RIGID LEFT NOETHERIAN RINGS

O. D. ARTEMOVYCH

Received 17 January 2003

We prove that any rigid left Noetherian ring is either a domain or isomorphic to some ring \mathbb{Z}_{p^n} of integers modulo a prime power p^n .

2000 Mathematics Subject Classification: 16P40, 16W20, 16W25.

Let *R* be an associative ring. A map $\sigma : R \to R$ is called a ring endomorphism if $\sigma(x + y) = \sigma(x) + \sigma(y)$ and $\sigma(xy) = \sigma(x)\sigma(y)$ for all elements $a, b \in R$. A ring *R* is said to be rigid if it has only the trivial ring endomorphisms, that is, identity id_R and zero 0_R . Rigid left Artinian rings were described by Maxson [9] and McLean [11]. Friger [4, 6] has constructed an example of a noncommutative rigid ring *R* with the additive group R^+ of finite Prüfer rank. A characterization for rigid rings of finite rank was obtained by the author in [1]. Some aspects of a ring rigidity has been studied by Suppa [12, 13], Friger [5], and the author [2].

In this paper, we study rigid left Noetherian rings and prove the following theorem.

THEOREM 1. Let *R* be a left Noetherian ring. Then *R* is a rigid ring if and only if $R \cong \mathbb{Z}_{p^t}$ (*p* is a prime, $t \in \mathbb{N}$) or it is a rigid domain.

All rings are assumed to be associative and, as a rule, with an identity element. For a ring *R*, *N*(*R*) will always denote the set of all nil elements of *R*, char(*R*) the characteristic, and Ann(*I*) = { $a \in R \mid aI = Ia = \{0\}$ } the annihilator of *I* in *R*. If *R* is a left order in *Q* (or equivalently, *Q* is the left quotient ring of *R*), then we will write Q = Q(R). Any unexplained terminology is standard as in [10].

We recall that a ring *R* is reduced if $r^2 = 0$ implies r = 0 for any $r \in R$. Clearly, if *R* is a rigid reduced ring with an identity element, then either char(*R*) = 0 or char(*R*) = *p* for some prime *p*.

LEMMA 2. Let R be a reduced left Goldie ring. If R is rigid, then it is a domain.

PROOF. Let *R* be a reduced rigid left Goldie ring. Assume that *R* is not a domain. From bx = 0 (resp., xb = 0), where $b, x \in R$, it holds that $(xb)^2 = 0$ (resp., $(bx)^2 = 0$) and thus a right (resp., left) annihilator of every element *b* in *R* coincides with Ann(*b*). Moreover, in view of [10, Lemma 2.3.2(i)], Ann(*a*) is a maximal left annihilator for some $a \in R$.

Assume that the quotient ring R/Ann(a) contains elements $\overline{x} = x + Ann(a) \neq \overline{0}$, $\overline{y} = y + Ann(a)$ such that

$$\overline{x} \, \overline{y} = \overline{0} \tag{1}$$

for some $x, y \in R$. Since $y \in Ann(ax)$ and Ann(a) = Ann(ax), we obtain that $\overline{y} = \overline{0}$. This means that R / Ann(a) is a domain.

By [10, Lemma 2.3.3], $I_a = Ra \oplus Ann(a)$ is an essential left ideal of R and so by [10, Corollary 3.1.8], $Q(I_a) = Q(R)$. Then the map $\sigma : I_a \to I_a$ given by $\sigma(ra) = ra$ ($r \in R$) and $\sigma(Ann(a)) = \{0\}$ is a nontrivial ring endomorphism of I_a . If $\overline{\sigma} : Q(R) \to Q(R)$ is an extension of σ to Q(R), then

$$\overline{\sigma}(r)a = \overline{\sigma}(ra) = ra \tag{2}$$

for any $r \in R$, in which case,

$$a(\overline{\sigma}(r) - r) = 0 = (\overline{\sigma}(r) - r)a.$$
(3)

Since $\overline{\sigma}(r) - r = q^{-1}t$ for some regular element $q \in R$ and some $t \in R$, we see that

$$q(\overline{\sigma}(r) - r) \in \operatorname{Ann}(a). \tag{4}$$

But $q \notin \text{Ann}(a)$ and so $\overline{\sigma}(r) - r \in \text{Ann}(a)$. This means that $\overline{\sigma}(R) \subseteq R$ and R has a nontrivial ring endomorphism, a contradiction. The lemma is proved.

