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We consider geometrical problems on Gorenstein hypersurface orbifolds of dimensionn≥ 4
through the theory of Hilbert scheme of group orbits. For a linear special group G acting on
Cn, we study the G-Hilbert scheme HilbG(Cn) and crepant resolutions of Cn/G for G the
A-type abelian groupAr (n). Forn= 4, we obtain the explicit structure of HilbAr (4)(C4). The
crepant resolutions of C4/Ar (4) are constructed through their relation with HilbAr (4)(C4),
and the connections between these crepant resolutions are found by the “flop” procedure of
4-folds. We also make some primitive discussion on HilbG(Cn) for G the alternating group
An+1 of degree n+ 1 with the standard representation on Cn; the detailed structure of

HilbA4(C3) is explicitly constructed.
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1. Introduction. The purpose of this paper is to study some geometrical problems

of certain Gorenstein hypersurface orbifolds of dimension 4. The main focus will be on

the structure of the newly developed concept of Hilbert scheme of group orbits and its

connection with crepant resolutions of the orbifold. For a finite subgroup G in SLn(C),
the G-Hilbert scheme HilbG(Cn) was first introduced by Nakamura et al. [6, 8, 9, 14];

one primary goal is to provide a conceptual understanding of crepant resolutions of

Cn/G for n = 3, whose solution was previously known by a computational method,

relying heavily on the Miller-Blichfeldt-Dickson classification of finite groups in SL3(C)
[12] and the invariant theory of two simple groups, I60 (icosahedral group) and H168

(Klein group) [11] (for the existence of crepant resolutions, see [19] and the references

therein). For n = 2, HilbG(C2) is the minimal resolution of C2/G, hence it has the triv-

ial canonical bundle [8, 9, 14]. For n = 3, it was expected that HilbG(C3) is a crepant

resolution of C3/G. Recently, the affirmative answer was obtained, in [7, 15], for the

abelian group G by techniques in toric geometry, and, in [2], for a general group G by

derived category methods bypassing the geometrical analysis of the G-Hilbert scheme.

With these successful results in dimension 3, a question naturally arises on the possible

role of the G-Hilbert scheme in crepant resolution problems of orbifolds in dimension

n≥ 4. For n≥ 4, it is a well-known fact that Cn/G might have no crepant resolutions at

all, even for a cyclic group G and n= 4 (for a selection of examples, see, e.g., [17]). To

avoid many such complicated exceptional cases, we will restrict our attention only to

those with hypersurface singularities. In this paper, we will address certain problems

on two specific types of hypersurface Gorenstein quotient singularity Cn/G of dimen-

sion n; one is the abelian group G = Ar(n) defined in (2.19), and the other, group

G, is the alternating group An+1 of degree n+ 1 acting on Cn through the standard
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representation. In the case G =Ar(n), HilbG(Cn) is a toric variety, hence the methods

for toric geometry provide an effective tool to study its structure. For n = 4, we will

give a detailed derivation of the smooth toric structure of HilbAr (4)(C4) and construct

the crepant toric resolutions of C4/Ar (4) by blowing down the canonical divisors of

HilbAr (4)(C4); in due course, the “flop” of 4-folds naturally arises in the process (see

Theorems 3.4, 3.5, and 4.1, whose statements were previously announced in [3]). We

would expect that the concept which appeared in the proof of these theorems will in-

spire certain clues to other cases, not only the Ar(n)-type groups, but also nonabelian

groups An+1 (which are simple groups for n ≥ 4). Group A4 is a solvable group of or-

der 12, also called the ternary trihedral group. The crepant resolution of C3/A4 was

explicitly constructed in [1], and the structure HilbA4(C3) over the origin orbit of C3/A4

was analyzed in detail in [6]. Through the representation theory of A4, we will give the

direct verification that HilbA4(C3) is smooth and a crepant resolution of C3/A4. Though

the conclusion is known by the general result in [2] using qualitative arguments, the

object of our detailed analysis is to reveal that there exist certain common features

in determining the structures of G-Hilbert schemes for certain abelian and nonabelian

groups G by the computational methods, in the hope that the approach could possibly

be applied to higher-dimensional cases. With this in mind, we will restrict our attention

only to the case A4, leaving possible generalizations, applications, or implications to

future work.

This paper is organized as follows. In Section 2, we will summarize the main fea-

tures of the G-Hilbert scheme of group orbits and the results in toric geometry needed

in later discussions. We will also define group G which we will consider in this paper.

Sections 3 and 4 will be devoted to the discussion of the structure of HilbG(C4) and

crepant resolutions of C4/G for G = Ar(4). For simpler terminology to express ideas,

also for the description of the geometry of the flop of 4-folds, we will consider only the

case A1(4) in Section 3 to discuss the structure of HilbA1(4)(C4). The flop relation be-

tween crepant resolutions of C4/A1(4)will be examined in detail through HilbA1(4)(C4).
In Section 4, we will derive the solution of the corresponding problems for G = Ar(4)
for a general positive integer r , with much more complicated techniques but a method

much in tune with the previous section. In Section 5, we consider the case G = An+1

acting on Cn through the standard representation for n = 3. By employing the struc-

ture of the fiber in HilbA4(C3) over the origin orbit of C3/A4 as described in [6], we

give an explicit construction of the smooth and crepant structure of HilbA4(C3) using

finite group representation theory, along a line similar to the previous two sections in

a certain sense. Finally, we give the concluding remarks in Section 6.

Notations 1.1. To present our work, we prepare some notations. In this paper, by

an orbifold we will always mean the orbit space of a smooth complex manifold acted

on by a finite group. Throughout the paper, G will always denote a finite group unless

otherwise stated. We denote

Irr(G)= {
ρ :G �→ GL

(
Vρ

)
an irreducible representation of G

}
. (1.1)

The trivial representation of G will be denoted by 1. For a G-module W , that is, a G-

linear representation space W , one has the canonical irreducible decomposition
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W =⊕
ρ∈Irr(G)Wρ , where Wρ is a G-submodule of W , isomorphic to Vρ⊗W 0

ρ for some

trivial G-module W 0
ρ . For an analytic variety X, we will not distinguish the notions of

vector bundle and locally free �X -sheaf over X.

2. G-Hilbert scheme and toric geometry. In this section, we briefly review some

basic facts on HilbG(Cn) (the Hilbert scheme of G-orbits) and toric geometry necessary

for later use, then specify groups G for the discussions of the rest of the sections of

this paper.

First, we will always assume G to be a finite subgroup of SLn(C). Denote SG := Cn/G
with the canonical projection, πG : Cn → SG, and o := πG(�0). As G acts on Cn freely

outside a finite collection of linear subspaces with codimension greater than or equal

to 2, SG is an orbifold with nonempty singular set Sing(SG) of codimension greater than

or equal to 2. In fact, the element o is a singular point of SG. By a variety X birational

over SG, we will always mean a proper birational morphism σ from X to SG which is

biregular between X \σ−1(Sing(SG)) and SG \Sing(SG),

σ :X �→ SG. (2.1)

One can form the commutative diagram via the birational morphism σ as follows:

X×SG Cn

π

Cn

πG

X
σ SG

(2.2)

Denote by �X the coherent �X -sheaf over X obtained by the pushforward of the struc-

ture sheaf of X×SGCn, �X :=π∗�X×SGCn . For two varieties X, X′ birational over SG with

the commutative diagram

X

µ

σ SG

X′
σ ′ SG

(2.3)

one has a canonical morphism µ∗�X′ →�X . In particular, the morphism (2.1) gives rise

to the �X -morphism

σ∗
(
πG∗�Cn

)
�→�X. (2.4)

Furthermore, all the above morphisms are compatible with the natural G-structure of

�X induced from the G-action on Cn via (2.2). Then �X has the canonical G-decom-

position of coherent �X -submodules �X =
⊕

ρ∈Irr(G)(�X)ρ , where (�X)ρ is the ρ-factor

of �X . The geometrical fibers of �X and (�X)ρ over x ∈ X are defined by �X,x =
k(x)

⊗
�X �X , (�X)ρ,x = k(x)

⊗
�X (�X)ρ , where k(x) (:= �X,x/�x) is the residue field

at x. Over X\σ−1(Sing(SG)), �X is a vector bundle of rank |G| with the regular G-repre-

sentation on each geometric fiber. Hence (�X)ρ is a vector bundle overX\σ−1(Sing(SG))
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with rank equal to the dimension of Vρ . For x ∈X, there exists a G-invariant ideal I(x)
in C[Z] (:= C[Z1, . . . ,Zn]) such that the following relation holds:

�X,x = k(x)
�
�SG

�Cn(x)� C[Z]/I(x). (2.5)

We have (�X)ρ,x � (C[Z]/I(x))ρ . The vector spaces C[Z]/I(x) form a family of finite-

dimensional G-modules parametrized by x ∈ X. For x �∈ σ−1(Sing(SG)), C[Z]/I(x) is

a regular G-module. In particular, for X = SG in (2.5) and s ∈ SG, the G-invariant ideal

I(s) of C[Z] is generated by the G-invariant polynomials vanishing at σ−1(s). Let Ĩ(s)
be the ideal of C[Z] consisting of all polynomials vanishing at σ−1(s). Then Ĩ(s) is a G-

invariant ideal with Ĩ(s)⊃ I(s). For s = o, we have Ĩ(o)= C[Z]0 and I(o)= C[Z]G0C[Z],
where subscript 0 indicates the maximal ideal of polynomials vanishing at the origin.

For a variety X birational over SG via σ in (2.1), one has the following relations of

G-invariant ideals of C[Z]:

Ĩ(s)⊃ I(x)⊃ I(s), x ∈X, s = σ(x). (2.6)

For x ∈X, there exists a direct sum decomposition of C[Z] as G-modules,

C[Z]= I(x)⊥⊕I(x). (2.7)

Here, I(x)⊥ is a finite-dimensional G-module isomorphic to C[Z]/I(x). Similarly, we

have G-module decompositions, for s = σ(x)∈ SG,

C[Z]= I(s)⊥⊕I(s), C[Z]= Ĩ(s)⊥⊕ Ĩ(s), (2.8)

so that the relations Ĩ(s)⊥ ⊂ I(x)⊥ ⊂ I(s)⊥ hold. Note that the above finite-dimensional

G-modules with superscript⊥ are not unique inC[Z] because there is a choice involved,

nonetheless, we could choose them such that these inclusions are fulfilled. One has the

canonical G-decomposition of I(x)⊥: I(x)⊥ =⊕
ρ∈Irr(G) I(x)⊥ρ , where the factor I(x)⊥ρ is

isomorphic to a positive finite sum of copies of Vρ .

Now we consider the varieties X birational over SG such that �X is a vector bundle.

Among all such X, there exists a minimal object, called the G-Hilbert scheme in [8, 9,

14, 15],

σHilb : HilbG
(
Cn

)
�→ SG. (2.9)

By the definition of HilbG(Cn), an element (i.e., closed point) p of HilbG(Cn) is described

by a G-invariant ideal I (= I(p)) of C[Z] of colength |G|, and the fiber of the vector

bundle �HilbG(Cn) over p can be identified with the regular G-module C[Z]/I(p). For

simplicity of notation, we will also make the identification of the element p with its

associated ideal I and write I ∈ HilbG(Cn) in what follows if no confusion arises. For

any other X, map (2.1) can be factored through a birational morphism λ from X onto
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HilbG(Cn) via σHilb:

X

λ

σ SG

HilbG
(
Cn

) σHilb SG

(2.10)

In fact, the ideal I(x) of (2.5) is a colength |G| ideal in C[Z], by which the map λ is de-

fined. We will denote by XG the normalization of HilbG(Cn), which is a normal variety

over SG with the birational morphism from XG onto SG. As every biregular automor-

phism of SG can always be lifted to one of HilbG(Cn), hence also to XG, one has the

following result.

Lemma 2.1. Let Aut(SG) be the group of biregular automorphisms of SG. Then

HilbG(Cn), XG are Aut(SG)-varieties over SG via Aut(SG)-morphisms. As a consequence,

XG is a toric variety for an abelian group G.

Now we are going to summarize some basic facts in toric geometry for the later

discussion when group G is abelian (for details, see, e.g., [5, 10, 16]). In this case, we

consider G as a subgroup of the diagonal group T0 of GLn(Cn) with the identification

T0 = C∗n. Regard Cn as the partial compactification of T0,

G ⊂ T0 ⊂ Cn. (2.11)

Let T be the torus T0/G and consider SG (= Cn/G) as a T -space,

T := T0/G, T ⊂ SG. (2.12)

The combinatorial data of toric varieties are constructed from the lattices of 1-para-

meter subgroups and characters of tori T , T0:

N
(

:=Hom
(
C∗,T

))⊃N0
(

:=Hom
(
C∗,T0

))
,

M
(

:=Hom
(
T ,C∗

))⊂M0
(

:=Hom
(
T0,C∗

))
.

