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We use the relationship between Jacobi forms and vector-valued modular forms to study
the Fourier expansions of Jacobi forms of indexes p, p2, and pq for distinct odd primes
p, q. Specifically, we show that for such indexes, a Jacobi form is uniquely determined
by one of the associated components of the vector-valued modular form. However, in the
case of indexes of the form pq or p2, there are restrictions on which of the components will
uniquely determine the form. Moreover, for indexes of the form p, this note gives an explicit
reconstruction of the entire Jacobi form from a single associated vector-valued modular
form component. That is, we show how to start with a single associated vector component
and use specific matrices from Sl2(Z) to find the other components and hence the entire
Jacobi form. These results are used to discuss the possible modular forms of half-integral
weight associated to the Jacobi form for different subgroups.
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1. Introduction. Jacobi forms of weight k and index m over the rational numbers

possess a Fourier expansion of the form

∞∑
n=0

∑
{r∈Z|4nm−r2≥0}

c(n,r)qnξr , q = e2πiτ , ξ = e2πiz. (1.1)

An easy calculation as in Eichler and Zagier’s book [3] based on the invariance with

respect to Z2 yields that c(n,r) depends only on r modulo 2m and on 4nm−r 2. Thus

the Fourier coefficients break into congruence classes modulo 2m and this is the basis

of the connection to vector-valued modular forms. The vector-valued modular forms

have a prescribed transformation matrix with respect to the inversion in Sl2(Z) and

this puts restrictions on the possible Fourier expansions of a Jacobi form. Specifically,

it forces a lower bound on the number of congruence classes of rmod2m that have

nonzero coefficients. In this note, we explore this lower bound and calculate the relation

to vector-valued modular forms in the case of congruence subgroups. This leads to

new isomorphisms between vector-valued forms of higher level and Jacobi forms on

subgroups of the Jacobi group. In particular, the transformation of the vector-valued

modular form gives the information to generate a Jacobi form from a congruence class

of its Fourier coefficients. This construction is given explicitly in this work using a

special set of matrices. There are related results in Skoruppa’s thesis [9] although the

methods used here are completely different (and very elementary) and involve only

the Fourier expansions, the transformation formulas, and evaluation of Gauss sums.
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However, in [9], there are far more maps from Jacobi forms to half-integral weight

modular forms.

We will use the notation em(·) = e2πmi(·), em(·) = e2πi(·)/m, (a,b) = gcd(a,b), and

ϕ(n) is the Euler phi-function. For convenience, representatives of congruence classes

modulo 2m (where m is a rational integer) will be taken from the usual set 0,1,2, . . . ,
2m−1.

2. Jacobi forms. (All of the material in this section can be found in [3].) Jacobi forms

are functions satisfying certain transformation formulas under the group Γ J = Γ J(Z)=
Sl2(Z)�Z2. The definition given in [3] is as follows.

Definition 2.1. A Jacobi form of weight k ∈ Z+ and index m ∈ Z+ is a function

f(τ,z) : h×C→ C that is analytic in both variables and satisfies

(1) f((aτ+b)/(cτ+d),z/(cτ+d)) = (cτ + d)kem(cz2/(cτ+d))f(τ,z) for all(a b
c d
)∈ Sl2(Z),

(2) f(τ,z+λτ+µ)= em(−λ2τ−2λz)f(τ,z) for all [λ,µ]∈ Z2.

Jacobi forms have a Fourier expansion of the form (1.1), where the condition on

the second sum is a condition to make the function analytic as τ → i∞. The second

transformation law forces c(n,r)= c(n′,r ′) if r ≡ r ′mod2m and 4nm−r 2 = 4n′m−
(r ′)2 and we write c(n,r) = cµ(N = 4nm− r 2), where r ≡ µmod2m. This allows a

Jacobi form to be written as a linear combination of fixed theta functions. For each

congruence class modulo 2m, define

θµ,m(τ,z)=
∑

n∈Z,n≡µmod2m
qn

2/4mξn, hµ(τ)=
∞∑
N=0

cµ(N)qN/4m, (2.1)

where the coefficients cµ(N) are defined to be zero unless N ≡−µ2 mod2m. With this

notation, we have

f(τ,z)=
∑

µmod2m
hµ(τ)θµ,m(τ,z). (2.2)

This decomposition leads to the theorem.