In the commutative case, we obtain that a commutative reduced rigid Noetherian ring R of finite exponent is isomorphic to some \mathbb{Z}_p .

Indeed, as it is noted above, $\operatorname{char}(R) = p$ for some prime p. A map $\omega : R \to R$ given by the rule $\omega(x) = x^p$ ($x \in R$) is a ring endomorphism of R and so $x^p = x$ for all elements x of R. Assume that R is not a domain and then it follows that every prime ideal is maximal in R. Hence R is an Artinian ring by Krull-Akizuki theorem [14, Chapter IV, Section 2, Theorem 2] and by the theorem of [11], $R \cong \mathbb{Z}_p$, contrary to our assumption. This means that R is a domain and [9, Theorem 2.5] allows us to state that $R \cong \mathbb{Z}_p$.

REMARK 3. Maxson [9] has proved that a rigid commutative domain of prime characteristic p is isomorphic to \mathbb{Z}_p . Rigid rings of finite rank were studied in [1]. A characterization of rigid commutative domains (in particular, rigid fields) R of characteristic 0 with the additive group R^+ of infinite (Prüfer) rank is not known. As it is noted in [8], from the result of Gaifman [7], it holds that there exist rigid Peano fields of arbitrary infinite cardinality. Moreover, it was proved by Dugas and Göbel [3] that each field can be embedded into a rigid field of arbitrary large cardinality.

REMARK 4. There exist noncommutative rigid Noetherian domains of characteristic 0 (see [4, 6]).

Recall that a map $d : R \rightarrow R$ is called a derivation of R if

$$d(x+y) = d(x) + d(y), \qquad d(xy) = d(x)y + xd(y)$$
(5)

2474

for all elements $x, y \in R$. A ring having no nonzero derivations is called differentially trivial (see [1]). Obviously, any differentially trivial ring is commutative.

LEMMA 5. Let *R* be a left Noetherian ring such that $N(R) \neq \{0\}$. If *R* is a rigid ring, then it is isomorphic to some \mathbb{Z}_{p^t} .

PROOF. Suppose that *R* is a rigid ring such that $N = N(R) \neq \{0\}$. Then $N \subseteq Z(R)$ (see [9, page 96]). Let *d* be any nonzero derivation of *R*. If $zd(R) = \{0\}$ for all elements $z \in N$ of the nilpotency indices i < n - 1 and $ad(R) \neq \{0\}$ for some element $a \in N$ of the nilpotency index *n*, then the rule

$$\sigma(r) = r + ad(r), \quad r \in R,\tag{6}$$

determines a nontrivial ring endomorphism σ of *R*, a contradiction. Hence

$$N(R)d(R) = \{0\}$$
(7)

for every derivation *d* of *R*.

Let $K_0 = \{a \in N \mid (N \cap \operatorname{Ann}(N^2))a = \{0\}\}$. Then $N \cap \operatorname{Ann}(K_0) = N \cap \operatorname{Ann}(N^2)$. Assume that $\delta : R/K_0 \to R/K_0$ is a nonzero derivation of R/K_0 and therefore for every $r \in R$, there is an element $r_1 \in R$ such that

$$\delta(\boldsymbol{r} + \boldsymbol{K}_0) = \boldsymbol{r}_1 + \boldsymbol{K}_0. \tag{8}$$

