.8]. Since each of �, � is one-dimensional, dim(π(�)) = dim(�×�), hence � is

two-dimensional. In particular, for λ ≥ 30.0000 and λ ≠ 104.04, define a map ϕ : �→
CP5 such that ϕ(x,u) = (x : ηy : z : ηu : v : ηw) with ((x,y,z),(u,v,w)) ∈ �. By

Proposition 2.7, ϕ(x,y) belongs to Ms and is injective, thus ϕ(�) is a subset of Ms

bijective to a two-dimensional variety.

3. The 32 lines on the quartic surface. Fix the three-dimensional real projective

space RP3 with coordinates z0, z1, z2, z3, the quartic surface Xf = {(z0 : z1 : z2 : z3) ∈
RP3, f (z0,z1,z2,z3) = 0} given by the homogeneous polynomial f of degree 4 in the

variables z0, z1, z2, z3 over the real numbers fieldR, and a line inRP3 which is generated

by a two-plane in R4 represented by a 2×4 matrix

(
1 0 ∗ ∗
0 1 ∗ ∗

)
. (3.1)

One coordinate-free approach characterizes a line as a 2-form ω ∈ ∧2R4 and another

one is to say that a line is given by a two-dimensional subspace V ⊂ R4 which yields

a well-defined point in RP5. Choosing the canonical basis of
∧2R4, one obtains the

Plücker coordinates {pij} (or P-coordinates) of the line as follows. Let

Λ=
(
z0 z1 z2 z3

z′0 z′1 z′2 z′3

)
(3.2)

be a 2×4 matrix and the minors of Λ given by

pi,j = ziz′j−zjz′i, i,j ∈ {0,1,2,3}, (3.3)

where i≠ j. If a matrix Λ is a two-plane, this means that pi,j ≠ 0 for some i,j, and the

P-coordinates for this line satisfy the equation

p01p23−p02p13+p03p12 = 0. (3.4)

Conversely, if a point with P-coordinates {pi,j} satisfying the above equation is given,

then the point representing {pi,j} is a two-plane (see, e.g., [3, Chapter 1, Section 5]). Let
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Ht be the subgroup of SL(4,R) spanned by the transformations

σ1 =




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


 , σ2 =




0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


 ,

τ1 =




1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


 , τ2 =




1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1


 ,

(3.5)

which satisfy the relations

σ 2
i = τ2

i = id, σiτi =−τiσi, (3.6)

for i= 1,2. One obtains a central exact sequence of groups:

1 �→ {±1} �→Ht �→G′ �→ 0, (3.7)

where G′ � Z4
2. The group Ht is the Heisenberg group of level two. The explicit action of

Ht on f for a polynomial, as above, on the variables z0, z1, z2, z3 is given by the usual

linear action on the polynomials of degree 4; in particular,

σ
(
z0z1z2z3

)= z0z1z2z3 ∀σ ∈Ht. (3.8)

Apply the following coordinate transformation in C6 to the P-coordinates:

x0 = p01−p23, x2 = p02+p13,

x1 = η
(
p01+p23

)
, x3 = η

(
p02−p13

)
,

x4 = p03−p12, x5 = η
(
p03+p12

)
.

(3.9)

These are the Klein coordinates (or K-coordinates as a notational convenience) that

satisfy

0= x2
0+x2

1+x2
2+x2

3+x2
4+x2

5 =−2
(
p01p23−p02p13+p03p12

)
(3.10)

which is the equation for Gr, the Grassmannian variety, which parametrizes the set

of complex lines in CP3. The K-coordinates are eigenfunctions for the action of Ht on

them. They are also very useful in studying properties of hypersurfaces in Gr, known

classically as the line complex (c.f. [4, Chapter VIII, Section 130 and Chapter XII, Sec-

tion 221]). An easy consequence of inverting the transformation given by (3.9) is the

following corollary.

