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1. Introduction. In this paper, we present new Furi-Pera theorems [6, 7] for acyclic

maps between Hausdorff topological spaces. The main result in our paper is based on a

new Leray-Schauder alternative [1] for such maps which in turn is based on the notion

of compactly null-homotopic.

We first recall some results and ideas from the literature. Let X and Z be subsets of

Hausdorff topological spaces. We will consider maps F : X → K(Z); here K(Z) denotes

the family of nonempty compact subsets of Z . A nonempty topological space is said to

be acyclic if all its reduced C̆ech homology groups over the rationals are trivial. Now

F : X → K(Z) is acyclic if F is upper semicontinuous with acyclic values. Suppose X
and Z are topological spaces. Given a class � of maps, �(X,Z) denotes the set of maps

F :X → 2Z (nonempty subsets of Z) belonging to �, and �c the set of finite compositions

of maps in �. We let

�(�)= {W : FixF ≠∅ ∀F ∈�(W,W)
}
, (1.1)

where FixF denotes the set of fixed points of F .

The class � of maps is defined by the following properties:

(i) � contains the class � of single-valued continuous functions;

(ii) each F ∈�c is upper semicontinuous and compact valued;

(iii) Bn ∈�(�c) for all n∈ {1,2, . . .}; here Bn = {x ∈Rn : ‖x‖ ≤ 1}.
Next we consider the class �κ

c (X,Z) of maps F : X → 2Z such that for each F and

each nonempty compact subset K of X, there exists a map G ∈ �c(K,Z) such that

G(x) ⊆ F(x) for all x ∈ K. Notice the Kakutani and acyclic maps are examples of �κ
c

maps (see [3, 4, 8] for other examples).

By a space, we mean a Hausdorff topological space. Let Q be a class of topological

spaces. A space Y is an extension space for Q (written Y ∈ ES(Q)) if for all X ∈Q and

for all K ⊆ X closed in X, any continuous function f0 : K → Y extends to a continuous

function f :X → Y .

For a subset K of a topological space X, we denote by CovX(K) the set of all cover-

ings of K by open sets of X (usually we write Cov(K) = CovX(K)). Let Q be a class of
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topological spaces and Y a subset of a Hausdorff topological space. Given two maps

F,G : X → 2Y and α ∈ Cov(Y), F and G are said to be α-close if for any x ∈ X, there

exists Ux ∈α, y ∈ F(x)∩Ux , andw ∈G(x)∩Ux . A space Y is an approximate extension

space forQ (written Y ∈AES(Q)) if for allα∈ Cov(Y), for allX ∈Q, for all K ⊆X closed

in X, and for any continuous function f0 : K → Y , there exists a continuous function

f :X → Y such that f |K is α-close to f0.

Let X be a uniform space. Then X is Schauder admissible if for every compact subset

K of X and every covering α∈ CovX(K), there exists a continuous function (called the

Schauder projection) πα :K→X such that

(i) πα and i :K↩X are α-close;

(ii) πα(K) is contained in a subset C ⊆X with C ∈AES(compact).
Let X be a Hausdorff topological space and let α ∈ Cov(X). X is said to be

Schauder admissible α-dominated if there exist a Schauder admissible space Xα and

two continuous functions rα :Xα →X, sα :X →Xα such that rαsα :X →X and i :X →X
are α-close. X is said to be almost Schauder admissible dominated if X is Schauder ad-

missible α-dominated for each α∈ Cov(X). In [2], we established the following result.

Theorem 1.1. Let X be a uniform space and let X be almost Schauder admissible

dominated. Also suppose F ∈ �κ
c (X,X) is a compact upper semicontinuous map with

closed values. Then F has a fixed point.

In our next definitions, Y will be a completely regular topological space and U an

open subset of Y .

Definition 1.2. F ∈ AC(U,Y) if F : U → K(Y) is an acyclic compact map; here U
denotes the closure of U in Y .

Definition 1.3. F ∈AC∂U(U,Y) if F ∈AC(U,Y) with x ∉ F(x) for x ∈ ∂U ; here ∂U
denotes the boundary of U in Y .

Definition 1.4. F ∈AC(Y ,Y) if F : Y →K(Y) is an acyclic compact map.

Definition 1.5. If F ∈AC(Y ,Y) and p ∈ Y , then F 	 {p} in AC(Y ,Y) if there exists

an acyclic compact map R : Y × [0,1]→ K(Y) with R1 = F and R0 = {p} (here Rt(x) =
R(x,t)).

The following three results were established in [1]. We note that Theorem 1.7 follows

from Theorems 1.8, 1.1, and 1.6.

Theorem 1.6. Let Y be a metrizable ANR, p ∈ Y , and F ∈ AC(Y ,Y) with F 	 {p} in

AC(Y ,Y). Then F has a fixed point.

Theorem 1.7. Let Y be a completely regular topological space, U an open subset

of Y , u0 ∈ U , and F ∈ AC∂U(U,Y). Suppose there exists an acyclic compact map H :

U×[0,1]→K(Y) with H1 = F , H0 = {u0}, and with x ∉Ht(x) for x ∈ ∂U and t ∈ (0,1).
In addition assume either of the following occurs:

(A) Y is a uniform space and Y is almost Schauder admissible dominated;

(B) Y is a metrizable ANR.

