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Suppose A is a Banach algebra without order. We show that an approximate multiplier T :
A → A is an exact multiplier. We also consider an approximate multiplier T on a Banach
algebra which need not be without order. If, in addition, T is approximately additive, then
we prove the Hyers-Ulam-Rassias stability of T .

2000 Mathematics Subject Classification: 46J10.

1. Introduction and statement of results. It seems that the stability problem of

functional equations had been first raised by Ulam (cf. [5, Chapter VI] and [6]): for what

metric groups G is it true that a ε-automorphism of G is necessarily near to a strict

automorphism?

An answer to the above problem has been given as follows. Suppose E1 and E2 are

two real Banach spaces and f : E1 → E2 is a mapping. If there exist δ ≥ 0 and p ≥ 0,

p �= 1, such that

∥∥f(x+y)−f(x)−f(y)∥∥≤ ε(‖x‖p+‖y‖p) (1.1)

for all x,y ∈ E1, then there is a unique additive mapping T : E1 → E2 such that ‖f(x)−
T(x)‖ ≤ 2ε‖x‖p/|2−2p| for every x ∈ E1. This result is called the Hyers-Ulam-Rassias

stability of the additive Cauchy equation g(x+y) = g(x)+g(y). Indeed, Hyers [2]

obtained the result for p = 0. Then Rassias [3] generalized the above result of Hyers

to the case where 0 ≤ p < 1. Gajda [1] solved the problem for 1 < p, which was raised

by Rassias. In the same paper, Gajda also gave an example that a similar result does

not hold for p = 1. We can also find another example in [4]. If p < 0, then ‖x‖p is

meaningless for x = 0. In this case, if we assume that ‖0‖p means ∞, then the proof

given in [3] shows the existence of a mapping T : E1\{0} → E2 such that ‖f(x)−T(x)‖ ≤
2ε‖x‖p/|2−2p| for every x ∈ E1\{0}. Moreover, if we define T(0)= 0, then we see that

the extended mapping, denoted by the same letter T , is additive. The last inequality is

valid for x = 0 since we assume ‖0‖p =∞. Thus, the Hyers-Ulam-Rassias stability holds

for p ∈R\{1}, where R denotes the real number field.

Suppose A is a Banach algebra. We say that a mapping T : A → A is a multiplier if

a(Tb) = (Ta)b for all a,b ∈ A. Recall that a Banach algebra A is not without order if

there exist x0,y0 ∈ A\{0} such that x0A = Ay0 = {0}. Therefore, A is without order

if and only if for all x ∈ A, xA = {0} implies x = 0, or, for all x ∈ A, Ax = {0} implies

x = 0. We first prove the superstability of multipliers on a Banach algebra without order;

that is, each approximate multiplier is an exact multiplier.
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Theorem 1.1. Suppose A is a complex Banach algebra without order. If T :A→A is

a mapping such that

∥∥a(Tb)−(Ta)b∥∥≤ ε‖a‖p‖b‖p (a,b ∈A) (1.2)

for some ε ≥ 0 and p ≥ 0, p �= 1, then T is a multiplier.

In Theorem 1.1, we only consider the case where p ≥ 0, p �= 1. Even if p < 0, we can

also obtain a result similar to Theorem 1.1 under an additional but natural assumption

that T(0)= 0.

Theorem 1.2. Suppose A is a complex Banach algebra without order and suppose

T :A→A is a mapping such that T(0)= 0 and ‖a(Tb)−(Ta)b‖ ≤ ε‖a‖p‖b‖p (a,b ∈A)
for some ε ≥ 0 and p < 0, where ‖0‖p means ∞. Then T is a multiplier.

Theorem 1.1 need not be true for p = 1. In fact, in Remark 2.1, we give an approxi-

mate multiplier which is not an exact multiplier; however, in Remark 2.2, we see that

the Hyers-Ulam-Rassias stability holds for approximate multipliers between unital com-

mutative Banach algebras.