Corollary 3.1. l= (x0 : x1 : x2 : x3 : x4 : x5) with P-coordinates {pi,j} defines a real

line (i.e., for all i,j, pi,j ∈R) if and only if x0, x2, x4 are all positive-real and x1, x3, x5

are purely imaginary.
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In view of the previous corollary, it is quite natural to introduce the notation of (2.4).

Using the definition of (2.5), the P-coordinates can be expressed in terms of the {qi}-
coordinates as



p01

p03

p13


=



√q0+√q1√q4+√q5√q2−√q3


 ,



p02

p23

p12


=




√q2+√q3

−(√q0−√q1
)

−(√q4−√q5
)

 .

(3.11)

We consider a line l with coordinates {pi,j} such that p01 ≠ 0. For example, the line

with coordinates

(
pa
pb

)
=
(

1 0 x y
0 1 u v

)
(3.12)

in RP3 is expressed using (3.11) in the {qi}-coordinates as

u= p02 =
√
q2+

√
q3, v = p03 =

√
q4+

√
q5,

y =−p13 =−
(√
q2−

√
q3
)
, x =−p12 =

√
q4−

√
q5.

(3.13)

Let W be the complex vector space of quartic forms in the variables z0, z1, z2, z3 inva-

riant under Ht ; then by, for example, [5, Proposition 4.1.1(ii)], it is of dimension five;

and let Gr be as before. Let � be the incidence variety given by

�= {(l,ν)∈ Gr×P(W)∣∣fν∣∣l = 0
}
. (3.14)

If g0,g1,g2,g3,g4 is a basis of W , then, for every ν ∈ W with ν = (ν0 : ··· : ν4), let

fν = Σ4
i=0νigi be the associated quartic polynomial. Let π be the projection of � into

Gr. Let l∈ Gr and let �l be the fibre underπ . For different points of l∈M , �l has already

been calculated in [1, Proposition 7.1] and in [5, Corollary 3.4.3]. What is needed in this

situation is an easy extension of [5, Lemma 3.3.1] to the real case and it can be stated

as follows.

Lemma 3.2. Let l ∈Ms define a line with real pi,j coordinates. Then �l = (l,ν) for a

unique ν ∈RP4.

Proof. The point ν is a solution to a system of nonhomogeneous equations with

entries over the real pi,j coordinates in [5, Lemma 3.3.1], hence the claim.

The proof of the following corollary is a direct consequence of Proposition 2.7 and

the calculations are left as an easy verification.
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Corollary 3.3. Let l = (√q0 : η√q1 :
√q2 : η√q3 :

√q4 : η√q5) satisfy the hypothe-

sis of Proposition 2.1. By Lemma 3.2, the point ν defines a real smooth quartic surface

Xf = {fν = 0} which contains the G′ orbit of l and of a line l′ which will be defined as

follows. In the K-coordinates {xi}, the involution

′ :
(
x0 : x1 : x2 : x3 : x4 : x5

) � �→ (
− 1
x0

:
1
x1

:
1
x2

:
1
x3

:
1
x4

:
1
x5

)
, (3.15)

which is well defined away from the fourfolds {xi = 0} applied to l, gives a line l′. Writing

the P-coordinates associated to this line as {p′i,j} (for this, let q′ = −1/√q0−1/√q1),




p′01

q′ ·p′03

q′ ·p′13


=




1
1√q4
− 1√q5

1√q2
+ 1√q3


 ,



q′ ·p′02

q′ ·p′23

q′ ·p′12


=




1√q2
− 1√q3

1√q0
− 1√q1

− 1√q4
− 1√q5



.

(3.16)

Remark 3.4. The two orbits of lines that are inXf can be grouped as the “even” lines,

that is, as those having an even number of minus signs in their K-coordinates, and the

“odd” lines as those having an odd number of minus signs in their K-coordinates (in

fact, using these K-coordinates, we have studied in [1, Proposition 4.2] group-theoretical

properties of the configuration of these lines). It is clear that if Xf contains the double

16, it contains its even and odd lines.