(2.13)

For convenience, N0 and N will be identified with the following lattices in Rn in this

paper. Denote by {ei}ni=1 the standard basis of Rn, and define the map exp :Rn→ T0 by

r (=∑n
i=1 riei)� exp(r) :=∑

i e2π
√−1riei. The lattices N, N0 are given by

N0 = Zn
(

:= exp−1(1)
)
, N = exp−1(G), (2.14)

and we have G �N/N0. The lattice M0 dual to N0 is the standard one in the dual space

Rn∗. In what follows, we will identify M0 with the group of monomials in variables

Z1, . . . ,Zn via the correspondence

I =
n∑
s=1

ises ∈M0←→ ZI =
n∏
s=1

Ziss . (2.15)

The dual latticeM of N is the sublattice ofM0, consisting of all G-invariant monomials.

Among the varieties X birational over the T -space SG, we will consider only those X
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with a T -structure. It has been known that these toric varieties X are represented by

certain combinatorial data in toric geometry. A toric variety over SG is described by a fan

Σ= {σα | σ ∈ I} with the first quadrant of Rn as its support, that is, a rational convex

cone decomposition of the first quadrant in Rn. Equivalently, these combinatorial data

can also be described by the intersection of the fan and the standard simplex ∆ in the

first quadrant:

� :=
{
r ∈Rn |

∑
i
ri = 1, rj ≥ 0 ∀j

}
. (2.16)

The corresponding data in� are denoted by Λ= {�α |α∈ I} with�α := σα∩�. Then

Λ is a polytope decomposition of� with vertices in�∩Qn. Note that for σα = {�0}, we

have�α =∅. Such Λ will be called a rational polytope decomposition of�, and we will

denote byXΛ the toric variety corresponding toΛ. If all vertices ofΛ are inN,Λ is called

an integral polytope decomposition of�. For a rational polytope decompositionΛ of�,

we define Λ(i) := {∆α ∈ Λ | dim(∆α) = i} for −1 ≤ i ≤ n−1 (here, dim(∅) := −1). The

T -orbits in XΛ are parametrized by
⊔n−1
i=−1Λ(i). In fact, to �α ∈ Λ(i) there associates

an (n−1−i)-dimensional T -orbit, which will be denoted by orb(�α). A toric divisor in

XΛ is the closure of an (n−1)-dimensional orbit, denoted by Dv = orb(v) for v ∈Λ(0).
The canonical sheaf of XΛ is expressed by the toric divisors (see, e.g., [5, 10, 16])

ωXΛ = �XΛ

( ∑
v∈Λ(0)

(
mv−1

)
Dv

)
, (2.17)

where mv is the least positive integer with mvv ∈N. In particular, XΛ is crepant, that

is, ωXΛ = �XΛ , if and only if Λ is integral. On the other hand, the smoothness of XΛ
is described by the decomposition Λ to be a simplicial one with the multiplicity one

property, that is, for each Λα ∈ ∆(n−1), the elements mvv for v ∈ Λα∩Λ(0) form a

Z-basis of N. The following results are known for toric variety over SG (see, e.g., [18]):

(1) the Euler number of XΛ is given by χ(XΛ)= |Λ(n−1)|;
(2) for a rational polytope decomposition Λ of ∆, any two of the following three

properties imply the third one:

XΛ : nonsingular, ωXΛ = �XΛ , χ
(
XΛ

)= |G|. (2.18)

In this paper, we will consider only two specific series of hypersurface n-orbifold SG
for n≥ 2. The first type can be regarded as a generalization of the A-type Klein surface

singularity; the group G is defined as follows:

Ar(n) := {
g ∈ SLn (C) | g : diagonal, gr+1 = 1

}
, r ≥ 1. (2.19)

The Ar(n)-invariant polynomials in C[Z] (:= C[Z1, . . . ,Zn]) are generated by monomi-

als,X :=∏n
i=1Zi and Yj := Zr+1

j (j = 1, . . . ,n). Thus SAr (n) is realized as the hypersurface

in Cn+1

SAr (n) : xr+1 =
n∏
j=1

yj,
(
x,y1, . . . ,yn

)∈ Cn+1. (2.20)
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The ideal I(o) of C[Z] for the element o ∈ SAr (n) is given by I(o) = 〈Zr+1
1 , . . . ,Zr+1

n ,
Z1, . . . ,Zn〉, hence

I(o)⊥ =
⊕{

CZI | I = (
i1, . . . , in

)
, 0≤ ij ≤ r ,

n∏
j=1

ij = 0

}
. (2.21)

For a nontrivial character ρ ofAr(n), the dimension of I(o)⊥ρ is always greater than one.

In fact, one can describe an explicit set of monomial generators of I(o)⊥ρ . For example,

say I(o)⊥ρ contains an element ZI with I = (i1, . . . , in), i1 = 0 and is ≤ is+1, then I(o)⊥ρ is

generated by ZK ’s with K = (k1, . . . ,kn) given by

ks =
r +1−ij+is if is < ij,

is−ij otherwise;
(2.22)

here, j runs through 1 to n. Note that some of the above n-tuples K might coincide with

each other. In particular, for r = 1, the dimension of I(o)⊥ρ is equal to 2 for ρ ≠ 1, with

a basis consisting of ZI , ZI′ whose indices satisfy the relations 0≤ is , is′ ≤ 1, is+is′ = 1

for 1≤ s ≤n.

The second type of group G is the alternating group An+1 (of degree n+1) acting on

Cn through the standard representation. The representation is induced from the linear

action of the symmetric group Sn+1 on Cn+1 by permuting the coordinate indices, then

restricting on the subspace

V =
{(
z̃1, . . . , z̃n+1

)∈ Cn+1 |
n+1∑
j=1

z̃j = 0

}
� Cn. (2.23)

We denote by C[Z̃] (:= C[Z̃1, . . . , Z̃n+1]) the coordinate ring of the affine (n+1)-space

Cn+1, and their elementary symmetric polynomials σk :=∑
1≤i1<···<ik≤n+1 Z̃i1 ··· Z̃ik for

1≤ k≤n+1. The An+1-invariant polynomials in C[Z̃] are generated by the above σk’s
and δ :=∏

i<j(Z̃i− Z̃j) with a relation δ2 = F̃(σ1,σ2, . . . ,σn+1) for a certain polynomial

F̃ . In fact, F̃ is a (quasi-)homogeneous polynomial of degree n(n+1) with the weights

of σk and δ equal to k and n(n+ 1)/2, respectively. Denote by sk, d the restriction

functions of σk, δ, respectively, on V . Then s1 is the zero function and V/Sn+1 =Cn via

the coordinates (s2, . . . ,sn+1). The orbifold SAn+1 (= V/An+1) is a double cover of Cn:

SAn+1 �→ Cn = V/Sn+1. (2.24)

Then V/Sn+1 can be realized as a hypersurface in Cn+1 with the equation

SAn+1 : d2 = Fn
(
s2, . . . ,sn+1

)
,

(
d,s2, . . . ,sn+1

)∈ Cn+1, (2.25)



2554 L. CHIANG AND S.-S. ROAN

where Fn(s2, . . . ,sn+1) := F̃(0,s2, . . . ,sn+1). The polynomial Fn(s2, . . . ,sn+1) has a lengthy

expression in general. Here, we list the polynomials Fn for n= 3,4:

F3
(
s2,s3,s4

)=−4s3
2s

2
3−27s4

3+16s4
2s4−128s2

2s
2
4+144s2s2

3s4+256s3
4 ,

F4
(
s2,s3,s4,s5

)=−4s3
2s

2
3s

2
4−27s4

3s
2
4+16s4

2s
3
4+144s2s2

3s
3
4−128s2

2s
4
4

+256s5
4−72s4

2s3s4s5+108s5
3s5−630s2s3

3s4s5−1600s3s3
4s5

+560s2
2s3s2

4s5+16s3
2s

3
3s5−900s3

2s4s2
5+2250s2

3s4s2
5

+2000s2s2
4s

2
5+108s5

2s
2
5+825s2

2s
2
3s

2
5−3750s2s3s3

5+3125s4
5 .

(2.26)

3. A1(4)-singularity and flop of 4-folds. We now study the A1(n)-singularity with

n≥ 4. The set of N-integral elements in ∆ is given by

�∩N = {
ej | 1≤ j ≤n}∪{vi,j | 1≤ i < j ≤n}, (3.1)

where vi,j := (1/2)(ei+ej) for i≠ j. Other than the simplex ∆ itself, there is only one

integral polytope decomposition of ∆ invariant under all permutations of coordinates,

and we will denote it by Ξ. Ξ(n− 1) consists of n+ 1 elements: �i (1 ≤ i ≤ n) and

♦, where �i is the simplex generated by ei and vi,j for j ≠ i, and ♦ is the closure

of �\⋃n
i=1�i; equivalently, ♦ equals the convex hull spanned by vi,j ’s for i ≠ j. The

lower-dimensional polytopes of Ξ are the faces of those in Ξ(n−1). XΞ has the trivial

canonical sheaf. For n= 2,3, XΞ is a crepant resolution of SA1(n). For n= 4, one has the

following result.

Lemma 3.1. For n= 4, the toric variety XΞ is smooth except for one isolated singular-

ity, which is the 0-dimensional T -orbit corresponding to ♦.

Proof. In general, for n≥ 4, it is easy to see that for each i, the vertices of ∆i form a

Z-basis of N; for example, say i= 1, it follows from |A1(n)| = 2n−1 and det(e1,v1,2, . . . ,
v1,n)= 1/2n−1. Hence XΞ is nonsingular near the T -orbits associated to simplices in ∆i.
As ♦ is not a simplex, orb(♦) is always a singular point of XΞ. For n= 4, the statement

of smoothness of XΞ except orb(♦) follows from the fact that for 1≤ i≤ 4, the vertices

vi,j (j ≠ i) of XΞ, together with (1/2)
∑4
j=1 ej , form an N-basis.

Remark 3.2. For n≥ 4, the following properties hold for 0-dimensional T -orbits of

XΞ.

(1) Denote x∆j := orb(∆j) ∈ XΞ for 1 ≤ j ≤ n. The inverse of the matrix, spanned

by vertices of ∆j , (v1,j , . . . ,vj−1,j ,ej,vj+1,j , . . . ,vn,j)−1, gives rise to affine coordinates

(U1, . . . ,Un) centered at x∆j such that Ui = Z2
i (i ≠ j) and Uj = Zj/Z1 ··· Žj ···Zn.

Hence I(x∆j )= 〈Zj,Z2
i , i ≠ j〉+ I(o), and we have the regular A1(n)-module structure

of C[Z]/I(x∆j ):

C[Z]/I
(
x∆j

)�⊕{
CZI | I = (

i1, . . . , in
)
, ij = 0, ik = 0,1 for k≠ j

}
. (3.2)

(2) We will denote x♦ := orb(♦) in XΞ. The singular structure of x♦ is determined by

the A1(n)-invariant polynomials corresponding to the M-integral elements in the cone

dual to the one generated by ♦ inNR. So the A1(n)-invariant polynomials are generated
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F ′1

F2

F ′4
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F ′3
F4

α′1
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α′3

α′2

α4 α3

Figure 3.1. Dual pair of octahedron and cube: faces Fj , F ′j of octahedron are

dual to vertices αj , α′j of cube. The face of the cube in gray color corresponds
to the dot “•” in the octahedron.

by Xj := Z2
j and Yj := Z1 ··· Žj ···Zn/Zj . Hence I(x♦) = 〈Z1 ··· Žj ···Zn〉1≤j≤n+ I(o).

Note that for n = 3, the Yj ’s indeed form the minimal generators for the invariant

polynomials, which implies the smoothness of XΞ. For n≥ 4, x♦ is a singularity not of

the hypersurface type. Forn= 4, the Xj , Yj (1≤ j ≤ 4) form a minimal set of generators

of invariant polynomials, hence the structure near x♦ in XΞ is the 4-dimensional affine

variety in C8 defined by the relations

xiyi = xjyj, xixj =yi′yj′ ,
(
xi,yi

)
1≤i≤4 ∈ C8, (3.3)

where i≠ j with {i′,j′} the complementary pair of {i,j}.
For the rest of this section, we will consider only the case n = 4. We are going to

discuss the structure of HilbA1(4)(C4) and its connection with crepant resolutions of

SA1(4). The simplex ∆ is a tetrahedron and ♦ is an octahedron; both are acted on by the

symmetric group S4. The dual polygon of ♦ is the cube. The facets of the octahedron ♦
are labeled by Fj , F ′j for 1≤ j ≤ 4, where Fj = ♦∩�j and F ′j = {

∑4
i=1xiei ∈ ♦ | xj = 0}.

The duals of Fj , F ′j in the cube are vertices, denoted by αj , α′j as in Figure 3.1.

Consider the rational simplicial decomposition Ξ∗ of ∆, which is a refinement of Ξ
by adding the center c := (1/4)∑4

j=1 ej as a vertex with the barycentric decomposition

of ♦ in Ξ (see Figure 3.2). Note that c �∈N and 2c ∈N. For convenience, we will use the

following convention.