Theorem 2.2 [3, Theorem 5.1]. Equation (2.2) gives an isomorphism between Jacobi

forms of weight k and index m on Γ J and vector-valued modular forms (hµ(τ))µmod2m

satisfying

(i) hµ(τ+1)= e4m(−µ2)hµ(τ),
(ii) hµ(−1/τ)= (τk/√2mτ/i)

∑
νmod2me2m(µν)hν(τ),

and bounded as Im(τ)→∞.

This theorem gives relationships among the hµ(τ). If one hµ(τ) = 0 (i.e., is identi-

cally zero), then there is a linear dependence equation among the other hν(τ) arising

from the inversion formula. As an example, there are no Jacobi forms on Γ J with only

one hµ(τ) �= 0 regardless of weight and index. The question arises as to how many

of the hµ(τ) must be nonzero and how restrictive these conditions are on the Fourier

expansion of the Jacobi form.
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3. Conditions on the Fourier expansions. The first basic restriction on the Fourier

expansion of f(τ,z) is that since
(−1 0

0 −1

)
is in Sl2(Z), we have that f(τ,−z)= (−1)kf (τ,

z) and therefore hµ(τ) = (−1)kh−µ(τ). From this, it is clear that for odd weights,

h0(τ)= hm(τ)= 0. This implies that there are no theta functions of odd weight for the

full Jacobi group since the theta functions always have a nonzero h0(τ) component.

(This also follows from the basic property that 2 divides the level of any quadratic form

unless 8 divides the rank.)

At this point, it is already possible to create some interesting information of which

the following is simply an example.

Example 3.1. Consider a Jacobi form f(τ,z) of odd weight and index 2. Such a form

will only have two associated nonzero vector components h1(τ) and h3(τ). In addition,

we know that h1(τ)= (−1)kh3(τ) and so

h1

(−1
τ

)
= τk√

iτ
h1(τ). (3.1)

Therefore, the space of Jacobi forms of odd weight and index 2 is isomorphic to the

space of modular forms h1(τ) of weight k− 1/2 satisfying the above inversion and

h1(τ+1)= eπi/4h1(τ).

This relationship to vector-valued modular forms is actually very restrictive on the

possible Fourier expansions of Jacobi forms.

Theorem 3.2. If f(τ,z) is a Jacobi form of index m, an odd prime, then all of the

corresponding hf,µ(τ) are nonzero excluding µ = 0,m if the weight is odd.

Proof. The argument is based on the transformation formula for the vector-valued

modular form. Note that in the case m is prime, there are only two elements (±µ) in

each square class modulo 2m (with just one element in the 0 andm classes). To begin,

assume hµ(τ)= 0 for µ other than 0,m (independent of weight); then h−µ(τ)= 0 by the

relation hµ(τ)= (−1)kh−µ(τ). If hµ(τ)= 0, then hµ(−1/τ)= C∑νmod2me2m(µν)hν(τ)
= 0, where C is the term involving τk. By examining the expansion of each of the hν(τ),
only hν(τ) and h−ν(τ) have terms of the form q−ν2/4mqn (this is true even if m = 2),

and using these two inversion equations, we have e2m(µν)hν(τ)+e2m(−µν)h−ν(τ)=
0 and e2m(−µν)hν(τ)+ e2m(µν)h−ν(τ) = 0 (from h−µ = 0), and therefore hν(τ) =
em(−µν)h−ν(τ) and hν(τ) = em(µν)h−ν(τ). But unless m|µν , µν and −µν are not

equivalent modulo m (unless m = 2). In the odd weight case, h0(τ) = hm(τ) = 0,

therefore hν(τ) = 0 for all νmod2m. In the even weight case, h0(τ) = 0 = hm(τ)
because they are the only elements of their square classes (unless m = 2) and the

inversion formula for hµ(τ) implies they are zero.