It is now clear from Corollary 3.3 that if Xf is a real Ht-invariant quartic surface

defined by l, Xf contains the double 16 of Corollary 3.3. The quartic surface above

can contain more than the double 16 of lines. If the quartic surface is the image of a

polarized abelian surface of type (1,3) as an irreducible polarized abelian surface, then

the image surface contains only the double 16 (c.f. [1, Propositions 6.4 and 6.7]).

4. Description of the program. The program written in Maple 7 (a copy of the pro-

gram is available upon request) defines a global variable d (this is the value of λ in

Proposition 2.1) which has to be given as initial input in the program. Using the sub-

routines named Var, Vas, the values for R, S which are polynomial expressions in terms

of λ are calculated. Using the intervals for the solutions given in Proposition 2.1 for

q0 (resp., for q1), these are calculated by two other routines named Np, Jb. In order

to evaluate the global variable q2, one needs to introduce the local variables M , N in

terms of d, q0 and finally evaluate Sq1. A subroutine then evaluates the positive root of

q2 in terms of the local variables N, Sq1, and dq0 − 1. q4 is evaluated introducing
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the routine rw which uses the equality q4 = 1−(q0+q2). Using the value for q1, the pro-

gram uses the routine rz to evaluate q3, and, applying the routine rw again, it evaluates

q5 in exactly the same way.

In order to draw the lines, one first evaluates the parametric equation for the lines.

We introduce the local variables rr , ss in terms of q4, q5, q2, q3. The last variables

are used to give the parametric equation of the line l as given by (3.11). The orbit

of l under Ht is evaluated using the procedure Graf. The parametric equation of the

transversal to l is evaluated using the variablesm, n. The procedure Mpoly substitutes

the variables x, y , u, v for the obtained values rr , ss, zz, ww together with (3.16),

which are used to evaluate the values for m and n. The coefficients for the quartic

surface are evaluated by means of the nonhomogeneous system of equations described

in the proof of Lemma 3.2. Introducing the routine Mpoly, the matrix solution is saved

as a 4×1 matrix named K. It then defines the Ht quartic invariant polynomial saved

as the variable quar. The polynomial coefficients of quar are defined as the entries of

K. This defines a new quartic polynomial in the variables x,y,u,v named quars. By

substituting v = −x−y −u in quars, one obtains a new quartic polynomial quart in

the variables x, y , u, which gives us the intersection of the quartic surface defined by

quars and the special hyperplane H = {(x,y,u,v) ∈ R4 | v+u+x+y = 0}. The next

routine expands quart and this quartic polynomial is saved as quarn. The program

then has to graph {quarn = 0} implicitly in terms of a given variable, which we chose

as x. For this, we use the display3d command of the library plots of Maple. The body

of the command consists of the range for x, y , u and the plotting options consist of

the grid values, which we chose (unless otherwise specified in Table 4.1) as the default

value of 25 for the three variables specified in the range; the style command which

specifies how the surface is to be plotted was fixed as patchnogrid; the user-defined

lighting in Maple is specified by the red, green, and blue components of the ambientlight

command which was fixed as [0.6,0.6,0.6] (note that the default values are all values

set equal to 1), the orientation command has to be specified as a pair (u,v), where

u is the horizontal angle, v is the vertical angle, which in the group of test examples

we chose to be the values given in the table. In order to visualize the lines, one has to

specify the parametric equation of the lines using the variables already calculated, rr ,

ss,m, n; this is performed by the spacecurve command. As optional commands within

the last command, the thickness of the lines which was fixed as 1 is given, the color

of the lines and the direction from which each line is to be viewed are given again by

the orientation command. Also, as part of the display3d optional command, one has to

specify the values for two directional light sources given by the light command, which

consists of a quintuple of values: the first two values are (v,u), where v is the vertical

angle and u is the horizontal angle, and the other three values specify the intensities of

the red, green, and blue colors. In the test samples given in the table, these were fixed

as [90,−80,0.7,0.6,0.1], [90,80,0.7,0.6,0.1]. In the image produced by the procedure

Graf of the Maple program in all the test examples, the line l was chosen in red. The

remaining colors for the disjoint lines were chosen as follows: blue, yellow, sienna,

cyan, khaki, pink, turquoise, aquamarine, magenta, plum, violet, brown, green, navy,

and gold. The ten transversals to l have been drawn in color black.