Then F has a fixed point.
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Theorem 1.8. Let Y be a completely regular topological space, U an open subset

of Y , u0 ∈ U , and F ∈ AC∂U(U,Y). Suppose there exists an acyclic compact map H :

U×[0,1]→K(Y) with H1 = F , H0 = {u0}, and with x ∉Ht(x) for x ∈ ∂U and t ∈ (0,1).
In addition, assume the following property holds:

for any G ∈AC(Y ,Y) and any p ∈ Y with G 	 {p}
in AC(Y ,Y), G has a fixed point in Y .

(1.2)

Then F has a fixed point in U .

LetQ be a subset of a Hausdorff topological spaceX. ThenQ is called a special retract

of X if there exists a continuous retraction r :X →Q with r(x)∈ ∂Q for x ∈X\Q.

Example 1.9. Let X be a Hilbert space andQ a nonempty closed convex subset of X.

Then Q is a special retract of X since we may take r(·) to be PQ(·) which is the nearest

point projection on Q.

Example 1.10. Let Q be a nonempty closed convex subset of a locally convex topo-

logical vector space X. Then we know from Dugundji’s extension theorem that there

exists a continuous retraction r : X →Q. If intQ =∅, then ∂Q =Q so r(x) ∈ ∂Q =Q
if x ∈X. Now suppose intQ≠∅. Without loss of generality, assume 0∈ intQ. Now we

may take

r(x)= x
max

{
1,µ(x)

} , x ∈X, (1.3)

where µ is the Minkowski functional on Q, that is, µ(x) = inf{α > 0 : x ∈ αQ}. Note,

r(x)∈ ∂Q for x ∈X\Q, so Q is a special retract of X.

2. Fixed point theory. In this section we present three Furi-Pera type theorems based

on Theorems 1.1, 1.6–1.8.

Theorem 2.1. Let E = (E,d) be a metrizable space, Q a closed subset of E, u0 ∈
Q, and, Q a special retract of E. Also assume F ∈ AC(Q,E) with E almost admissible

dominated. In addition, suppose the following condition is satisfied:

there exists an acyclic compact map H :Q×[0,1] �→K(E)
with H1 = F , H0 =

{
u0
}

such that if
{(
xj,λj

)}
j∈N(

here N= {1,2, . . .}) is a sequence in ∂Q×[0,1] converging

to (x,λ) with x ∈H(x,λ) and 0≤ λ < 1, then{
H
(
xj,λj

)}⊆Q for j sufficiently large.

(2.1)

Then F has a fixed point in Q.

Proof. Now since Q is a special retract of E, there exists a continuous retraction

r : E→Q with r(z)∈ ∂Q if z ∈ E\Q. Consider

B = {x ∈ E : x ∈ Fr(x)}. (2.2)
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Clearly Fr : E→K(E) is acyclic valued, upper semicontinuous, and compact. Thus Fr ∈
AC(E,E), so Theorem 1.1 guarantees that B ≠∅. Also since Fr is upper semicontinuous

we have that B is closed. In fact, B is compact since Fr is a compact map. It remains

to show B∩Q ≠ ∅. To do this, we argue by contradiction. Suppose B∩Q = ∅. Then

since B is compact and Q is closed, there exists a δ > 0 with dist(B,Q) > δ. Choose

m∈N= {1,2, . . .} with 1< δm. Let

Ui =
{
x ∈ E : d(x,Q) <

1
i

}
for i∈ {m,m+1, . . .}. (2.3)

Fix i ∈ {m,m+1, . . .}. Now since dist(B,Q) > δ, then B∩Ui = ∅. Notice also that Ui
is open, u0 ∈ Ui, and Fr : Ui → K(E) is an upper semicontinuous, acyclic valued, and

compact map (i.e., Fr ∈AC(Ui,E)). Let H :Q×[0,1]→K(E) be an acyclic compact map

with H1 = F , H0 = {u0} as described in (2.1). Now let R : Ui× [0,1] → K(E) be given

by R(x,t) = H(r(x),t). Clearly R : Ui× [0,1] → K(E) is an acyclic compact map with

R1 = Fr and R0 = {u0}. Now B∩Ui = ∅, together with Theorem 1.7, guarantees that

there exists

(
yi,λi

)∈ ∂Ui×(0,1) with yi ∈H
(
r
(
yi
)
,λi
)
. (2.4)

We can do this for each i∈ {m,m+1, . . .}. Consequently,

{
H
(
r
(
yj
)
,λj
)} 
⊆Q for each j ∈ {m,m+1, . . .}. (2.5)

We now look at

D = {x ∈ E : x ∈ Rλ
(
r(x)

)
for some λ∈ [0,1]}. (2.6)