If A is a Banach algebra which need not be without order, then under an additional

assumption, we show the Hyers-Ulam-Rassias stability of multiplier on A: if f is an

approximate multiplier which is also approximately additive, then there is a multiplier

near to f .

Theorem 1.3. Suppose A is a Banach algebra, which need not be without order, and

f :A→A is a mapping such that

∥∥f(a+b)−f(a)−f(b)∥∥≤ ε(‖a‖p+‖b‖p) (a,b ∈A), (1.3)
∥∥af(b)−f(a)b∥∥≤ ε‖a‖p‖b‖p (a,b ∈A) (1.4)

for some ε ≥ 0 and p ∈ R. If p ≥ 0 and p �= 1, or p < 0 and f(0) = 0, then there is a

multiplier T :A→A such that

∥∥f(a)−Ta∥∥≤ 2ε∣∣2−2p
∣∣‖a‖p (a∈A). (1.5)

2. Proofs of the results

Proof of Theorem 1.1. We first show that T is homogeneous, that is, T(λa) =
λTa for all λ∈ C and a∈A. To do this, pick λ∈ C, a∈A and fix x ∈A arbitrarily. Put

s = (1−p)/|1−p|. For each n∈N, it follows from (1.2) that

∥∥nsx[T(λa)−λTa]∥∥≤ ∥∥nsx[T(λa)]−[T(nsx)](λa)∥∥
+∥∥[T(nsx)](λa)−nsx(λTa)∥∥

≤ ε∥∥nsx∥∥p‖λa‖p+|λ|ε∥∥nsx∥∥p‖a‖p
≤nspε(|λ|p+|λ|)‖x‖p‖a‖p,

(2.1)
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and hence

∥∥x[T(λa)−λTa]∥∥≤ns(p−1)ε
(|λ|p+|λ|)‖x‖p‖a‖p (2.2)

for all n ∈ N. Since s(p−1) < 0, we obtain by letting n → ∞ in (2.2) that x[T(λa)−
λTa]= 0. Similarly to the argument above, we can also get [T(λa)−λTa]x = 0. Since A
is without order, we conclude that T(λa)= λTa, which implies the homogeneity of T .

Now we are ready to prove that T is a multiplier. Since T is homogeneous, T(a) =
n−sT(nsa) for all n∈N. Recall that, by definition, s(p−1) < 0. We thus obtain for all

a,b ∈A,
∥∥a(Tb)−(Ta)b∥∥=n−s∥∥nsa(Tb)−T(nsa)b∥∥

≤n−sε∥∥nsa∥∥p‖b‖p =ns(p−1)ε‖a‖p‖b‖p
�→ 0 as n �→∞.

(2.3)

Hence a(Tb)= (Ta)b, proving T is a multiplier.

Proof of Theorem 1.2. Since T(0)= 0, it suffices to show that a(Tb)= (Ta)b for

all a,b ∈A\{0}. So, fix a,b ∈A\{0} arbitrarily. In this case, inequalities (2.1) and (2.2)

are also valid for p < 0. Recall that we assume ‖0‖p =∞, and hence

x
[
T(λa)−λTa]= 0,

[
T(λa)−λTa]x = 0, (2.4)

for λ∈ C\{0} and x ∈A\{0}. Note that (2.4) is also true for x = 0. Since A is without

order, we thus obtain T(λa) = λTa for all λ ∈ C \ {0}. An argument similar to (2.3)

shows a(Tb)= (Ta)b, and the proof is complete.