REAL QUARTIC SURFACES CONTAINING 16 SKEW LINES 2343

Table 4.1

Description of the configuration of double 16

Value

for d
Angle (u,v) Compilation time

Number of transversal

lines, other visual

properties

30.00

40′′, 1′0.01′′, Six transversals

1′0.78′′, Six transversals

1′10.18′′, Six transversals

1′22.04′′, 53.74′′ Six transversals

(−52,48) Six transversals

(−10,82) Five transversals

(−34,60) Six transversals

(−22,52) Five transversals

(−52,44), (−52,40), (−56,62) Six transversals

(−56,66), (−54,52), (−54,68) Six transversals

(−54,52), (−54,68), (−64,60) Six transversals

(−62,30), (−70,12) Six transversals

35.00

(42, ) full rotation Six transversals

on v angle

37.00

(16,33), (−12,47) Six transversals

(−48,89) Six transversals

(−56,47) Seven transversals

40.00 2′33.97′′, 1′42.19′′

(6,25), (−46,73) Six transversals

50.00 1′58.14′′, 1′16.57′′

(−48,96) Four transversals

(−60,96) Five transversals

(−66,96) Five transversals

(−32,64) Six transversals

60.00 51.04′′, 49.89′′

40.54′′

(−171,−54) Four transversals

(155,−56) Five transversals

70.00 1′42.92′′, 1′26.87′′

1′27.74′′

(−28,52) Four transversals

(−12,42) Five transversals

(128,−88) Five transversals

(154,−170) Five transversals
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Table 4.1 Continued.

Description of the configuration of double 16

Value

for d
Angle (u,v) Compilation time

Number of transversal

lines, other visual

properties

80.00 58.30′′, 124.30′′

122.70′′

(−20,44) Five transversals

(−36,44) Five transversals

90.00 43.45′′, 40.72′′

(166,−30) Five transversals

(174,−38),(134,−64) Five transversals

100.00 1′07.28′′

(−24,26) Five transversals

(144,−60) Five transversals

(42,22) Five transversals

(−24,48) Five transversals

5. Application of the program. We treat the problem of visualizing examples of

real quartic surfaces obtained by intersecting a real Heisenberg invariant quartic sur-

face containing the double 16 configuration of lines with the hyperplane H. To show

as clearly as possible the double 16 configuration, we only drew, in each case in the

table, the red line on the surface and its ten transversals drawn in black including 15

other transversals with the colors mentioned at the end of Section 4. Another remark

concerning the values for the orientation of the image given in the table is that the

orientation was found by rotating the image and stopped at the angles (u,v) showing

the visual properties of the surface and lines as described in the table. The program

was run on a Pentium II. In the test examples given in the table, the following prop-

erties were tabulated: the value for d, the orientation of the surface specified by the

angle (u,v), the approximate compilation time of the program to calculate the image,

and the number of lines of the double 16 visible on the screen. These parameters are

tested for each of the examples as given in the table. Note that the first row of the

table for each value of d (when recorded) gives the compilation time, and, for this value

of d, all other entries do not consider this parameter. As one can see from the table,

only at most six of the transversals were clearly visible from the given values of d. It

is of interest (although not recorded in the table) to note that at the angle (42,136)
without drawing the surface for d= 37.00, one can see the red line intersecting the ten

transversals drawn in black. See also Figure 5.1. It would be of interest to check if the

surfaces considered in the table are actually singular and irreducible.
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Figure 5.1. The quartic surface for d= 30.00 at (−54,68).
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