In the even weight case, if h0(τ) = 0, then hµ(τ) = 0 for all of the other µmod2m
(µ ≠m) sinceh0(−1/τ)= 0 implieshµ(τ)+h−µ(τ)= 0. However,hµ(τ)= (−1)kh−µ(τ)
and therefore hµ(τ) = 0 and hm(τ) is zero again because it is the only element in its

square class. A similar argument works if we assume that hm(τ) is zero instead of

h0(τ).
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This proposition gives an interesting corollary in the case of prime index that any

component (other than the 0th ormth for odd weight) of a vector-valued modular form

satisfying the conditions in (2.2) entirely determines the form. Or equivalently this may

be stated as follows.

Corollary 3.3. If f(τ,z) =∑n,r c(n,r)qnξr is a Jacobi form of weight k and odd

prime index m, then f is entirely determined by any congruence class r ≡ µmod2m
(i.e., hµ(τ) from (2.2)) of its Fourier coefficients (where µ ≠ 0,m if the weight k is odd).

Proof. Assume that two Jacobi forms f1(τ,z), f2(τ,z) of the same weight and

odd prime index have the same associated vector component. Then the difference

f1(τ,z)−f2(τ,z) is a Jacobi form of the same weight and index with one associated

vector component identically zero. Hence the form is identically zero and f1(τ,z) =
f2(τ,z).

Next consider the case of two prime factors in the index. Note that by the Chinese

remainder theorem, ifm= pq for distinct primes p, q, then the structure of the square

classes is as follows. There are ϕ(pq)/4 squares with four square roots (those with

(µ,pq) = 1), there are ϕ(p)/2+ϕ(q)/2 squares with two square roots (those with

(µ,pq) = p or q), and there are 0, m which have one square root each (recall ϕ(n) is

the Euler phi-function).

Theorem 3.4. If f(τ,z) is a Jacobi form of indexm= pq for odd primes p, q and the

associated hν(τ) = 0 for some νmod2pq with (ν,pq) = 1, then f is identically zero. If

the weight is even and hν(τ)= 0 for some ν with (ν,pq) > 1, then all of the components

hµ(τ) for (µ,pq) > 1 are zero. If the weight is odd and hν(τ)= 0 for a ν with (ν,pq)= p
(or q), then all of the hµ(τ) with (µ,pq)= p (resp., q) are zero.

Proof. We begin with the second part of the proposition. If hµ(τ) = 0 for p|µ (or

q|µ) and µ �= 0,m, then h−µ(τ)= 0 as well. Then for any hap(τ) (1≤ a < q), there are

two formulas relating hap(τ) and h−ap(τ) that lead to hap(τ) = e2pq(2apµ)h−ap(τ)
and hap(τ) = e2pq(−2apµ)h−ap(τ) which implies hap(τ) = 0 because 2pq does not

divide 2apµ (since (apµ,q) = 1). Similarly this argument can be used to show the

same result with q replacing p. Now h0(τ), hpq(τ) are both zero (for both even and

odd weights) because for odd primes p, q, they are the only elements in their respective

square classes (modulo 2pq). Then for even weights, all of the hν(τ) = 0 for q|ν (or

p|ν) because hν(τ)= (−1)kh−ν(τ) and the inversion for h0 leads to hν(τ)=−h−ν(τ).
Note that if it is first assumed h0(τ) or hm(τ) is zero (and the weight is even), then

use hν(τ)= (−1)kh−ν(τ) as the second relation.

Now assume hν(τ)= 0, where (ν,m)= 1. Then h−ν(τ)= 0 also. There are now two

other congruence classes modulo 2m called µ, −µ such that µ2 ≡ ν2 mod2m. Because

hν(τ) and h−ν(τ) are zero, their inversion formulas give hµ(τ)= e2m(2µν)h−µ(τ) and

hµ(τ)= e2m(−2µν)h−µ(τ) which is impossible because (µν,m)= 1. These relations

force hσ(τ) = 0 for all σ such that (σ ,pq) > 1 because each of these σ has (at most)

two elements in its square class and four nontrivial relations among the two functions.