Now D ≠∅ is closed and in fact compact (so sequentially compact). This together with

d
(
yj,Q

)= 1
j
,
∣∣λj∣∣≤ 1 for j ∈ {m,m+1, . . .} (2.7)

implies that we may assume without loss of generality that

λj �→ λ� ∈ [0,1], yj �→y� ∈ ∂Q. (2.8)

In addition yj ∈ H(r(yj),λj) with R upper semicontinuous (so closed, [5, page 465])

guarantees that y� ∈ H(r(y�),λ�). Now if λ� = 1, then y� ∈ H(r(y�),1) = Fr(y�)
which contradicts B∩Q = ∅. Thus 0 ≤ λ� < 1. But then (2.1) with xj = r(yj) ∈ ∂Q
(note that Q is a special retract of E) and x = y� = r(y�) implies {H(r(yj),λj)} ⊆Q
for j sufficiently large. This contradicts (2.5). Thus B∩Q ≠ ∅, so there exists x ∈ Q
with x ∈ Fr(x)= F(x).

Remark 2.2. We can remove the assumption thatQ is a special retract of E provided

we assume that

there exists a retraction r : E �→Q, (2.9)
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and (2.1) is replaced by the following:

there exists an acyclic compact map H :Q×[0,1] �→K(E)
with H1 = F , H0 =

{
u0
}

such that if
{(
xj,λj

)}
j∈N(

here N= {1,2, . . .}) is a sequence in Q×[0,1] converging

to (x,λ) with x ∈H(x,λ) and 0≤ λ < 1, then{
H
(
xj,λj

)}⊆Q for j sufficiently large.

(2.10)

Theorem 2.3. Let E = (E,d) be a metrizable space, Q a closed subset of E, u0 ∈Q,

and Q a special retract of E. Also assume F ∈ AC(Q,E) with E an ANR. In addition,

assume (2.1) is satisfied and that the following condition holds:

for any G ∈AC(E,E) and any p ∈ E, there exists

an acyclic compact map Φ : E×[0,1] �→K(E) with

Φ1 =G and Φ0 = {p}
(
here Φt(x)= Φ(t,x)

)
.

(2.11)

Then F has a fixed point in Q.

Proof. Let r and B be as in the proof of Theorem 2.1. Notice Fr ∈AC(E,E). Fix p ∈
E. Now (2.11) guarantees that there exists an acyclic compact map Ψ : E×[0,1]→K(E)
with Ψ1 = Fr and Ψ0 = {p}. This together with Theorem 1.6 guarantees that B ≠ ∅.

Essentially the same reasoning as in Theorem 2.1 establishes the result.

Remark 2.4. In Theorem 2.3, we can replace “Q is a special retract of E” provided

we assume (2.9) and replace (2.1) with (2.10).

Remark 2.5. From the proof of Theorem 2.3, we can see immediately that (2.11)

could be replaced by the following:

there exist p ∈ E and an acyclic compact map

Φ : E×[0,1] �→K(E) with Φ1 = Fr and Φ0 = {p}.
(2.12)

Our next result is a generalization of Theorem 2.3.

Theorem 2.6. Let E = (E,d) be a metrizable space, Q a closed subset of E, u0 ∈Q,

and Q a special retract of E. Also assume F ∈ AC(Q,E) and that (2.1) and (2.11) are

satisfied. In addition, suppose the following condition holds:

E is such that for any G ∈AC(E,E) and any

p ∈ E with G 	 {p} in AC(E,E),

G has a fixed point.

(2.13)

Then F has a fixed point in Q.

Proof. Let r and B be as in the proof of Theorem 2.1. The argument in Theorem 2.3

guarantees that B ≠ ∅. Also of course B is closed and compact. Suppose B∩Q = ∅.

Then there exists a δ > 0 with dist(B,Q) > δ. Choose m ∈ N = {1,2, . . .} with 1 <
δm and let Ui (i ∈ {m,m+1, . . .}) be as in Theorem 2.1. Fix i ∈ {m,m+1, . . .}. Note

B∩Ui = ∅ and Fr ∈ AC(Ui,E). Let H : Q× [0,1] → K(E) be an acyclic compact map



2488 RAVI P. AGARWAL ET AL.

with H1 = F , H0 = {u0} as described in (2.1) and let R : Ui× [0,1]→ K(E) be given by

R(x,t)=H(r(x),t). Clearly R : Ui×[0,1]→ K(E) is an acyclic compact map with R1 =
Fr and R0 = {u0}. Now B∩Ui =∅, (2.13), and Theorem 1.8 guarantee that there exists

(yi,λi)∈ ∂Ui×(0,1) with yi ∈H(r(yi),λi). We can do this for each i∈ {m,m+1, . . .}.
Consequently {H(r(yj),λj)} 
⊆ Q for each j ∈ {m,m+ 1, . . .}. Essentially the same

reasoning as in Theorem 2.1 from (2.5) onwards establishes the result.

Remark 2.7. In Theorem 2.6, we can replace “Q is a special retract of E” provided

we assume (2.9) and replace (2.1) with (2.10).

Remark 2.8. In Theorem 2.6, note (2.11) could be replaced by (2.12).
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