Notation 3.3. Let G be a diagonal group acting on C[Z]. Two monomials m1, m2

in C[Z] are said to be G-equivalent, denoted by m1
G∼m2 or simply by m1 ∼m2, if

m1/m2 is a G-invariant function.

Theorem 3.4. ForG =A1(4), HilbG(C4)�XΞ∗ , which is nonsingular with the canoni-

cal bundleω= �XΞ∗ (E), where E is an irreducible divisor isomorphic to the triple product
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e3

v23

e2

v12

e1

v14

e4

v34

v24
c

Figure 3.2. The rational simplicial decomposition Ξ∗ of ∆ for n= 4, r = 1.

of P1,

E = P1×P1×P1. (3.4)

Furthermore, for {i,j,k} = {1,2,3}, the normal bundle of E, when restricted on the fiber

P1
k(� P1), for the projection E to P1×P1 via the (i,j)th factor

pk : E �→ P1×P1, (3.5)

is the (−1)-hyperplane bundle

�XΞ∗ (E)⊗�P1
k
� �P1(−1). (3.6)

Proof. First we show the smoothness of the toric variety XΞ∗ . The octahedron ♦ of

Ξ is decomposed into eight simplices of Ξ∗ corresponding to faces Fj , F ′j of ♦. Denote

by Cj (resp., C′j ) the simplex of Ξ∗ spanned by c and Fj (resp., F ′j ); xCj , xC′j are the

corresponding 0-dimensional T -orbits in XΞ∗ . The smoothness of affine space in XΞ∗
near xCj , xC′j follows from the N-integral criterion of the cones in NR generated by

Cj , C′j . The coordinate system is given by the integral basis of M which generates the

cone dual to the cone spanned by Cj (C′j ). As examples for C1, C′2, the coordinates are

determined by the row vectors of the following square matrices:

cone
(
C1

)∗
:

(
2c,v1,2,v1,3,v1,4)−1 =


−1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

 ,

cone
(
C′2

)∗
:

(
v3,4,2c,v1,4,v1,3)−1 =


−1 −1 1 1

0 2 0 0

1 −1 −1 1

1 −1 1 −1

 .
(3.7)
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The coordinate functions ofXΞ∗ centered at xC1 are given by (U1,U2,U3,U4)= (Z2Z3Z4/
Z1,Z1Z2/Z3Z4,Z1Z3/Z2Z4,Z1Z4/Z2Z3) with I(xC1) = 〈Z2Z3Z4,Z1Z2,Z1Z3,Z1Z4〉+ I(o),
and the coordinates near xC′2 are (U ′1,U

′
2,U

′
3,U

′
4) = (Z3Z4/Z1Z2,Z2

2 ,Z1Z4/Z2Z3,Z1Z3/
Z2Z4) with I(xC′2)= 〈Z3Z4,Z2

2 ,Z1Z4,Z1Z3〉+I(o). By Remark 3.2(1), one has the smooth

coordinate system centered at x∆j in XΞ∗ . For ∆1, by

cone
(
∆1

)∗
:

(
e1,v1,2,v1,3,v1,4)−1 =


1 −1 −1 −1

0 2 0 0

0 0 2 0

0 0 0 2

 , (3.8)

one has the coordinate system near x∆1 , (V1,V2,V3,V4) = (Z1/Z2Z3Z4,Z2
2 ,Z

2
3 ,Z

2
4 ) with

I(x∆1) = 〈Z1,Z2
2 ,Z

2
3 ,Z

2
4〉+ I(o). Now we are going to show that C[Z]/I(y) is a regular

G-module for y ∈ XΞ∗ . For an element y in the affine neighborhood of x∆1 with the

coordinates Vi = vi (1≤ i≤ 4), one has

I(y)= 〈
Z1−v1Z2Z3Z4,Z2

2 −v2,Z2
3 −v3,Z2

4 −v4
〉
. (3.9)

The set of monomials {1,Z2,Z3,Z4,Z2Z3,Z2Z4,Z3Z4,Z2Z3Z4} gives rise to a basis of

C[Z]/I(y) for vi ∈ C; hence C[Z]/I(y) is a regular G-module. For y near xC1 with the

coordinates Ui =ui (1≤ i≤ 4), we have

I(y)=〈
Z2Z3Z4−u1Z1,Z1Z2−u2Z3Z4,Z1Z3−u3Z2Z4,Z1Z4−u4Z2Z3

〉+IG(y), (3.10)

where IG(y)=〈Z1Z2Z3Z4−u2
1u2u3u4,Z2

1−u1u2u3u4,Z2
2−u2u1,Z2

3−u3u1,Z2
4−u4u1〉.

This implies thatC[Z]/I(y) is a regularG-module with a basis represented by {1,Z1,Z2,
Z3,Z4,Z2Z3,Z3Z4,Z2Z4}. Similarly, the same conclusion holds for y near xC′2 with the

coordinates U ′i =u′i (1≤ i≤ 4), in which case we have

I(y)= 〈
Z3Z4−u′1Z1Z2,Z1Z4−u′3Z2Z3,Z1Z3−u′4Z2Z4

〉+IG(y), (3.11)

with IG(y)= 〈Z1Z2Z3Z4−u′22u′1u
′
3u
′
4,Z

2
2−u′2,Z2

1−u′2u′3u′4,Z2
3−u′1u′2u′4,Z2

4−u′1u′2u′3〉,
and a basis of C[Z]/I(y) represented by {1,Z1,Z2,Z3,Z4,Z1Z2,Z2Z3,Z2Z4}. The same

argument can equally be applied to all affine charts centered at x∆j , xCj , xC′j . Therefore

we obtain a morphism

λ :XΞ∗ �→HilbG
(
C4) with I

(
λ(y)

)= I(y), y ∈XΞ∗ . (3.12)

We are going to show that the above morphism λ is an isomorphism by constructing

its inverse morphism. Let y ′ be an element of HilbG(C4), represented by a G-invariant

ideal J ⊂ C[Z] with C[Z]/J as the regular G-module. By Gröbner basis techniques [4],

for a given monomial order, there is a monomial ideal lt(J), consisting of all leading

monomials of elements in J, such that the monomial base of C[Z]/ lt(J) also gives rise

to a basis of C[Z]/J. By this fact, we will first determine the G-invariant monomial ideal

J0 in HilbG(C4). For a monomial I, we will denote by I† the set of monic monomials not

in I. Since all nonconstant G-invariant monomials are in J0, we have Z2
j ,Z1Z2Z3Z4 ∈ J0.
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Hence J†0 is contained in the set � := {ZI | I = (i1, . . . , i4), i1i2i3i4 = 0, ij ≤ 1}. For

a nontrivial character ρ of G, the ρ-eigenspace of I(o)⊥ for the element o ∈ SG is of

dimension 2. This implies that for m1 ∈ � not equal to 1, there exists exactly one

m2 ∈ � not equal to m1 with m2 ∼m1. When J0 = I(x∆1), I(x∆1)⊥ has a monomial

basis W := I(x∆1)† consisting of eight elements Zi22 Z
i3
3 Z

i4
4 , 0 ≤ ij ≤ 1, and they form a

basis of the G-regular representation. By replacing some monomials in W by the other

G-equivalent ones in �, one obtains aG-regular basisW ′. Denote byW0 the set of monic

monomials in C[Z]. The W ′’s satisfying W0 · (W0−W ′) ⊂ (W0−W ′) are in one-to-one

correspondence with monomial ideals J0 in HilbG(C4) by the relation J0 = 〈W0−W ′〉C,

hence W ′ = J†0 . By direct counting, there are twelve such W ′’s and the corresponding

twelve J0’s are exactly those I(xR) for R ∈ Ξ∗(3). The correspondence between W ′ and

R by the relation W ′ = I(xR)† is given as follows:

{
1,Z2,Z3,Z4,Z2Z3,Z2Z4,Z3Z4,Z2Z3Z4

}←→∆1,{
1,Z1,Z3,Z4,Z1Z4,Z1Z3,Z3Z4,Z1Z3Z4

}←→∆2,{
1,Z1,Z2,Z4,Z1Z4,Z2Z4,Z1Z2,Z1Z2Z4

}←→∆3,{
1,Z1,Z2,Z3,Z2Z3,Z1Z3,Z1Z2,Z1Z2Z3

}←→∆4,{
1,Z1,Z2,Z3,Z4,Z2Z3,Z2Z4,Z3Z4

}←→ C1,{
1,Z1,Z2,Z3,Z4,Z1Z4,Z1Z3,Z3Z4

}←→ C2,{
1,Z1,Z2,Z3,Z4,Z1Z4,Z2Z4,Z1Z2

}←→ C3,{
1,Z1,Z2,Z3,Z4,Z2Z3,Z1Z3,Z1Z2

}←→ C4,{
1,Z1,Z2,Z3,Z4,Z1Z4,Z1Z3,Z1Z2

}←→ C′1,{
1,Z1,Z2,Z3,Z4,Z2Z3,Z2Z4,Z1Z2

}←→ C′2,{
1,Z1,Z2,Z3,Z4,Z2Z3,Z1Z3,Z3Z4

}←→ C′3,{
1,Z1,Z2,Z3,Z4,Z1Z4,Z2Z4,Z3Z4

}←→ C′4.

(3.13)

Now we consider an ideal J in C[Z]which defines an element of HilbG(C4). By the Gröb-

ner basis argument, as before, there is a monomial ideal J0 (= lt(J)) such that J†0 gives

rise to a basis of C[Z]/J, and J0 = I(xR) for some R ∈ Ξ∗(3). For p ∈ C[Z], the element

p+J ∈ C[Z]/J is uniquely expressed in the form p+J =∑
m∈J†0

γ(p)mm+J, that is,

p−∑m∈J†0
γ(p)mm∈ J. In particular, for a monomialp inC[Z] (i.e.,p ∈W0), we have g·

(p−∑m∈J†0
γ(p)mm)∈J for g∈G. This implies that p−∑

m∈J†0
γ(p)mµg(p)−1µg(m)m

∈ J, where µg(m),µg(p)∈C∗ are the character values of g onm, p, respectively; hence

∑
m∈J†0

γ(p)m
[
µg(p)−1µg(m)−1

]
m∈ J. (3.14)

As J†0 represents a G-regular basis for C[Z]/J, we have γ(p)m[µg(p)−1µg(m)−1]= 0

for p ∈ W0, m ∈ J†0 , and g ∈ G. Furthermore, for each p ∈ W0, there exists a unique

element, denoted by pJ†0 , in J†0 with the property p ∼ pJ†0 . Hence, form∈ J†0 ,m≠ pJ†0 if

and only if [µg(p)−1µg(m)−1] �= 0 for some g ∈G, in which case γ(p)m = 0. Therefore
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p−γ(p)p
J†0
pJ†0 ∈ J and J is the ideal with the generators

J =
〈
p−γ(p)p

J†0
pJ†0 | p ∈W0∩J0

〉
. (3.15)

Indeed, in the above expression of J, it suffices to consider those p’s which form a

minimal set of monomial generators of J0. Now we are going to assign an element of

XΞ∗ for a given J ∈HilbG(C4). If the monomial ideal J0 associated to J in our previous

discussion is equal to I(xC1), a minimal set of monomial generators of J0 and the basis

representative set J†0 of C[Z]/J are given by

J0 =
〈
Z2

1 ,Z
2
2 , . . . ,Z

2
4 ,Z1Z2,Z1Z3,Z1Z4,Z2Z3Z4

〉
,

J†0 =
{
1,Z1,Z2,Z3,Z4,Z2Z3,Z2Z4,Z3Z4

}
.

(3.16)

By (3.15), J contains the ideal generated by p−γ(p)p
J†0
pJ†0 for p = Z2

i ,Z1Z2,Z1Z3,Z1Z4,

Z2Z3Z4 for 1≤ i≤ 4, which has a colength at most 8 in C[Z]. Therefore one obtains

J = 〈
Z1Z4−γ14Z2Z3,Z1Z3−γ13Z2Z4,Z1Z2−γ12Z3Z4,Z2Z3Z4−γ234Z1,

Z2
1 −γ1,Z2

2 −γ2,Z2
3 −γ3,Z2

4 −γ4
〉
.

(3.17)

Moreover, by

0≡ Z2
(
Z2

1 −γ1
)−Z1

(
Z1Z2−γ12Z3Z4

)≡ (
γ12γ13γ4−γ1

)
Z2(modJ) (3.18)

and Z2 ∈ J0
†, one has

γ1 = γ12γ13γ4. (3.19)

By

0≡ Z1
(
Z2

4 −γ4
)−Z4

(
Z1Z4−γ14Z2Z3

)≡ (
γ14γ234−γ4

)
Z1(modJ), (3.20)

one obtains

γ2 = γ234γ12. (3.21)

Similarly, one has

γ3 = γ234γ13, γ4 = γ234γ14. (3.22)

Therefore, all γI ’s are expressed as functions of γ12, γ13, γ14, γ234. This implies J = I(y)
for an element y of XΞ∗ in the affine neighborhood xC1 with the coordinate (Ui = ui)
by the relations

u1 = γ234, u2 = γ12, u3 = γ13, u4 = γ14. (3.23)

The above y is defined to be the element λ−1(J) in XΞ∗ for the ideal J under the inverse

map of λ. The method can equally be applied to ideals J associated to another monomial

ideal J0.
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For J0 = I(xC′2), we have

J=〈
Z1Z3−γ′13Z2Z4,Z1Z4−γ′14Z2Z3,Z3Z4−γ′34Z1Z2,Z2

1 −γ′1,Z2
2 −γ′2,Z2

3 −γ′3,Z2
4 −γ′4

〉
.

