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STABILITY OF MULTIPLIERS ON BANACH ALGEBRAS

TAKESHI MIURA, GO HIRASAWA, and SIN-EI TAKAHASI

Received 2 February 2004

Suppose A is a Banach algebra without order. We show that an approximate multiplier T :
A — A is an exact multiplier. We also consider an approximate multiplier T on a Banach
algebra which need not be without order. If, in addition, T is approximately additive, then
we prove the Hyers-Ulam-Rassias stability of T.
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1. Introduction and statement of results. It seems that the stability problem of
functional equations had been first raised by Ulam (cf. [5, Chapter VI] and [6]): for what
metric groups G is it true that a e-automorphism of G is necessarily near to a strict
automorphism?

An answer to the above problem has been given as follows. Suppose E; and E, are
two real Banach spaces and f : E; — E» is a mapping. If there exist 6 > 0 and p > 0,
p # 1, such that

IILf(x+2)=fO) = FO) < elxIP +1vIIP) (1.1)

for all x,y € Ei, then there is a unique additive mapping T : E; — E»> such that || f(x) —
T(x)| <2¢|lx]||?/]|2—27]| for every x € E;. This result is called the Hyers-Ulam-Rassias
stability of the additive Cauchy equation g(x + y) = g(x) + g(y). Indeed, Hyers [2]
obtained the result for p = 0. Then Rassias [3] generalized the above result of Hyers
to the case where 0 < p < 1. Gajda [1] solved the problem for 1 < p, which was raised
by Rassias. In the same paper, Gajda also gave an example that a similar result does
not hold for p = 1. We can also find another example in [4]. If p < O, then | x]|” is
meaningless for x = 0. In this case, if we assume that [|0|P means oo, then the proof
given in [3] shows the existence of amapping T : E1 \ {0} — E, such that || f(x)—-T(x)|l <
2¢l|x||P /|2 —-2F] for every x € E; \ {0}. Moreover, if we define T(0) = 0, then we see that
the extended mapping, denoted by the same letter T, is additive. The last inequality is
valid for x = 0 since we assume ||0||¥ = co. Thus, the Hyers-Ulam-Rassias stability holds
for p € R\ {1}, where R denotes the real number field.

Suppose A is a Banach algebra. We say that a mapping T : A — A is a multiplier if
a(Tb) = (Ta)b for all a,b € A. Recall that a Banach algebra A is not without order if
there exist xp,yo € A\ {0} such that xoA = Ay = {0}. Therefore, A is without order
if and only if for all x € A, xA = {0} implies x = 0, or, for all x € A, Ax = {0} implies
x = 0. We first prove the superstability of multipliers on a Banach algebra without order;
that is, each approximate multiplier is an exact multiplier.
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THEOREM 1.1. Suppose A is a complex Banach algebra without order. If T: A — A is
a mapping such that

[la(Th) - (Ta)b|| < ellall”|Ibll” (a,b € A) (1.2)

for some e >0 andp =0, p # 1, then T is a multiplier.

In Theorem 1.1, we only consider the case where p > 0, p # 1. Even if p < 0, we can
also obtain a result similar to Theorem 1.1 under an additional but natural assumption
that T(0) = 0.

THEOREM 1.2. Suppose A is a complex Banach algebra without order and suppose
T: A — Aisamapping such that T(0) = 0 and ||la(Tbh)—(Ta)b|| < ¢llall?||b||P (a,b € A)
for some € > 0 and p < 0, where ||0||? means co. Then T is a multiplier.

Theorem 1.1 need not be true for p = 1. In fact, in Remark 2.1, we give an approxi-
mate multiplier which is not an exact multiplier; however, in Remark 2.2, we see that
the Hyers-Ulam-Rassias stability holds for approximate multipliers between unital com-
mutative Banach algebras.

If A is a Banach algebra which need not be without order, then under an additional
assumption, we show the Hyers-Ulam-Rassias stability of multiplier on A: if f is an
approximate multiplier which is also approximately additive, then there is a multiplier
near to f.

THEOREM 1.3. Suppose A is a Banach algebra, which need not be without order, and
f:A— Ais a mapping such that

|lf(a+Db)—f(a)-f(D)|| <e(llal”+IbI?) (a,beA), (1.3)
llaf(b) - f(a)b|| <ellalPIblP (a,be A) (1.4)

for somee>0andp e R.Ifp>0andp # 1, or p <0 and f(0) = 0, then there is a
multiplier T : A — A such that

[|f(a)-Tal| < lall? (ae€A). (1.5)

2¢&
|2-2¢|

2. Proofs of the results

PROOF OF THEOREM 1.1. We first show that T is homogeneous, that is, T(Aa) =
ATa for all A € Cand a € A. To do this, pick A € C, a € A and fix x € A arbitrarily. Put
s=(1-p)/|1-pl.For each n € N, it follows from (1.2) that

In*x[T(Aa) —ATal|| < [[n°x[T(Aa)] - [T (n°x) | Aa) ||
+[[T(n*x)](Aa) -n*x(ATa)||

<elln’x||PlIAall? + |Ale||n x| lall?

