ON SOME PROPERTIES OF BANACH OPERATORS. II

A. B. THAHEEM and A. R. KHAN

Received 30 September 2003

Using the notion of a Banach operator, we have obtained a decompositional property of a Hilbert space, and the equality of two invertible bounded linear multiplicative operators on a normed algebra with identity.

2000 Mathematics Subject Classification: 46C05, 47A10, 47A50, 47H10.

1. Introduction. This paper is a continuation of our earlier work [7] on Banach operators. We recall that if *X* is a normed space and $\alpha : X \to X$ is a mapping, then following [4], α is said to be a *Banach operator* if there exists a constant *k* such that $0 \le k < 1$ and $\|\alpha^2(x) - \alpha(x)\| \le k \|\alpha(x) - x\|$ for all $x \in X$. Banach operators are generalizations of contraction maps and play an important role in the fixed point theory; their consideration goes back to Cheney and Goldstein [2] in the study of proximity maps on convex sets (see [4] and the references therein).

In [7], we established some decompositional properties of a normed space using Banach operators. We showed that if α is a linear Banach operator on a normed space X, then $N(\alpha - 1) = N((\alpha - 1)^2)$, $N(\alpha - 1) \cap R(\alpha - 1) = (0)$ and in case X is finite dimensional, we get the decomposition $X = N(\alpha - 1) \oplus R(\alpha - 1)$, where $N(\alpha - 1)$ and $R(\alpha - 1)$ denote the null space and the range space of $(\alpha - 1)$, respectively, and 1 denotes the identity operator on X. In [7, Proposition 2.3], we proved a decompositional property of a general bounded linear operator on a Hilbert space, namely, if α is a bounded linear operator on a Hilbert space H such that α and α^* have common fixed points, then $N(\alpha - 1) + R(\alpha - 1)$ is dense in H.

In this paper, also we prove some properties of Banach operators on a Hilbert space. We show (Proposition 2.1) that if α is a bounded linear Banach operator on a Hilbert space H such that the sets of fixed points of α and α^* are the same, then H admits a decomposition $H = N(\alpha - 1) \oplus M$, where $M = \overline{R(\alpha - 1)}$, ($\overline{R(\alpha - 1)}$) denotes the closure of $R(\alpha - 1)$). It follows as a corollary of Proposition 2.1 that α commutes with both orthogonal projections onto $N(\alpha - 1)$ and onto M.

As in [7], we also study the operator equation $\alpha + c\alpha^{-1} = \beta + c\beta^{-1}$ for a pair of invertible bounded linear multiplicative Banach operators α and β on a normed algebra X with identity, where c is an appropriate real or complex number. We prove the following result (Proposition 2.3): assume that $\alpha(x) + c\alpha^{-1}(x) = \beta(x) + c\beta^{-1}(x)$ for all $x \in X$, where c is a real or complex number such that $|c| \ge 1$, $||\alpha||^2 \le |c|/2$, $||\beta||^2 \le |c|/2$. If β is inner, then $\alpha = \beta$. We briefly recall that this operator equation has been extensively studied for automorphisms on von Neumann algebras. We refer to [1, 5, 6] for more details about this operator equation.

2. The results

PROPOSITION 2.1. Let α be a bounded linear Banach operator on a Hilbert space *H* such that the sets of fixed points of α and α^* are the same. Then the following hold:

- (i) $N(\alpha-1) \perp R(\alpha-1)$,
- (ii) $H = N(\alpha 1) \oplus M$, where $M = \overline{R(\alpha 1)}$.

PROOF. To prove (i), let $x \in N(\alpha - 1)$ and $y \in R(\alpha - 1)$. Then $\alpha(x) = x$ and $y = \alpha(z) - z$ for some $z \in H$. Therefore, $\alpha^*(x) = x$ and hence

$$\langle x, y \rangle = \langle x, \alpha(z) - z \rangle = \langle x, \alpha(z) \rangle - \langle x, z \rangle = \langle \alpha^*(x), z \rangle - \langle x, z \rangle = \langle x, z \rangle - \langle x, z \rangle = 0.$$
(2.1)

Thus $N(\alpha - 1) \perp R(\alpha - 1)$.

To prove (ii), it is enough to show that $N(\alpha - 1) = M^{\perp}$. By (i) and the continuity of α , $N(\alpha - 1) \perp M$. So, $N(\alpha - 1) \subseteq M^{\perp}$. Conversely, assume that $z \in M^{\perp}$. Then $\langle z, y \rangle = 0$ for all $y \in M$; in particular, $\langle z, (\alpha - 1)x \rangle = 0$ for all $x \in H$ because $R(\alpha - 1) \subseteq M$. Thus $\langle z, \alpha(x) \rangle = \langle z, x \rangle$ for all $x \in H$. So, $\langle \alpha^*(z), x \rangle = \langle z, x \rangle$ for all $x \in H$. This shows that $\langle \alpha^*(z) - z, x \rangle = 0$ for all $x \in H$. Therefore, $\alpha^*(z) - z = 0$ or $\alpha^*(z) = z$, that is, z is a fixed point of α^* and hence by assumption, $\alpha(z) = z$, that is, $z \in N(\alpha - 1)$. So, $M^{\perp} \subseteq N(\alpha - 1)$. Thus $N(\alpha - 1) = M^{\perp}$ and hence $H = N(\alpha - 1) \oplus M$.