(3.24)

We claim that the variables γ′2, γ′34, γ′13, γ′14 form a system of coordinates near I(xC′2),
that is, all the γ′I ’s can be expressed as certain polynomials of these four values. Indeed,

we are going to show that γ′1 = γ′2γ′13γ
′
14, γ′3 = γ′2γ′13γ

′
34, and γ′4 = γ′2γ′14γ

′
34. (Note that

the group G in [15, Section 6.1, page 777] is the A1(4) of Theorem 3.4 in this paper.

However, we would consider that the statement in [15] about the singular property of

HilbG(C4), by using the structure of I(Γ3)(u) there, is not correct. Indeed, by identifying

Z2, Z3, Z4, Z1 with x, y , z,w, and γ′2, γ′3, γ′4, γ′1, γ′34, γ′13, γ′14 with u1,u2, . . . ,u7, respec-

tively, the ideal J in our discussion corresponds to I(Γ3)(u) in [15]. Then, through the

three relations we have obtained here, one can easily verify that all the relations among

the ui’s listed in [15, page 778] hold.) By

Z1
(
Z1Z4−γ′14Z2Z3

)−Z4
(
Z2

1 −γ′1
)=−γ′14Z1Z2Z3+γ′1Z4 ∈ J, (3.25)

one has

Z2
(−γ′14Z1Z2Z3+γ′1Z4

)+γ′14Z1Z3
(
Z2

2 −γ′2
)= γ′1Z2Z4−γ′14γ

′
2Z1Z3 ∈ J, (3.26)

hence(
γ′1Z2Z4−γ′14γ

′
2Z1Z3

)+γ′14γ
′
2

(
Z1Z3−γ′13Z2Z4

)= (
γ′1−γ′2γ′13γ

′
14

)
Z2Z4 ∈ J. (3.27)

By the description in (3.13) for C′2, Z2Z4 is an element in J†0 , hence it represents a basis

element of C[Z]/J. The relation (γ′1−γ′2γ′13γ
′
14)Z2Z4 ∈ J implies

γ′1−γ′2γ′13γ
′
14 = 0. (3.28)

By interchanging the indices 1 and 3 (resp., 1 and 4) in the above derivation and regard-

ing γ′ij = γ′ji, we obtain γ′3 = γ′2γ′13γ
′
34 (resp., γ′4 = γ′2γ′14γ

′
34). Thus, γ′2, γ′13, γ′13, and γ′34

form the four independent parameters to describe the ideals J near J0 = I(xC′2) with

the regular G-module C[Z]/J. Therefore J = I(y) for y near xC′2 with the coordinates

(U ′i =u′i) via the relations

u′2 = γ′2, u′1 = γ′34, u′3 = γ′14, u′4 = γ′13. (3.29)

For J0 = I(x∆1), we have J = 〈Z1−γ′′1 Z2Z3Z4,Z2
2 −γ′′2 ,Z2

3 −γ′′3 ,Z2
4 −γ′′4 〉. Hence J =

I(y) for y near x∆1 with the coordinates (Vi = vi) and the relations vi = γ′′i for 1 ≤
i≤ 4. The previous discussions of the three cases can be applied to each of the twelve

monomial ideals J0’s by a suitable change of indices. Hence one obtains an element

λ−1(J) in XΞ∗ of an ideal J ∈HilbG(C4).
However, one has to verify the correspondence λ−1 so defined to be a single-valued

map, namely, for a given J with two possible choices of J0, the elements in XΞ∗ as-

signed to J through the previous procedure through these two J0’s are the same. For
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example, say J = I(y1) = I(y2) for y1 near x∆1 with (Vi = vi) and y2 near xC1 with

(Ui = ui). By (3.9) and (3.10), both Z2Z3Z4−u1Z1 and Z1−v1Z2Z3Z4 are elements in

J. We claim that u1 �= 0. Otherwise, both Z1 and Z2Z3Z4 are elements in J with the

same G-character κ. Then the κ-eigenspace in C[Z]/J is the zero space, a contradic-

tion to the regular G-module property of C[Z]/J. Hence one has Z1−u1
−1Z2Z3Z4 ∈ J,

hence (v1 −u1
−1)Z2Z3Z4 ∈ J. As J = I(y1) with y1 near x∆1 , Z2Z3Z4 represents a

basis element of C[Z]/J. Hence v1 = u1
−1. By Z1Z2 −u2Z3Z4,Z2

2 − v2 ∈ J, one has

v2Z1 −u2Z2Z3Z4 (= (Z1Z2 −u2Z3Z4)Z2 − (Z2
2 −v2)Z1) ∈ J. As Z2Z3Z4 �∈ J, one has

u2 = 0 if v2 = 0. When v2 �= 0, we have Z1−u2v2
−1Z2Z3Z4 ∈ J, hence

(
v1−u2v2

−1)Z2Z3Z4 ∈ J, u2 = v1v2. (3.30)

Using the same argument, one can deriveuj = v1vj for j = 2,3,4. These three relations,

together with u1 = v1
−1, imply y1 =y2 in XΞ∗ .

For y2 near xC1 with (Ui =ui) and y3 near xC′2 with (U ′i =u′i), by (3.10), (3.11), both

Z1Z2−u2Z3Z4 and Z3Z4−u′1Z1Z2 are elements in J; furthermore, u2, u′1 are nonzero

by the fact that only one of Z1Z2, Z3Z4 could be an element of J. By an argument similar

to the one before, one can show

u′1 =u2
−1, u3 =u′4, u4 =u′3. (3.31)

By Z2Z3Z4−u1Z1,Z3Z4−u′1Z1Z2,Z2
2 −u′2 ∈ J, we have

(
Z2Z3Z4−u1Z1

)
Z2 ≡

(
u′1u

′
2−u1

)
Z1Z2 ≡ 0modJ. (3.32)

As Z1Z2 represents a basis element of C[Z]/J, one has u1 = u′1u′2. The four relations

between ui’s and u′i’s imply y2 =y3 in XΞ∗ . In this way, one can show directly that for

a given ideal J with J = I(y) = I(y ′) for y , y ′ in XΞ∗ , the elements y and y ′ are the

same by the relations of toric coordinates centered at two distinct xR ’s. Hence we have

obtained a well-defined morphism λ−1 from HilbG(C4) to XΞ∗ , then HilbG(C4)�XΞ∗ . By

(2.17), the canonical bundle of XΞ∗ is given by ω= �XΞ∗ (E), where E denotes the toric

divisorDc , which is a 3-dimensional complete toric variety with the toric data described

by the star of c in Ξ∗, represented by the octahedron in Figure 3.1, where the cube

represents the toric orbits’ structure. Therefore E is isomorphic to the triple product

of P1 as in (3.4). The description of the normal bundle of E restricting on each P1-fiber

will follow by direct computation in toric geometry. For example, for the fibers over the

projection of E onto (P1)2 corresponding to the 2-convex set spanned by v1,2, v1,3, v3,4,

and v2,4, one can perform the computation as follows. Let (U1,U2,U3,U4) be the local

coordinates near xC′4 dual to the N-basis (2c,v1,2,v1,3,v2,3), and let (W1,W2,W3,W4) be

the local coordinates near xC1 dual to (2c,v1,2,v1,3,v1,4). By 2c = v1,4+v2,3, one has

the relations U1 =W1W4, U4 =W−1
4 , U2 =W2, U3 =W3. This shows that the restriction

of the normal bundle of E on each fiber P1 over (U2,U3)-plane is the (−1)-hyperplane

bundle.
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Figure 3.3. Toric representation of 4-dimensional flops (in the second row),
over a common singular base (in the third row), and dominated by the same
4-fold (in the first row).

Note that the vector bundle �XΞ∗ over XΞ∗ in Theorem 3.4 carries the regular G-

module structure on each fiber with the local frame of the vector bundle provided by

the structure of C[Z]/I(xR) for R ∈ Ξ∗(3) with the representative in the list (3.13).

By the standard blowing-down criterion of an exceptional divisor, property (3.6) en-

sures the existence of a smooth 4-fold (XΞ∗)k by blowing down the P1-family along the

projection pk (3.5) for each k. In fact, (XΞ∗)k is also a toric variety XΞk with Ξk defined

by the refinement of Ξ by adding the segment connecting vk,4 and vi,j to divide the

central polygon ♦ into 4 simplices, where {i,j,k} = {1,2,3}. Each XΞk is a crepant res-

olution of XΞ (= SG), and one has the refinement relation of toric varieties Ξ≺ Ξk ≺ Ξ∗
for k = 1,2,3. The polyhedral decomposition in the central core ♦ which appeared in
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the refinements is indicated by the relation

♦≺♦k ≺♦∗, k= 1,2,3, (3.33)

whose pictorial realization is shown in Figure 3.3. The connection between these three

smooth 4-folds corresponding to these different ♦k’s can be regarded as the “flop”

relation of 4-folds, an analogy to the similar procedure in birational geometry of 3-

folds [13]. Each one is a “small” (here the “smallness,” for a resolution, means one with

the exceptional locus of codimension greater than or equal to 2) resolution of the 4-

dimensional isolated singularity with the defining equation (3.3). Hence we have shown

the following result.

Theorem 3.5. ForG =A1(4), there are crepant resolutions of SG obtained by blowing

down the divisor E of HilbG(C4) along (3.5) in Theorem 3.4. Any two such resolutions

differ by a “flop” of 4-folds.

4. G-Hilbert scheme and crepant resolution of C4/Ar (4). In this section, we give a

complete proof of a general result as in Theorem 3.5, but on the group Ar(4) for all r .

Theorem 4.1. For G =Ar(4), the G-Hilbert scheme HilbG(C4) is a nonsingular toric

variety with the canonical bundle ω = �HilbG(C4)(
∑m
k=1Ek) with m = r(r +1)(r +2)/6,

where Ek’s are disjoint smooth exceptional divisors in HilbG(C4), each of which satisfies

conditions (3.4), (3.6). By blowing down Ek to P1 × P1 via a projection (3.5) for each

k, it gives rise to a toric crepant resolution ŜG of SG with χ(ŜG) = |Ar(4)| = (r +1)3.

Furthermore, any two such ŜG’s differ by a sequence of flops.

Proof. First we define the simplicial decomposition Ξ∗ of (2.16) for n= 4, and then

we will show that the toric variety XΞ∗ is isomorphic to HilbG(C4). We will denote an

element of N∩∆ by

vm
(= v(m1,...,m4)t

)
:= m1e1+m2e2+m3e3+m4e4

r +1
, 0≤mi ≤ r +1,

4∑
i=1

mi = r +1.

(4.1)

For each vm ∈N∩∆, there are four hyperplanes passing through vm and parallel to one

of the four facets of ∆. The collection of all such hyperplanes gives rise to a polytope

decomposition of ∆, denoted by Ξ (for r = 2, see Figure 4.1(a)).

Now we examine the polytope structure of Ξ. We have Ξ(0) = N∩∆. For each vm ∈
Ξ(0), there are at most twelve segments in Ξ(1) containing vm, and they are given by

〈vm,vm(i,j)〉 for i �= j, 1≤ i, j ≤ 4, where m(i,j) :=m+ei−ej . For a given 〈vm,vm(i,j)〉,
the hyperplane passing vm in R4 with the normal vector ei−ej separates ∆ into two

polytopes ∆′s (one of which could possibly be the empty set). We are going to discuss

those elements in Ξ containing vm and lying in a nonempty polytope of these two

divided ones. For easier description of our conclusion and for the simplicity of notions,

we will work on a special model case, say i = 2, j = 3, and the nonempty polytope

∆′ consisting of those elements in ∆ with nonnegative inner product to e2 − e3 (no

difficulties for a similar discussion will arise in other cases except for a suitable change
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e1

e2

e3

e4

(a)

vm+(1,0,−1,0)t

vm+(0,1,−1,0)t

vm+(0,1,0,−1)t

vm+(−1,1,0,0)t

vm+(−1,1,−1,1)t

vm+(−1,0,0,1)t

vm+(0,0,−1,1)t

vm

(b)

Figure 4.1. The polytope decomposition Ξ of ∆ for r = 2 and local figure of Ξ.

of indices). The elements in Ξ(3) contained in ∆′ with vm as one of its vertices are the

following ones:

∆u := 〈
vm,vm(2,3),vm(1,3),vm(4,3)

〉
, ∆d := 〈

vm,vm(2,3),vm(2,1),vm(2,4)
〉
,

♦+ := 〈
vm,vm(2,3),vm(4,3),vm(2,1),vm(4,1),vm+(−1,1,−1,1)t〉,

♦− := 〈
vm,vm(2,3),vm(1,3),vm(2,4),vm(1,4),vm+(1,1,−1,−1)t〉.