=nPe([AIP + A Ix(Plall?,
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and hence
l[x[T(Aa) —ATa]|| < n*P=Ve(IAIP + A Ix||?l|all? (2.2)

for all n € N. Since s(p — 1) < 0, we obtain by letting n — oo in (2.2) that x[T(Aa) —
ATa] = 0. Similarly to the argument above, we can also get [T (Aa) —ATa]x = 0. Since A
is without order, we conclude that T(Aa) = AT a, which implies the homogeneity of T.

Now we are ready to prove that T is a multiplier. Since T is homogeneous, T(a) =
n=—*T(n*a) for all n € N. Recall that, by definition, s(p —1) < 0. We thus obtain for all
a,beA,

[la(Th) - (Ta)b||=n"*||n°a(Th)—T(n*a)b||
<nS¢l|[n*al/” |bII” =n*PVellal?|b|? (2.3)

— 0 asn — oo.
Hence a(Th) = (Ta)b, proving T is a multiplier. O

PROOF OF THEOREM 1.2. Since T(0) = 0, it suffices to show that a(Th) = (Ta)b for
all a,b € A\ {0}. So, fix a,b € A\ {0} arbitrarily. In this case, inequalities (2.1) and (2.2)
are also valid for p < 0. Recall that we assume ||0||” = o0, and hence

x[T(Aa)—ATa] =0, [T(Aa)—ATa]x =0, (2.4)

for A € C\ {0} and x € A\ {0}. Note that (2.4) is also true for x = 0. Since A is without
order, we thus obtain T(Aa) = ATa for all A € C\ {0}. An argument similar to (2.3)
shows a(Th) = (Ta)b, and the proof is complete. |

REMARK 2.1. A result similar to Theorem 1.1 need not be true for p = 1, that is,
there exists an approximate multiplier which is not an exact multiplier. More explicitly,
to each & > 0 there corresponds a function f : C — C which is not a multiplier such that

|z1f(z2) - f(z1)z2| <€|z1]]|22] (2.5)

for all z,,z» € C. Fix € > 0 arbitrarily. By the continuity of the function t — e, there
corresponds a & with 0 < § < 1 such that |t| < 21 (1 — §) implies |eff — 1| < &. With
this 6, we define the mapping f: C — C by

Fiz=1° 2=0 (2.6)
~|izle? zec\ {0}, '

where 0 € [0,277) denotes the argument of z. Then we see that f satisfies inequality
(2.5) for all z1,z;, € C. Since the case where z; = 0 or z, = 0 is trivial, we only consider
21,22 € C\{0}.If z; = |z;]e'% for j = 1,2, then we get

|z1.f(z2) = f(z1)z2| = |z1| | z2 | | T1 7901702 1. (2.7)

Note that |01 — 0»| < 271. By the definition of §, we obtain (2.5), which implies that f is an
approximate multiplier. Moreover, f is not an exact multiplier, and hence Theorem 1.1
does not hold for p =1 in general.
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REMARK 2.2. Suppose A is a unital commutative Banach algebra. If f: A — Ais a
mapping such that

llaf(b) - f(a)b|| < ellalllbll (a,b e A) (2.8)
for some € > 0, then there is an exact multiplier T : A — A such that
lf(a@)-Tall <ellall (acA). (2.9)
Indeed, let e € A be a unit element. Taking b = e in (2.8), we obtain
llaf(e) - f(a)|| <ellall (a€A). (2.10)
If we consider the mapping T : A — A defined by
Ta=af(e) (aeA), (2.11)

then T is a multiplier such that || f(a) — Tal|l < ||a|| for all a € A.

PROOF OF THEOREM 1.3. Suppose p # 1. By (1.3), it follows from a theorem of Ras-
sias [3] and Gajda [1] that there exists a unique additive mapping T : A — A such that
(1.5) holds. So, we need to show that a(Th) = (Ta)b for all a,b € A. Since T is additive,
T(0) = 0, and hence it is enough to consider a,b € A\ {0}. Put s = (1-p)/|1—p| and
fix a,b € A\ {0} arbitrarily. Since T is additive, we see that Ta = n=*T(n°a) for each
n € N. Now it follows from (1.5) that

2¢ 2¢
[~ f(n°b) - Th|| < nfsmﬂnsbwa = ns(’”*”mllb\l’” (2.12)

for all n € N, and hence
[[n=s f(n*b) —Th|| — 0 asn — . (2.13)

Since f is an approximate multiplier, we get
[n=saf (n*b) - f(@)b|| = n*||af (n*b) - f(@)n*b||
<nSellall?|[n*b|)” (2.14)
=n*? Ve|al?|b|?
for all n € N. Hence,

[[n*af(n*b) - fla)b|| — 0 asn— oo. (2.15)

Now it follows from (2.13) and (2.15) that
lla(Th) - (Ta)bl||
<llall||Th —n=f(n*b)||+|[In"Saf (n°b) — f(a)b||+||f(a)b - (Ta)b|]| (2.16)
— |lf(@)b—(Ta)b|| asn — .
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By (1.5), we obtain

2

la(Th)—(Ta)b|| < ﬁ\la\l”llb\l- (2.17)

An argument similar to (2.3) implies |[[a(Th) — (Ta)b|l = 0, proving T is a multiplier.
O
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