Moreover, $a_1 \notin K_0$ for some $a \in R$. Writing *I* for the two-sided ideal of *R* generated by a_1 , we see that $(N \cap \operatorname{Ann}(N^2))(K_0 + I) \neq \{0\}$. Thus there exists an element $m_0 \in N \cap \operatorname{Ann}(N^2)$ such that $m_0 a_1 \neq 0$ and so the rule $g(r) = m_0 r_1$, with $r \in R$ and r_1 as in (8), determines a nonzero derivation *g* of *R*. In view of (7) g(r)g(t) = 0, for any elements $r, t \in R$ and a map $\alpha : R \to R$ given by the rule $\alpha(r) = r + g(r)$, $(r \in R)$ is a nontrivial ring endomorphism of *R*, a contradiction with hypothesis. This gives that R/K_0 is differentially trivial and consequently commutative. Since $K_0 \subseteq N$ and $N \subseteq Z(R)$, *R* is a Noetherian ring and, as a consequence of [10, Theorem 4.1.9] and [9, Theorem 2.2], *R* is an Artinian ring. Finally, by the theorem from [11], $R \cong \mathbb{Z}_{p^t}$ for some prime *p* and integer *t*. This completes the proof.

PROOF OF THEOREM 1. It follows immediately from Lemmas 2 and 5.

COROLLARY 6. Any rigid simple left Goldie ring R is a field (or equivalently, any noncommutative simple left Goldie ring has a nontrivial automorphism).

PROOF. Since $N(R) \subseteq Z(R)$, *R* is a semiprime ring and so according to [10, Proposition 5.1.5] and Lemma 2, it is a domain. If *q* is any element of $Q(R) \setminus R$ and $A = q^{-1}Rq$, then *A* is a left order in Q(R). Moreover, $qAq^{-1} = R$ and so *A* and *R* are equivalent left orders in Q(R). By [10, Proposition 5.1.2], *R* is a maximal left order in Q(R) and thus $A \subseteq R$, which implies $R \subseteq Z(Q(R))$, as required.

O. D. ARTEMOVYCH

REFERENCES

- O. D. Artemovych, *Differentially trivial and rigid rings of finite rank*, Period. Math. Hungar. 36 (1998), no. 1, 1-16.
- [2] _____, On I-rigid and q-rigid rings, Ukraïn. Mat. Zh. **50** (1998), no. 7, 989–993 (Russian).
- [3] M. Dugas and R. Göbel, *All infinite groups are Galois groups over any field*, Trans. Amer. Math. Soc. **304** (1987), no. 1, 355–384.
- [4] M. D. Friger, *Rigid torsion-free rings*, Sibirsk. Mat. Zh. 27 (1986), no. 3, 217–219 (Russian).
- [5] _____, Strongly rigid and I-rigid rings, Comm. Algebra 22 (1994), no. 5, 1833-1842.
- [6] _____, Torsion-free rings: some results on automorphisms and endomorphisms, Second International Conference on Algebra (Barnaul, 1991), Contemp. Math., vol. 184, American Mathematical Society, Rhode Island, 1995, pp. 111–115.
- [7] H. Gaifman, Models and types of Peano's arithmetic, Ann. Math. Logic 9 (1976), no. 3, 223– 306.
- [8] C. U. Jensen and H. Lenzing, *Model-Theoretic Algebra with Particular Emphasis on Fields, Rings, Modules*, Algebra, Logic and Applications, vol. 2, Gordon and Breach Science Publishers, New York, 1989.
- [9] C. J. Maxson, *Rigid rings*, Proc. Edinburgh Math. Soc. (2) **21** (1979), no. 2, 95-101.
- [10] J. C. McConnell and J. C. Robson, *Noncommutative Noetherian Rings*, Pure and Applied Mathematics, John Wiley & Sons, Chichester, 1987.
- [11] K. R. McLean, *Rigid Artinian rings*, Proc. Edinburgh Math. Soc. (2) 25 (1982), no. 1, 97-99.
- [12] M. A. Suppa, Sugli anelli I-rigidi [On I-rigid rings], Boll. Un. Mat. Ital. D (6) 4 (1985), no. 1, 145–152 (Italian).
- [13] _____, Sugli anelli q-rigidi, Riv. Mat. Univ. Parma 12 (1986), 121–125 (Italian).
- [14] O. Zariski and P. Samuel, *Commutative Algebra. Vol. II*, The University Series in Higher Mathematics, D. Van Nostrand C., New Jersey, 1960.

O. D. Artemovych: Institute of Mathematics, Cracow University of Technology, Warszawska 24, Cracow 31-155, Poland

E-mail address: artemo@usk.pk.edu.pl