(4.2)

Note that ♦± are similar by interchanging e3 and e4 (for the configuration of ∆u, ∆d, ♦+,

see Figure 4.1(b)). Both ∆u, ∆d are 3-simplices with their vertices forming an integral

basis of N, and one facet of each of these 3-simplices is parallel to that of ∆. The toric

data of ∆u, ∆d give rise to the smooth affine open subsets of XΞ. The polytope ♦+
(resp., ♦−) is an octahedron with the center c = vm+(e2+e4−e1−e3)/2(r +1) (resp.,

c = vm+ (e1+e2−e3−e4)/2(r +1)). We will mark the octahedron by its center c, and
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denote it by ♦c . The affine open subset of XΞ with the toric data ♦c is smooth except for

one isolated singular point x♦c , a 0-dimensional toric orbit of the affine toric variety.

Hence, one can conclude that Ξ(3) consists of three types of elements:∆u,∆d, or♦c . The

toric variety XΞ is smooth except for the finite number of isolated singularities x♦c ’s.

The structure of XΞ near a singular element x♦c can be determined in the following

manner. For a given ♦c , one can construct a tetrahedron ∆c inside ∆ with the core ♦c

adjacent to four elements ∆cj (1≤ j ≤ 4) in Ξ(3) of type ∆u or ∆d,

∆c =♦c∪
4⋃
j=1

∆cj ⊆∆, (4.3)

such that ♦c∩∆cj (1 ≤ j ≤ 4) are four facets of ♦c , two of which intersect only at one

common vertex (there could be two possible ways of forming such ∆c with the same

core ♦c ). Consider the rational simplicial decomposition Ξ∗ of ∆, which is a refinement

of Ξ by adding c as a vertex with the barycentric simplicial decomposition ♦c for all c.

In fact, the octahedron ♦c is decomposed into the following eight 4-simplices of Ξ∗:

C1
c :=

〈
c,c+ e

1+e2−e3−e4

2(r +1)
,c+ e

1−e2+e3−e4

(r +1)
,c+ e

1−e2−e3+e4

2(r +1)

(
,

C2
c :=

〈
c+ e

1+e2−e3−e4

2(r +1)
,c,c+ −e

1+e2+e3−e4

2(r +1)
,c+ −e

1+e2−e3+e4

2(r +1)

(
,

C3
c :=

〈
c+ e

1−e2+e3−e4

2(r +1)
,c+ −e

1+e2+e3−e4

2(r +1)
,c,c+ −e

1−e2+e3+e4

2(r +1)

(
,

C4
c :=

〈
c+ e

1−e2−e3+e4

2(r +1)
,c+ −e

1+e2−e3+e4

2(r +1)
,c+ −e

1−e2+e3+e4

2(r +1)
,c
(
,

C′1
c :=

〈
c,c+ −e

1−e2+e3+e4

2(r +1)
,c+ −e

1+e2−e3+e4

2(r +1)
,c+ −e

1+e2+e3−e4

2(r +1)

(
,

C′2
c :=

〈
c+ −e

1−e2+e3+e4

2(r +1)
,c,c+ e

1−e2−e3+e4

2(r +1)
,c+ e

1−e2+e3−e4

2(r +1)

(
,

C′3
c :=

〈
c+ −e

1+e2−e3+e4

2(r +1)
,c+ e

1−e2−e3+e4

2(r +1)
,c,c+ e

1+e2−e3−e4

2(r +1)

(
,

C′4
c :=

〈
c+ −e

1+e2+e3−e4

2(r +1)
,c+ e

1−e2+e3−e4

2(r +1)
,c+ e

1+e2−e3−e4

2(r +1)
,c
(
.

(4.4)

All vertices that appeared in the above simplices are elements in N∩∆ except c, while

2c ∈N. (See Figure 4.2.)

One can determine the singularity structure of the variety XΞ near x♦c by examin-

ing the toric orbits associated to ∆c . The toric data in R4 for the lattice N and the

cone generated by ∆c are isomorphic to the toric data of the lattice for the group

A1(4) with the first quadrant cone in Lemma 3.1. Hence, as toric varieties, the struc-

ture of XΞ near the singularity x♦c is the same as that of A1(4). One can apply the

result of Theorem 4.1 to describe the local structure of XΞ∗ over the singular point

x♦c of XΞ. Hence one concludes that XΞ∗ is a smooth toric variety with the canonical
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c + (1, –1,1, –1)t/(2r + 2)

c + (–1,1,1, –1)t/(2r + 2)
c

c + (–1, –1,1,1)t/(2r + 2)

c + (1,1, –1, –1)t/(2r + 2)

c + (1, –1, –1,1)t/(2r + 2)

c + (–1,1, –1,1)t/(2r + 2)

Figure 4.2. Local figure of the decomposition of the octahedron in
Figure 4.1(b) by adding c.

bundle ωXΞ∗ = �XΞ∗ (
∑
♦c∈Ξ(4) Ec), where Ec is the toric divisor associated to the ver-

tex c in XΞ∗ , and it satisfies the properties (3.4), (3.6). By (2.18) and the structure of

Ec , one obtains the desired crepant resolutions ŜAr (4) by blowing down each Ec to

P1×P1 as in Theorem 3.5, and different crepant resolutions are connected by a flop

relation. It remains to show XΞ∗ � HilbG(C4), and the total number of ♦c ’s is equal to

r(r +1)(r +2)/6. As in the proof of Theorem 3.4, we first construct a regular morphism

λ from XΞ∗ to HilbG(C4) by examining I(y), for y ∈XΞ∗ , in terms of toric coordinates.

For R ∈ Ξ∗(3), we denote xR := orb(R)∈XΞ∗ . For simplicity of notions, we again work

on some special 3-simplices as the model cases, whose arguments can equally be ap-

plied to all elements in Ξ∗(3). We consider the 3-simplices of XΞ∗ contained in the

first three polytopes in (4.2), and they are ∆u, ∆d of (4.2), and the eight simplices of

(4.4) with c = vm+ (e2+e4−e1−e3)/2(r +1). The affine toric coordinates for XΞ∗ are

determined by the integral basis of M in the simplicial cone dual to the one in N gen-

erated by the corresponding 3-simplex. By computation, the affine coordinate systems

corresponding to these 3-simplices are as follows:

∆u :
(
V(m1)

1 ,V (m2)
2 ,V (m3−1)

3 ,V (m4)
4

)
, V (l)i := Zr+1−l

i(
Z1 ··· Z̆i ···Z4

)l ,
∆d :

(
V ′(m1)

1 ,V ′(m2+1)
2 ,V ′(m3)

3 ,V ′(m4)
4

)
, V ′(l)i :=

(
Z1 ··· Z̆i ···Z4

)l
Zr+1−l
i

,

Cic :
(
U(c)i,1 ,U

(c)
i,2 ,U

(c)
i,3 ,U

(c)
i,4

)
,

U(c)i,i :=
(
ZjZjZk

)(r+1)ci+1/2

Z(r+1)(1−ci)−1/2
i

, U(c)i,j :=
(
ZiZj

)(r+1)(1−ci−cj)

ZkZ
(r+1)(ci+cj)
s

,

C′ci :
(
U ′(c)1,i ,U

′(c)
2,i ,U

′(c)
3,i ,U

′(c)
4,i

)
,

U ′(c)i,i := Z(r+1)(1−ci)+1/2
i(

ZjZkZs
)(r+1)ci−1/2 , U ′(c)i,j :=

(
ZkZs

)(r+1)(1−ck−cs)(
ZiZj

)(r+1)(ck+cs) .

(4.5)

Here, the indices i, j, k, s indicate the four numbers by permuting 1, 2, 3, 4, and we

will adopt this convention for the rest of this proof if no confusion will arise. Define
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the following eigenpolynomials of G for β∈ C and integers l, with 0≤ l≤ (r +1):

F(l)i (β)= Zli−β
(
ZjZkZs

)(r+1)−l, G(l)i,j (β)=
(
ZiZj

)l−β(ZkZs)(r+1)−l,

H(l)
i (β)=

(
ZjZjZs

)l−βZ(r+1)−l
i .

(4.6)

Let y be an element of XΞ∗ . For y near x∆u with coordinates (V(m1)
1 ,V (m2)

2 ,V (m3−1)
3 ,

V (m4)
4 )= (v1,v2,v3,v4), the ideal I(y) has the generators

F(r+1−m1)
1

(
v1

)
, F(r+1−m2)

2

(
v2

)
, F(r+2−m3)

3

(
v3

)
, F(r+1−m4)

4

(
v4

)
, G(m3+m4)

1,2
(
v1v2

)
,

G(m2+m4+1)
1,3

(
v1v3

)
, G(m2+m3)

1,4
(
v1v4

)
, G(m1+m4+1)

2,3
(
v2v3

)
, G(m1+m3)

2,4
(
v2v4

)
,

G(m1+m2+1)
3,4

(
v3v4

)
, H(m1+1)

1

(
v2v3v4

)
, H(m2+1)

2

(
v1v3v4

)
,

H(m3)
3

(
v1v2v4

)
, H(m4+1)

4

(
v1v2v3

)
, Z1Z2Z3Z4−v1v2v3v4.

(4.7)

For y near x∆d with coordinates (V ′(m1)
1 ,V ′(m2+1)

2 ,V ′(m3)
3 ,V ′(m4)

4 )= (v′1,v′2,v′3,v′4), I(y)
has the generators

F(r+2−m1)
1

(
v′2v

′
3v
′
4

)
, F(r+1−m2)

2

(
v′1v

′
3v
′
4

)
, F(r+2−m3)

3

(
v′1v

′
2v
′
4

)
, F(r+2−m4)

4

(
v′1v

′
2v
′
3

)
,

G(m3+m4)
1,2

(
v′3v

′
4

)
, G(m2+m4+1)

1,3
(
v′2v

′
4

)
, G(m2+m3+1)

1,4
(
v′2v

′
3

)
, G(m1+m4)

2,3
(
v′1v

′
4

)
,

G(m1+m3)
2,4

(
v′1v

′
3

)
, G(m1+m2+1)

3,4
(
v′1v

′
2

)
, H(m1)

1

(
v′1

)
, H(m2+1)

2

(
v′2

)
,

H(m3)
3

(
v′3

)
, H(m4)

4

(
v′4

)
, Z1Z2Z3Z4−v′1v′2v′3v′4.

(4.8)

For y near xCci with coordinates (U(c)il =ul)1≤l≤4, I(y) has the generators

F((r+1)(1−ci)+1/2)
i

(
u1u2u3u4

)
, F

((r+1)(1−cj)+1/2)
j

(
uiuj

)
, F((r+1)(1−ck)+1/2)

k
(
uiuk

)
,

F((r+1)(1−cs)+1/2)
s

(
uius

)
, G(r+1)(ck+cs)

i,j
(
uj

)
, G

(r+1)(cj+cs)
i,k

(
uk

)
, G

(r+1)(cj+ck)
i,s

(
us

)
,

G(r+1)(ci+cs)+1
j,k

(
ui2ujuk

)
, G(r+1)(ci+ck)+1

j,s
(
ui2ujus

)
, G

(r+1)(ci+cj)+1

k,s
(
ui2ukus

)
,

H((r+1)ci+1/2)
i

(
ui

)
, H

((r+1)cj+1/2)
j

(
uiukus

)
, H((r+1)ck+1/2)

k
(
uiujus

)
,

H((r+1)cs+1/2)
s

(
uiujuk

)
, Z1Z2Z3Z4−ui2ujukus.

(4.9)

For y near xC′ci with coordinates (U ′(c)il =u′l)1≤l≤4, I(y) has the generators

F((r+1)(1−ci)+1/2)
i

(
u′i

)
, F

((r+1)(1−c)+1/2)
j

(
u′iu

′
ku
′
s
)
, F((r+1)(1−ck)+1/2)

k
(
u′iu

′
ju
′
s
)
,

F((r+1)(1−cs)+1/2)
s

(
u′iu

′
ju
′
k
)
, G(r+1)(ck+cs)+1

i,j
(
u′i

2u′ku
′
s
)
, G

(r+1)(cj+cs)+1

i,k
(
u′i

2u′ju
′
s
)
,

G
(r+1)(cj+ck)+1

i,s
(
u′i

2u′ju
′
k
)
, G(r+1)(ci+cs)

j,k
(
u′s

)
, G(r+1)(ci+ck)

j,s
(
u′k

)
, G

(r+1)(ci+cj)
k,s

(
u′j

)
,

H((r+1)ci+1/2)
i

(
u′1u

′
2u
′
3u
′
4

)
, H

((r+1)cj+1/2)
j

(
u′iu

′
j
)
, H((r+1)ck+1/2)

k
(
u′iu

′
k
)
,

H(cs+1/2)
s

(
u′iu

′
s
)
, Z1Z2Z3Z4−u′i2u′ju′ku′s .