COROLLARY 2.2. Let α be a bounded linear Banach operator on a Hilbert space H such that the sets of fixed points of α and α^* are the same. Then α commutes with both orthogonal projections, onto $N(\alpha - 1)$ and onto M.

PROOF. Since $R(\alpha - 1)$ is α -invariant, so is M. Also, $M^{\perp} = N(\alpha - 1)$ is α -invariant. Thus M reduces α and hence α commutes with both orthogonal projections, onto $N(\alpha - 1)$ and onto M [3].

It easily follows that the orthogonal projection *P* onto $N(\alpha - 1)$ is the largest orthogonal projection such that $\alpha P = P$.

We conclude this paper with a result about an operator equation similar to the one considered in [7].

PROPOSITION 2.3. Let α, β be invertible bounded linear multiplicative Banach operators on a normed algebra X with identity such that $\alpha(x) + c\alpha^{-1}(x) = \beta(x) + c\beta^{-1}(x)$ for all $x \in X$, where c is a real or complex number with $|c| \ge 1$, $||\alpha||^2 \le |c|/2$, $||\beta||^2 \le |c|/2$. If β is inner, then $\alpha = \beta$.

PROOF. It follows from [7, Proposition 3.2] that α and β commute. Therefore,

$$(\alpha\beta - c)(\beta^{-1} - \alpha^{-1})(x) = \alpha(x) - \alpha\beta\alpha^{-1}(x) - c\beta^{-1}(x) + c\alpha^{-1}(x)$$

= $\alpha(x) - \beta\alpha(\alpha^{-1}(x)) - c\beta^{-1}(x) + c\alpha^{-1}(x)$
= $\alpha(x) - \beta(x) - c\beta^{-1}(x) + c\alpha^{-1}(x)$
= $(\alpha(x) + c\alpha^{-1}(x)) - (\beta(x) + c\beta^{-1}(x)) = 0.$ (2.2)

Put $(\beta^{-1} - \alpha^{-1})(x) = y$. Then we obtain $(\alpha\beta - c)(y) = 0$, that is, $\alpha\beta(y) = cy$. Therefore, by assumption, we get $|c||y|| = ||cy|| = ||\alpha\beta(y)|| \le ||\alpha|| ||\beta|| ||y|| \le (|c|/2) ||y||$, that is, $|c|||y|| \le (|c|/2) ||y||$. This implies that ||y|| = 0 and hence $(\beta^{-1} - \alpha^{-1})(x) = 0$ for all $x \in X$, that is, $\beta^{-1}(x) = \alpha^{-1}(x)$ for all $x \in X$. Since α is onto, therefore replacing x by $\alpha(x)$, we get $\beta^{-1}(\alpha(x)) = x$ or $\alpha(x) = \beta(x)$ for all $x \in X$.

ACKNOWLEDGMENTS. The authors are grateful to King Fahd University of Petroleum and Minerals and Saudi Basic Industries Corporation (SABIC) for supporting Fast Track Research Project no. FT-2002/01. We also thank the referees for useful suggestions. The second author is on leave from Bahauddin Zakariya University, Multan, Pakistan, and is indebted to the university's authorities for granting leave.

REFERENCES

- F. S. Cater and A. B. Thaheem, On certain equations of automorphisms of C*-algebras, Southeast Asian Bull. Math. 27 (2003), no. 2, 193–207.
- W. Cheney and A. A. Goldstein, *Proximity maps for convex sets*, Proc. Amer. Math. Soc. 10 (1959), 448-450.
- [3] P. A. Fuhrmann, *Linear Systems and Operators in Hilbert Spaces*, McGraw-Hill, New York, 1981.
- [4] S. A. Naimpally, K. L. Singh, and J. H. M. Whitfield, *Fixed points and nonexpansive retracts in locally convex spaces*, Fund. Math. **120** (1984), no. 1, 63–75.
- [5] A. B. Thaheem, On certain decompositional properties of von Neumann algebras, Glasgow Math. J. 29 (1987), no. 2, 177–179.
- [6] _____, On certain pairs of normal operators, New Zealand J. Math. **30** (2001), no. 1, 87-92.
- [7] A. B. Thaheem and A. R. Khan, On some properties of Banach operators, Int. J. Math. Math. Sci. 27 (2001), no. 3, 149–153.

A. B. Thaheem: Department of Mathematical Sciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

E-mail address: athaheem@kfupm.edu.sa

A. R. Khan: Department of Mathematical Sciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

E-mail address: arahim@kfupm.edu.sa