Remark 2.1. A result similar to Theorem 1.1 need not be true for p = 1, that is,

there exists an approximate multiplier which is not an exact multiplier. More explicitly,

to each ε > 0 there corresponds a function f : C→ C which is not a multiplier such that

∣∣z1f
(
z2
)−f (z1

)
z2

∣∣≤ ε∣∣z1

∣∣∣∣z2

∣∣ (2.5)

for all z1,z2 ∈ C. Fix ε > 0 arbitrarily. By the continuity of the function t � eit , there

corresponds a δ with 0 < δ < 1 such that |t| < 2π(1−δ) implies |eit −1| < ε. With

this δ, we define the mapping f : C→ C by

f(z)=



0 z = 0,

|z|eiδθ z ∈ C\{0}, (2.6)

where θ ∈ [0,2π) denotes the argument of z. Then we see that f satisfies inequality

(2.5) for all z1,z2 ∈ C. Since the case where z1 = 0 or z2 = 0 is trivial, we only consider

z1,z2 ∈ C\{0}. If zj = |zj|eiθj for j = 1,2, then we get

∣∣z1f
(
z2
)−f (z1

)
z2

∣∣= ∣∣z1

∣∣∣∣z2

∣∣∣∣ei(1−δ)(θ1−θ2)−1
∣∣. (2.7)

Note that |θ1−θ2|< 2π . By the definition of δ, we obtain (2.5), which implies that f is an

approximate multiplier. Moreover, f is not an exact multiplier, and hence Theorem 1.1

does not hold for p = 1 in general.
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Remark 2.2. Suppose A is a unital commutative Banach algebra. If f : A → A is a

mapping such that

∥∥af(b)−f(a)b∥∥≤ ε‖a‖‖b‖ (a,b ∈A) (2.8)

for some ε ≥ 0, then there is an exact multiplier T :A→A such that

∥∥f(a)−Ta∥∥≤ ε‖a‖ (a∈A). (2.9)

Indeed, let e∈A be a unit element. Taking b = e in (2.8), we obtain

∥∥af(e)−f(a)∥∥≤ ε‖a‖ (a∈A). (2.10)

If we consider the mapping T :A→A defined by

Ta= af(e) (a∈A), (2.11)

then T is a multiplier such that ‖f(a)−Ta‖ ≤ ε‖a‖ for all a∈A.

Proof of Theorem 1.3. Suppose p �= 1. By (1.3), it follows from a theorem of Ras-

sias [3] and Gajda [1] that there exists a unique additive mapping T : A→ A such that

(1.5) holds. So, we need to show that a(Tb)= (Ta)b for all a,b ∈A. Since T is additive,

T(0) = 0, and hence it is enough to consider a,b ∈ A\{0}. Put s = (1−p)/|1−p| and

fix a,b ∈ A\{0} arbitrarily. Since T is additive, we see that Ta = n−sT(nsa) for each

n∈N. Now it follows from (1.5) that

∥∥n−sf (nsb)−Tb∥∥≤n−s 2ε∣∣2−2p
∣∣
∥∥nsb

∥∥p =ns(p−1) 2ε∣∣2−2p
∣∣‖b‖p (2.12)

for all n∈N, and hence

∥∥n−sf (nsb)−Tb∥∥ �→ 0 as n �→∞. (2.13)

Since f is an approximate multiplier, we get

∥∥n−saf (nsb)−f(a)b∥∥=n−s∥∥af (nsb)−f(a)nsb∥∥
≤n−sε‖a‖p∥∥nsb∥∥p

=ns(p−1)ε‖a‖p‖b‖p
(2.14)

for all n∈N. Hence,

∥∥n−saf (nsb)−f(a)b∥∥ �→ 0 as n �→∞. (2.15)

Now it follows from (2.13) and (2.15) that

∥∥a(Tb)−(Ta)b∥∥
≤ ‖a‖∥∥Tb−n−sf (nsb)∥∥+∥∥n−saf (nsb)−f(a)b∥∥+∥∥f(a)b−(Ta)b∥∥
�→ ∥∥f(a)b−(Ta)b∥∥ as n �→∞.

(2.16)



STABILITY OF MULTIPLIERS ON BANACH ALGEBRAS 2381

By (1.5), we obtain

∥∥a(Tb)−(Ta)b∥∥≤ 2ε∣∣2−2p
∣∣‖a‖p‖b‖. (2.17)

An argument similar to (2.3) implies ‖a(Tb)− (Ta)b‖ = 0, proving T is a multiplier.
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