(4.10)
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The centers of the above affine charts have the monomial ideals, say the one near x∆u ,

I(x∆u), is obtained by setting vl = 0 in (4.7), hence a monomial ideal. There are exactly

(r+1)3 monomials not in I(x∆u), that is, |I(x∆u)†| = (r+1)3. For y near x∆u , by using

(4.7) and employing the Gröbner basis techniques and the toric data, one obtains the

colength of I(y) in C[Z] satisfying the relation colength(I(y)) ≤ colength(I(x∆u)) =
(r +1)3; this implies colength(I(y))= (r +1)3, by which an element λ(y)∈HilbG(C4)
is determined. One can also show the colength of I(y) equal to (r +1)3 for y in other

affine charts using (4.8), (4.9), (4.10). The same conclusion holds for y in any affine

coordinate neighborhood centered at xR , for R ∈ Ξ∗(3), and one obtains an element

λ(y) in HilbG(C4), by which the morphism λ :XΞ∗ →HilbG(C4) is defined.

Now we are going to show that λ is an isomorphism. For n ∈ Z, we denote by n the

unique integer satisfying the relation

n≡n(modr +1), 0≤n≤ r . (4.11)

We first determine the G-invariant monomial ideals J0 in HilbAr (4)(C4). For such a J0,

the set J†0 := W0 \ (W0∩J0) forms a basis of a G-regular representation space. Denote

by li the smallest integer with Zlii ∈ J0, by lij the smallest one with (ZiZj)lij ∈ J0 for

i �= j, and so on. By 1 �∈ J0 and 1∼ Zr+1
i ∼ Z1Z2Z3Z4, we have Zr+1

i ,Z1Z2Z3Z4 ∈ J0, that

is, I(o)⊂ J0, and the following relations hold:

1≤ lijk ≤ lij ≤ li ≤ r +1. (4.12)

By J⊥0 ⊂ I(o)⊥ and (2.22) for the description of theG-eigenspace of I(o)⊥, (ZjZkZs)r+1−li

is the only monomial u ∈ I(o)† with u ∼ Zlii , which implies (ZjZkZs)r+1−li ∈ J†0 and

(ZjZkZs)r+2−li ∈ J0, hence ljks = r+2−li. By a similar argument, one has lks = r+2−lij .
Hence we have

li+ljks = lij+lks = r +2. (4.13)

We claim that J0 is the ideal with generators given by

J0 =
〈
Zlii ,

(
ZiZj

)lij ,(ZiZjZk)lijk ,Z1Z2Z3Z4 | i,j,k
〉
. (4.14)

(Note that i, j, k are distinct numbers among 1, 2, 3, 4 as before.) Let J′0 be the ideal

in the right-hand side of (4.14). Then I(o) ⊂ J′0 ⊂ J0. Suppose J′0 �= J0, equivalently,

J0∩J′†0 �= ∅. For convenience of notation but without loss of generality, we may assume

Zi22 Z
i3
3 Z

i4
4 ∈ J0∩J′†0 for i2 ≤ i3 ≤ i4. Hence i2 < l234, i3 < l34, i4 < l4, which implies p1 (:=

Zl234−1
2 Zl34−1

3 Zl4−1
4 )∈ J0∩I(0)†. By (2.22), the rest of monomials p in I(o)† with p ∼ p1
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are given by

p2 := Zr+2−l234
1 Zl34−l234

3 Zl4−l234
4 , p3 := Zr+2−l34

1 Z
r+1+l234−l34
2 Zl4−l34

4 ,

p4 := Zr+2−l4
1 Z

r+1+l234−l4
2 Z

r+1+l34−l4
3 ,

(4.15)

among which exactly only one belongs to J†0 . We have p1 = p2 when l234 = 1. If l234 > 1,

by (4.13), we have r +2−l234 = l1. Therefore p2 ∈ J0. When l234 = l34, we have p2 = p3.

When l234 < l34, p3 = (Z1Z2)l1,2Z
l123
2 Zl4−l34

4 by (4.13), hence p3 ∈ J0. Similarly, p3 = p4

when l34 = l4. If l34 < l4, u4 = (Z1Z2Z3)l123Zl234
2 Zl34

3 , hence p4 ∈ J0. Therefore pi ∈ J0

for 1 ≤ i ≤ 4, a contradiction to their relations with J†0 . We are going to show that the

following relations hold for i �= j:

r +1≤ li+lj−lij ≤ r +2. (4.16)

Consider the element w (:= Zlii Z
lij−1

j Z
lijk−1

k ) in J0. Among the monomials

w1 = Z
li−lijk+1

i Z
lij−lijk
j Z

r+2−lijk
s , w2 = Z

li−lij+1

i Z
r+1−lij+lijk
k Z

r+2−lij
s ,

w3 = Zr−li+lijj Z
r−li+lijk
k Zr+1−li

s

(4.17)

G-equivalent to w, there exists exactly one in J†0 . It is easy to see that w1 =
Z
li−lijk+1

i Z
lij−lijk
j Zlss ∈ J0 unless lijk = 1, in which casew1 =w ∈ J0 if li < r+1, andw1 =

w3 if li = r+1. We havew1 =w2 if lij = lijk. When lij > lijk,w2 = Z
li−lij+1

i Z
lks+lijk−1

k Zlkss
∈ J0. Therefore w3 is the element of J†0 G-equivalent to w, which, by the expression of

the power of Zj , implies

r +1≤ li+lj−lij . (4.18)

As a consequence of the above inequality, we have lj = r +1 and li+ lj − lij = r +1

when lij = li; in particular, (4.16) holds. Hence we may assume lij < li, in which case

h := Zli−1
i Z

lij
j Z

lijk−1

k ∈ J0. Among the monomials

h1 = Zli−lijki Z
lij−lijk+1

j Z
r+2−lijk
s , h2 = Zli−lij−1

i Z
r−li+lijk
k Z

r+1−lij
s ,

h3 = Z
r+2−li+lij
j Z

r+1−lj+lijk
k Zr+2−li

s

(4.19)

G-equivalent to h, there exists exactly one in J†0 . We have h1 = h ∈ J0 if lijk = 1. When

lijk > 1, h1 = Zli−lijki Z
lij−lijk+1

j Zlss and h1 ∈ J0. One has h3 = Zlijj Z
lijk−1

k (ZjZkZs)ljks ∈ J0

unless li = lij +1, in which case h3 = h2. Therefore we have h2 ∈ J†0 , which implies

li−lij−1≤ liks−1, hence li+lj−lij ≤ r+2 by (4.13). Therefore we obtain relation (4.16).

With (i,j)= (1,2),(3,4) in (4.16), (4.13), we have 3r+4≤∑4
j=1 lj ≤ 3r+6. Using (4.13),

one obtains all the possible cases of li+lj−lij for a given value of
∑4
j=1 lj ; consequently,

all the values of lI ’s are determined by li’s. By comparing the polynomials at the origin
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in (4.7), (4.8), (4.9), (4.10), J0 = I(xR) for R ∈ Ξ∗(3) by the following relations:

∆u :
4∑
j=1

lj = 3r +4, lij = li+lj−r −1,

∆d :
4∑
j=1

lj = 3r +6, lij = li+lj−r −2,

Cci :
4∑
j=1

lj = 3r +5, lij = li+lj−r −2, lks = lk+ls−r −1,

C′ci :
4∑
j=1

lj = 3r +5, lij = li+lj−r −1, lks = lk+ls−r −2,

(4.20)

where the indices in toric data are connected to the li’s by the following relations:

∆u : l3 = r +2−m3, lj = r +1−mj (j �= 3),

∆d : l2 = r +1−m2, lj = r +2−mj (j �= 2),

Cci ,C
′c
i : lj = (r +1)

(
1−cj

)+ 1
2
, c = 1

2r +2

4∑
j=1

(
2r +3−2lj

)
ej.

(4.21)

With l′i := r +1− li, the l′i’s are 4 positive integers satisfying the equation
∑4
i=1 l

′
i = L′

with L′ = r ,r −1,r −2. The number of solutions of l′i’s is equal to
(L′+3

3

)
. Hence one

obtains the following numbers of R ∈ Ξ∗(3) for the toric data in (4.2), (4.4) using the

relation with li’s:

#
{
∆u

}= (r +1)(r +2)(r +3)
6

, #
{
∆d

}= (r −1)r(r +1)
6

,

#{c} = r(r +1)(r +2)
6

.
(4.22)

Let J be a G-invariant ideal representing an element in HilbG(C4). With the Gröbner

basis argument as in Theorem 3.4, there is a monomial ideal J0 in HilbG(C4) such that

J†0 gives rise to a basis of C[Z]/J with relation (3.15). As J0 = I(xR) for some R ∈
Ξ∗(3), which is determined by the integers li, lij , lijk with the relations in (4.13), (4.20),

this implies that for some γi,γij,γjks ,γ1234 ∈ C, the polynomials F(li)i (γi), G
(lij)
ij (γij),

H
(ljks)
i (γjks), and Z1Z2Z3Z4−γ1234 are elements of J. From the expressions of F(l)i (β),

G(l)i,j (β), H
(l)
i (β), and using dim(C[Z]/J)= (r +1)3, one can conclude that

J =
〈
F(li)i

(
γi
)
,G

(lij)
ij

(
γij

)
,H

(ljks)
i

(
γjks

)
,Z1Z2Z3Z4−γ1234

〉
i,j,k,s

. (4.23)

We are going to determine the relations among the γI ’s using the relations (4.13), (4.20)

and according to the type of li’s. By(
γ1234−γ123γ4

)
Zl4−1

4 =Z1Z2Z3F
(l4)
4

(
γ4

)−γ4H
(l123)
4

(
γ123

)−Zl4−1
4

(
Z1Z2Z3Z4−γ1234

)∈J
(4.24)

and Zl4−1
4 �∈ J, we have γ1234 = γ123γ4.
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For J with J0 of type ∆u, by (4.20), we have

(
γ123−γ12γ3

)
Zl34−1

3 Zl4−1
4

= (
Z1Z2

)l123F(l3)3

(
γ3

)+γ3Z
l124−1
4 G(l12)

12

(
γ12

)−Zl34−1
3 H(l123)

4

(
γ123

)
,(

γ13−γ1γ3
)
Zl234−1

3

(
Z2Z4

)l24−1

= γ3
(
Z2Z4

)l124−1F(l1)1

(
γ1

)+Zl13
1 F(l3)3

(
γ3

)−Zl3−l13
3 G(l13)

13

(
γ13

)
,

(4.25)

which are elements in J. By Zl34−1
3 Zl4−1

4 ,Zl234−1
3 (Z2Z4)l24−1 ∈ J†0 , we have γ123 = γ1γ23,

γ23 = γ2γ3. By permuting the indices, one obtains γI=
∏
i∈I γi for a subset I of {1,2,3,4}.

By (4.7), (4.22), we have J = I(y) for y near x∆u with the coordinates vi = γi.
When J0 is of type ∆u, by (4.20), the following elements are in J:

(
γ12γ134−γ1

)
Zl234−1

2

(
Z3Z4

)l34−1

= (
Z3Z4

)l134F(l1)1

(
γ1

)−γ134Z
l234−1
2 G(l12)

12

(
γ12

)−Zl12
1 H(l134)

2

(
γ134

)
,(

γ12−γ123γ124
)
Zl3−1

3 Zl34−1
4

=−Zl123
3 G(l12)

12

(
γ12

)+γ123Z
l34−1
4 H(l124)

3

(
γ124

)+(
Z1Z2

)l124H(l123)
4

(
γ123

)
.

(4.26)

Therefore γ1 = γ12γ134 and γ12 = γ123γ124. Set v′i = γ1···ĭ···4. With the same argument,

one obtains γI =
∏
j∈I′ v′j for I �= 1234, where I′ is the complement set of I in {1,2,3,4}.

Therefore, by (4.8), (4.22), J = I(y) for y near x∆d having v′i ’s as coordinates.

When J0 is of type Cci or C′ci , without loss of generality, we may assume i= 1. In the

case Cc1 , the following elements are in J, by (4.20):

(
γ123−γ13γ2

)(
Z1Z3

)l134−1Zl4−1
4

= γ13Z
l24−1
4 F(l2)2

(
γ2

)+Zl13−l134+1
2 G(l13)

13

(
γ13

)−(
Z1Z3

)l134−1H(l123)
4

(
γ123

)
,(

γ2−γ12γ234
)
Zl134−1

1

(
Z3Z4

)l34−1

=−(Z3Z4
)l234F(l2)2

(
γ2

)+γ234Z
l134−1
1 G(l12)

12

(
γ12

)+Zl12
2 H(l234)

1

(
γ234

)
,(

γ1−γ12γ134
)
Zl234−1

2

(
Z3Z4

)l34−1

=−(Z3Z4
)l1−l1,2F(l1)1

(
γ1

)+γ134Z
l234−1
2 G(l12)

12

(
γ1,2

)+Zl12
1 H(l134)

2

(
γ134

)
,(

γ23−γ2γ3
)(
Z2

)l124−1(Z1Z4
)l14−1

= γ2
(
Z1Z4

)l3−l23F(l3)3

(
γ3

)+Zl23
3 F(l2)2

(
γ2

)−Zl124−1
2 G(l23)

23

(
γ23

)
.

(4.27)
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Hence

γ123 = γ2γ13, γ2 = γ234γ12, γ1 = γ12γ134, γ23 = γ2γ3, (4.28)

which are the same relations as uI ’s in (4.9) for i= 1 under the identification u1 = γ234

and uj = γ1j for j �= 1. By permuting the indices, one can show that all the remaining

relations in (4.9) are satisfied in terms of the γI ’s. Hence, by (4.22), J = I(y) for y near

xC1 with the ui’s as the coordinates of y .

For J0 of type C′c1 , the following elements are in J, by (4.20):

(
γ234−γ34γ2

)
Zl1−1

1 Zl12−1
2

= (
Z3Z4

)l234F(l2)2

(
γ2

)+γ2Z
l1−l12
1 G(l34)

34

(
γ34

)−Zl12−1
2 H(l234)

1

(
γ234

)
,(

γ2−γ23γ124
)(
Z1Z4

)l134−1Zl3−1
3

=−Zl23
3 F(l2)2

(
γ2

)+Zl124
2 Gl2,323

(
γ23

)+γ23
(
Z1Z4

)l134−1H(l124)
3

(
γ124

)
,(

γ124−γ1γ24
)
Zl13−1

1 Zl3−1
3

= (
Z2Z4

)l124F(l1)1

(
γ1

)+γ1Z
l3−l1,3
3 G(l24)

24

(
γ24

)−Zl1,3−1
1 H(l124)

3

(
γ124

)
,(

γ12−γ1γ2
)
Zl234−1

2

(
Z3Z4

)l34−1

= γ2
(
Z3Z4

)l1−l12F(l1)1

(
γ1

)+Zl12
1 F(l2)2

(
γ2

)−Zl234−1
2 Gl12

12

(
γ12

)
.

(4.29)

Hence

γ234 = γ34γ2, γ2 = γ23γ124, γ124 = γ1γ24, γ12 = γ1γ2, (4.30)

which are the same relations of u′I ’s in (4.10) for i= 1 under the identifications u′1 = γ1,

u′2 = γ34, u′3 = γ24, u′4 = γ23. By a similar argument, all the relations of (4.10) hold;

therefore J = I(y) for y near xC′1 having the coordinates u′i’s.

By the results we have obtained, one concludes that HilbG(C4) is a smooth toric va-

riety, hence of the form XΞ∗∗ , where Ξ∗∗ is a simplicial decomposition of ∆ which is a

refinement of Ξ∗ corresponding to the morphism λ. Indeed, the above analysis of local

structure of HilbG(C4) has shown that Ξ∗ = Ξ∗∗, therefore λ is an isomorphism between

XΞ∗ and HilbG(C4). The number of exceptional divisors appearing in the canonical bun-

dle of XΞ∗ is equal to r(r +1)(r +2)/6 by (4.22).

5. G-Hilbert scheme over C3/A4. It is known that the alternating group An+1 is a

simple group except when n = 2,3, in which cases A3 � Z3 and A4 is isomorphic to

the ternary trihedral group (Z2×Z2) 
 Z3. The G-Hilbert scheme for A3 is the minimal

resolution of C2/A3. In this section, we are going to give a constructive proof of the

smooth and explicit crepant structure of HilbA4(C3).

Theorem 5.1. HilbA4(C3) is a smooth variety with a trivial canonical bundle.
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We will devote the rest of this section to the proof of the above theorem and always

denote G = A4. Introduce the following coordinates (z1,z2,z3) of V in (2.23)n=3:

z1 =−z̃1+ z̃2+ z̃3− z̃4, z2 = z̃1− z̃2+ z̃3− z̃4, z3 = z̃1+ z̃2− z̃3− z̃4, (5.1)

where
∑4
j=1zj = 0. The irreducible representation of G on C3 (= V), denoted by 3, has

the following matrix forms for generators of G:

(12)(34) � �→

−1 0 0

0 −1 0

0 0 1

 , (13)(24) � �→

−1 0 0

0 1 0

0 0 −1

 ,

(123) � �→

0 1 0

0 0 1

1 0 0

 .
(5.2)

There are 4 distinct irreducible G-modules, Irr(G)= {1,1ω,1ω,3}, whereω := e2π
√−1/3,

and 1∗ is the G-character determined only by the (123)-value ∗. Using the coordinates

(zi)3i=1 of C3, the generators of G-invariant polynomials in C[Z] are

Y1 = Z2
1 +Z2

2 +Z2
3 , Y2 = Z1Z2Z3,

Y3 = Z2
1Z

2
2 +Z2

2Z
2
3 +Z2

3Z
2
1 , X = (

Z2
1 −Z2

2

)(
Z2

2 −Z2
3

)(
Z2

3 −Z2
1

)
.

(5.3)

Note that the above variables are related to s2, s3, s4, d in (2.25)n=3 by the relations

Y1 = −8s2, Y2 = −8s3, Y3 = 16s2
2 −64s4, X = 64d. The G-invariant polynomial relation

(2.25) with F3 in (2.26) becomes

X2 =−4Y 3
1 Y

2
2 −27Y 4

2 +18Y1Y 2
2 Y3+Y 2

1 Y
2
3 −4Y 3

3 . (5.4)

Let C[Z]j be the space of homogeneous polynomials of degree j, and denote I(o)⊥j =
I(o)⊥∩C[Z]j . Then I(o)⊥j is a G-submodule of I(o)⊥. In fact, the only nonzero I(o)⊥j ’s

are in the range 0≤ j ≤ 5, whose G-irreducible factors are as follows (for an equivalent

form, see, e.g., [6, Table 2.2]):

I(o)⊥0 =m0 � 1, m0=C,
I(o)⊥1 =m1 � 3, m1=

{
Z1,Z2,Z3

}
,

I(o)⊥2 =m2+m3+m4 m2={f}, m3=
{
f
}
,

� 1ω+1ω+3, m4=
{
Z2Z3,Z3Z1,Z1Z2

}
,

I(o)⊥3 =m5+m6 � 3+3, m5=f
{
Z1,ω2Z2,ωZ3

}
, m6=f

{
Z1,ωZ2,ω2Z3

}
,

I(o)⊥4 =m7+m8+m9 m7=
{
f

2}
, m8=

{
f 2},

� 1ω+1ω+3, m9=f
{
ωZ1Z2,Z2Z3,ω2Z3Z1

}
,

I(o)⊥5 =m10 � 3, m10=f 2{
Z1,ω2Z2,ωZ3

}
,

(5.5)
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Table 5.1

J0 C[Z]/J0

x0 := 〈f 〉+I(o) m0+m1+m3+m4+m6+m7

x′0 := 〈f 〉+I(o) m0+m1+m2+m4+m5+m8

x∞ := 〈Z1f ,ω2Z2f ,ωZ3f ,f
2〉+I(o) m0+m1+m2+m3+m4+m6

x′∞ := 〈Z1f ,ωZ2f ,ω2Z3f ,f 2〉+I(o) m0+m1+m2+m3+m4+m5

where f :=∑3
j=1ωj−1Z2

j , f :=∑3
j=1ω2j−2Z2

j . We have the G-irreducible decomposition

I(o)⊥ =∑10
k=0mk. Note that ff , f 3, f

3
are G-invariant polynomials with the following

relations:

ff = Y 2
1 −3Y3, f 3−f 3 = 3

(
ω2−ω)

X, f 3+f 3 = 27Y 2
2 −9Y1Y3+2Y 3

1 . (5.6)

Lemma 5.2. Among mk’s (1≤ k≤ 10), the following tree diagram holds:

m1
��
��

m4

m2

m3

��
��

m5

m6

m9

m8

m7

��
��

��
��m10 (5.7)

where the mj of the right end of an edge is contained in the ideal generated by the mi

of the left end of the edge and I(o).

Proof. By the expression of mk, all the relations in the above diagram are trivial

except the following ones:

m9 ⊂m6+I(o), m10 ⊂m8+I(o), m10 ⊂m9+I(o). (5.8)

Define the irreducible G-submodules of C[Z], isomorphic to 3, as m9 = f{ω2Z1Z2,
Z2Z3,ωZ3Z1},m10 := f 2{Z1,ωZ2,ω2Z3}. Then we have the equalities of ideals in C[Z],
〈m9, I(o)〉=〈m9, I(o)〉, 〈m10, I(o)〉=〈m10, I(o)〉, which imply the relations in (5.8).

We will call an ideal J0 in HilbG(C3) central if J0 is generated by I(o) and a finite

number of mk’s. (The central ideal J0 here will play a role similar to that of monomial

ideals in previous sections for the case of abelian groups G.) By Lemma 5.2, there are

exactly 4 central ideals J0 with the G-irreducible decomposition of C[Z]/J0 presented

in Table 5.1. Note that the J0’s in Table 5.1 are characterized as the ideals in HilbG(C3)
with monomial polynomial generators in C[Z]. All the above four elements lie over

o ∈ SG under the morphism σHilb of (2.9). By the analysis in [6, Section 2.5], σ−1
Hilb(o)

consists of a tree of three smooth rational curves L+ l+L′. Here are the locations of

J0’s in σ−1
Hilb(o): x0 ∈ (L\ l)∪L′, x∞ = L∩ l, x′∞ = L′ ∩ l, x′0 ∈ (L′ \ l)∪L (see Figure 5.1).

We are going to show that every J in HilbG(C3) can be deformed to one J0 in Table 5.1.

For J ∈ HilbG(C3), denote by h(J) the homogenous ideal in C[Z] generated by the

highest-total-degree part of elements in J. As the top degree of a polynomial in C[Z]
is preserved under the G-action, h(J) is G-invariant. By applying the Gröbner basis

technique with a monomial order of total degree in C[Z], one obtains the same ideal,

lt(J)= lt(h(J)), hence a set of monomial elements inC[Z]which represent the basis for
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������������������
�

�x∞
x0 x′∞

x′0

L l L′

Figure 5.1. Tree configuration of σ−1
Hilb(o) for G = A4.

both C[Z]/J and C[Z]/h(J). Therefore h(J) is a homogeneous ideal in HilbG(C3). Note

that σHilb(h(J))= o. By [6, (2.4)], h(J)∈ {x0,x′0}∪l. Hence h(J) and J can be deformed

to an element in Table 5.1. Now we are going to determine the local structure near these

four central elements in HilbG(C3).
For J near the element x∞ in HilbG(C3), we have

J =
〈
f

2−v0f ,m5−v1m6−v2m4−v3m1,Y1−η1,Y2−η2,Y3−η3,X−ξ
〉
, (5.9)

where (ξ,η1,η2,η3) satisfies (5.4) and m5 − v1m6 − v2m4 − v3m1 is the G-module∑3
j=1Cpj with p1 := fZ1−v1fZ1−v2Z2Z3−v3Z1, p2 := fω2Z2−v1fωZ2−v2Z3Z1−

v3Z2, p3 := fωZ3−v1fω2Z3−v2Z1Z2−v3Z3. By

f 2−(
v1η1+v3

)
f = Z1p1+ω2Z2p2+ωZ3p3+v1

(
Y1−η1

)
f ∈ J,(

η1−v3−v0v1
)
f = Z1p1+ωZ2p2+ω2Z3p3+v1

(
f

2−v0f
)
−(
Y1−η1

)
f ∈ J,

(5.10)

and the first relation of (5.6), we have (3η3−η2
1−v0(v3+v1η1))f ∈ J. As f �∈ J, we have

η1−v3−v0v1 = 0, 3η3−η2
1 = v0

(
v3+v1η1

)
. (5.11)

By the relations 3Y2f−v2(Z2
2Z

2
3+ωZ2

3Z
2
1+ω2Z2

1Z
2
2 )=Z2Z3p1+ωZ3Z1p2+ω2Z1Z2p3∈

J and f
2−Y1f = 3(Z2

2Z
2
3 +ωZ2

3Z
2
1 +ω2Z2

1Z
2
2 ), we have

9η2+v2η1−v0v2 = 0. (5.12)

By (5.6), (5.10), we have

3
(
ω2−ω)

ξ≡f 3−f 3≡(
v1η1+v3−v0

)
ff ≡(

v1η1+v3−v0
)(
η2

1−3η3
)
(modJ), (5.13)

hence

3
(
ω2−ω)

ξ = (
v1η1+v3−v0

)(
η2

1−3η3
)
. (5.14)

By the relation

v2p3−
(
ω−ω2)((ω2+ωv1

)
Z1p2−

(
ω+ω2v1

)
Z2p1

)
≡ v1

(
9η2+v0v1v2+v2v3−v0v2

)
Z3

+(
3v1η1+3v3−3v1v3−v2

2

)
Z1Z2(modJ)

(5.15)
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and Z1Z2, Z3 representing two basis elements of C[Z]/J, one obtains

3v1η1+3v3−3v1v3−v2
2 = 0, v1

(
9η2+v0v1v2+v2v3−v0v2

)= 0. (5.16)

With all the above relations among vj ’s, ηk’s, and ξ, one can conclude that (v0,v1,v2)
forms a coordinate system of HilbG(C3) centered at x∞, and the other parameters in

the expression of the ideal J are expressed by the following relations:

v3 = 1
3
v2

2 −v0v2
1 , η1 = 1

3
v2

2 +v0v1−v0v2
1 ,

η2 = 1
27
v2

(
3v0−3v0v1−v2

2 +3v0v2
1

)
,

η3 = 1
27

(
3v0v2

1 −v2
2

)(
3v0v2

1 −3v0v1−v2
2 +3v0

)
,

ξ = ω−ω
2

81
v0

(
v1+1

)(
3v0v2

1 +3v0−3v0v1−v2
2

)(
3v0v3

1 −v2
2 −v1v2

2

)
.

(5.17)

Note that the above ξ, η1, η2, η3 satisfy relation (5.4). Furthermore, vj ’s are G-invariant

rational functions in Zi’s with the following expressions:

v0 = 3
(
ω−ω2

)
ξ−9η1η3+27η2

2+2η3
1

2
(
η2

1−3η3
) , v1 =

(
ω−ω2

)
ξ+η1η3−9η2

2(
ω−ω2

)
ξ−η1η3+9η2

2

,

v2 = 6η2
(
η2

1−3η3
)(

ω−ω2
)
ξ−η1η3+9η2

2

, v3 = −2η3
(
η2

1−3η3
)(

ω−ω2
)
ξ−η1η3+9η2

2

.

(5.18)

This implies dZ1∧dZ2∧dZ3 = ((ω−ω2)/36)dv0∧dv1∧dv2.

For J near the element x′∞ in HilbG(C3), we have

J = 〈
f 2−v′0f ,m6−v′1m5−v′2m4−v′3m1,Y1−η1,Y2−η2,Y3−η3,X−ξ

〉
. (5.19)

By an argument similar to the casex∞, (v′0,v
′
1,v

′
2) forms a coordinate system of HilbG(C3)

centered at x′∞ with the relations

v′3 =
1
3
v′22 −v′0v′21 , η1 = 1

3
v′22 +v′0v′1−v′0v′21 ,

η2 = 1
27
v2

(
3v′0−3v′0v

′
1−v′22 +3v′0v

′2
1

)
,

η3 = 1
27

(
3v′0v

′2
1 −v′22

)(
3v′0v

′2
1 −3v′0v

′
1−v′22 +3v′0

)
,

ξ = ω
2−ω
81

v′0
(
v′1+1

)(
3v′0v

′2
1 +3v′0−3v′0v

′
1−v′22

)(
3v′0v

′3
1 −v′22 −v′1v′22

)
.

(5.20)
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We have

v′0 =
3
(
ω2−ω)

ξ−9η1η3+27η2
2+2η3

1

2
(
η2

1−3η3
) , v′1 =

(
ω2−ω)

ξ+η1η3−9η2
2(

ω2−ω)
ξ−η1η3+9η2

2

,

v′2 =
6η2

(
η2

1−3η3
)(

ω2−ω)
ξ−η1η3+9η2

2

, v′3 =
−2η3

(
η2

1−3η3)(
ω2−ω)

ξ−η1η3+9η2
2

,

(5.21)

and dZ1∧dZ2∧dZ3 = ((ω2−ω)/36)dv′0∧dv′1∧dv′2.

For J near x0 in HilbG(C3), we have

J =
〈
f −u0f

2
,m9−u1m6−u2m4−u3m1,Y1−η1,Y2−η2,Y3−η3,X−ξ

〉
, (5.22)

where (ξ,η1,η2,η3) is as before, and m9 − u1m6 − u2m4 − u3m1 is the G-module∑3
j=1Cqj with q1 := fZ2Z3 − u1fZ1 − u2Z2Z3 − u3Z1, q2 := fωZ3Z1 − u1fωZ2 −

u2Z3Z1 −u3Z2, q3 := fω2Z1Z2 −u1fω2Z3 −u2Z1Z2 −u3Z3. By the relation −(u1 +
u0u3)f

2 ≡−u1f
2−u3f = Z1q1+ωZ2q2+ω2Z3q3(modJ), we have

u1 =−u0u3. (5.23)

By (3η2−u1η1−u3)f = Z1q1+ω2Z2q2+ωZ3q3 ∈ J, we have

3η2 =u1η1+u3 =u3
(
1−u0η1

)
. (5.24)

By the relations f 2 ≡u0f
2
f ≡u0(η2

1−3η3)f (modJ),

Z2Z3q1+ω2Z3Z1q2+ωZ1Z2q3≡
(
η3−3u1η2

)
f−u2

(
Z2

2Z
2
3+ω2Z2

3Z
2
1+ωZ2

1Z
2
2

)
(modJ),

Z2
2Z

2
3 +ω2Z2

3Z
2
1 +ωZ2

1Z
2
2 ≡

1
3

(
f 2−η1f

)≡ 1
3

(
u0

(
η2

1−3η3
)−η1

)
f(modJ),

(5.25)

we have (
1+u0u2

)
η3 = 1

3

(
9u1η2−u2η1+u0u2η2

1

)
. (5.26)

Using (5.6), one has

u0f
2
f 2−f 3 ≡ 3

(
ω2−ω)

ξ, 2u0
(
η2

1−3η3
)2−2f

3 ≡ 6
(
ω2−ω)

ξ(modJ),

2f
3 ≡ 27η3

2−9η1η3+2η3
1−3

(
ω2−ω)

ξ(modJ),
(5.27)

hence

3
(
ω2−ω)

ξ = 2u0
(
η2

1−3η3
)2−27η3

2+9η1η3−2η3
1. (5.28)

Using the above relations, we have(
1+u0u2

)(
1−u0η1

)(
Z1q2−Z2q1−u1

(
ω−ω2)q3

)
+ 1

2+ω
(
1+u0u2

)(−ω2u2Z3

(
f −u0f

2)+u0u2Z3
(
f 2−u0

(
η1−3η3

)
f
))

≡ (
Z3f −Z3ωη1

)(
1−u0η1

)(
η1+u2+u0u2

2−3u2
0u

2
3

)
(modJ).

(5.29)
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As Z3f , Z3 are two basis elements of C[Z]/J, their coefficients in the last term of the

above relation are zero. This implies

η1 =−u2−u0u2
2+3u2

0u
2
3. (5.30)

From all the above relations between ui, ηj , ξ, one concludes that (u0,u2,u3) forms a

coordinate system of HilbG(C3) centered at x0 and the following relations hold:

u1 =−u0u3, η1 =−u2−u0u2
2+3u2

0u
2
3,

η2 = 1
3
u3

(
1+u0u2+u2

0u
2
2−3u3

0u
2
3

)
,

η3 = 1
3

(
u2

2−3u0u2
3

)(
1+u0u2+u2

0u
2
2−3u3

0u
2
3

)
,

ξ = ω−ω
2

9

(−1+u0u2
)(

3u2
3+u3

2−3u0u2u2
3

)(
1+u0u2+u2

0u
2
2−3u3

0u
2
3

)
.

(5.31)

Again, the above expressions imply relation (5.4), and the G-invariant rational function

expressions of ui’s are given as follows:

u0 = 6η3−2η2
1

3
(
ω2−ω)

ξ+9η1η3−2η2
1−27η2

2

,

u1 = η2
(−6η3+2η2

1

)(
ω2−ω)

ξ+η1η3−9η2
2

,

u2 = −
(
ω2−ω)

ξη1−6η2
3+9η1η2

2+η2
1η3(

ω2−ω)
ξ+η1η3−9η2

2

,

u3 = η2
(
3
(
ω2−ω)

ξ+9η1η3−27η2
2−2η3

1

)(
ω2−ω)

ξ+η1η3−9η2
2

,

(5.32)

hence dZ1∧dZ2∧dZ3 = ((ω−ω2)/12)du0∧du2∧du3.

For J near the element x′0 in HilbG(C3), we have

J = 〈
f −u′0f 2,m9−u′1m5−u′2m4−u′3m1,Y1−η1,Y2−η2,Y3−η3,X−ξ

〉
. (5.33)

By an argument similar to the case x0, one obtains that (u′0,u
′
2,u

′
3) is an affine coordi-

nate system with

u′1 =−u′0u′3, η1 =−u′2−u′0u′22 +3u′20 u
′2
3 ,

η2 = 1
3
u′3

(
1+u′0u′2+u′20 u′22 −3u′30 u

′2
3

)
,

η3 = 1
3

(
u′22 −3u′0u

′2
3

)(
1+u′0u′2+u′20 u′22 −3u′30 u

′2
3

)
,

ξ = ω
2−ω
9

(−1+u′0u′2
)(

3u′23 +u′32 −3u′0u
′
2u
′2
3

)(
1+u′0u′2+u′20 u′22 −3u′30 u

′2
3

)
,

(5.34)
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and the following relations hold:

u′0 =
6η3−2η2

1

3
(
ω−ω2

)
ξ+9η1η3−2η2

1−27η2
2

,

u1 = η2
(−6η3+2η2

1

)(
ω−ω2

)
ξ+η1η3−9η2

2

,

u′2 =
−(ω−ω2

)
ξη1−6η2

3+9η1η2
2+η2

1η3(
ω−ω2

)
ξ+η1η3−9η2

2

,

u′3 =
η2

(
3
(
ω−ω2

)
ξ+9η1η3−27η2

2−2η3
1

)(
ω−ω2

)
ξ+η1η3−9η2

2

,

(5.35)

hence dZ1∧dZ2∧dZ3 = ((ω2−ω)/12)du′0∧du′2∧du′3.

With the analysis we have made in this section, one concludes that HilbG(C3) is

covered by four affine spaces C3 centered at the central elements in Table 5.1, and the

G-invariant volume form dZ1∧dZ2∧dZ3 ofC3 induces a never-vanishing global volume

form of HilbG(C3). This completes the proof of Theorem 5.1.

6. Concluding remarks. In this paper, we have provided a detailed derivation of

the smooth toric structure of HilbAr (4)(C4). Its relation with crepant resolutions of

C4/Ar (4) has been found, and different crepant resolutions connected by flops of 4-

folds can be visualized in the process. We have also given a constructive verification

of the smooth and crepant properties of HilbA4(C3) by a direct computation method.

In the abelian case Ar(4), the solution has been given in Sections 3 and 4 by the stan-

dard toric method, a combinatorial mechanism built upon monomials in C[Z], which

can be regarded as characters of the whole torus group T0, containing Ar(4) as a fi-

nite subgroup. The smooth toric structure of HilbAr (4)(C4) is derived from a procedure

which mainly consists of two steps: first, one obtains a complete list of monomial ideals

in HilbAr (4)(C4) which correspond to the 0-dimensional toric orbits (see (3.13), (4.14),

(4.20)); second, by the Gröbner basis technique and a detailed analysis of the G-regular

module property of C[Z]/J for an ideal J in HilbAr (4)(C4), one proceeds to identify the

toric coordinates from the ideal generators of J. In this manner, the explicit form of

the canonical bundle of HilbAr (4)(C4) can be determined as a disjoint sum of excep-

tional divisors, each of which could be blown down to give rise to crepant resolutions

of C4/Ar (4). These crepant resolutions are connected by a sequence of flops in 4-folds

through HilbAr (4)(C4). We intend to apply a similar mechanism to the nonabelian case

G = An+1, but relying only on the data of G-representations in C[Z], a “big” group like

the torus in the abelian case does not exist in the latter case though. In Section 6, we

have made a detailed study on the structure of HilbA4(C3), which would serve as a

demonstration of the effectiveness of the method even though its crepant smooth con-

clusion is known by now [2]. We have succeeded to give an explicit verification of the

crepant smooth structure of HilbA4(C3), following our thought by a direct constructive

method via group representations. An analysis similar to the higher-dimensional cases

is now under progress and partial results are promising. As to the role of the G-Hilbert

scheme in the study of crepant resolutions of SG, our conclusion for the case G =Ar(4)
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has indicated the noncrepant property of HilbG(C4), but with an intimate relation with

crepant resolutions of SG. For the higher-dimensional case, this kind of link between

HilbG(Cn) and some possibly existing crepant resolutions of SG could be further loosely

related. However, the G-Hilbert scheme would still be worth further study in its own

right due to the built-in character of group representations into the geometry of orb-

ifolds. This could be a promising direction of the geometrical study of singularity. Such

a program is now under our consideration for future study.
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