To complete the argument, take another square class a2 mod2m such that (a,pq)= 1.

This class will have four square roots; call thema,−a, b,−b. Sinceh±ν(τ)= h±µ(τ)= 0,
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there are four equations in the h±a, h±b which can be written as



e2m(νa) e2m(−νa) e2m(νb) e2m(−νb)
e2m(−νa) e2m(νa) e2m(−νb) e2m(νb)
e2m(µa) e2m(−µa) e2m(µb) e2m(−µb)
e2m(−µa) e2m(µa) e2m(−µb) e2m(µb)






ha(τ)
h−a(τ)
hb(τ)
h−b(τ)


=




0

0

0

0


 . (3.2)

This matrix is nonsingular which can be shown by direct computation, and therefore

all of the h±a(τ), h±b(τ) are zero.

Again this proposition can be interpreted to say that a Jacobi form of index pq is

entirely determined by any of the correspondinghµ(τ) for (µ,2pq)= 1. Similar analysis

can be used on general indexes. However, as the number of prime factors increases, the

square classes become more complicated.

Given these two propositions, one might guess that, in general, the component func-

tions hµ(τ), with µ, relatively prime to m, cannot be zero. However, when the index

m= p2 for an odd prime p, the situation is reversed. For this case, the associated hµ(τ)
with (µ,p) = 1 may all be zero, whereas if one of the (nontrivial) hap(τ) is zero, then

the Jacobi form must be zero.

Theorem 3.5. If f(τ,z) is a Jacobi form of odd weight and index m = p2 for p an

odd prime, then if the associated hµ(τ)= 0 for any µ (µ ≠ 0,p2), then hν(τ)= 0 for all

νmod2p2 (i.e., f is identically zero). If the weight is even and hµ(τ)= 0 for any µ, then

hν(τ)= 0 for all (ν,p)= 1, and if p|µ, then f(τ,z) is identically zero.

Proof. The difference here is the structure of the square classes. In general, a2

has only two square roots (±a) if (p,a) = 1 but there are p elements such that b2 ≡
0mod2p2 (there are also p such that b2 ≡ p2 mod2p2). The proof is similar to the

above, where if one function hµ(τ) is zero, then h−µ(τ) is also zero and this creates

two nontrivial relations on all of the square classes. For the classes ν2 mod2p2 with only

two elements, these relations are linearly independent and therefore the corresponding

h±ν(τ) are zero. Now there areϕ(2p2) relations among the p elements in the 0 square

class (also for the p elements in the p2 square class); however, only p− 1 of these

relations are linearly independent. For Jacobi forms of odd weight, each of the square

classes 0, p2 has only p−1 elements (since h0,hp2 = 0) and so the p−1 independent

relations force all of the hµ(τ) to be zero.

If one of the hµ(τ) = 0 for p|µ (µ �≡ 0,p2 if the weight is odd), then the Jacobi form

is identically zero. This is because if hµ(τ) = 0 for p|µ, then h−µ(τ) = 0 and the in-

version formulas for these two give relations that imply hν(τ) = 0 for all (ν,p) = 1

(instead of h−µ , use hν = (−1)kh−ν if µ is 0 or p2 and the weight is even). Now there are

ϕ(2p2)+2 relations among the p (p−1 for odd weights) elements in the 0, p2 square

classes of which p are linearly independent and so the Jacobi form is identically zero.

Note that this result cannot be made much stronger. The reason is the operator

Ul, where l is a positive integer as defined in [3, page 41] that acts by f(τ,z)|Ul =
f(τ,lz) and increases the index by l2. A Jacobi form of index 1 has only two congruence
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classes of coefficients (in the ξ). Examples of such forms for even weights are explicitly

constructed in [3] (there are no nonzero forms for odd weight). If one of these forms is

lifted to level p2 using Up , then the image will only have nonzero hµ(τ) for congruence

classes µmod2m, where p divides µ. In addition, by the above proposition, all of these

components must be nonzero.

However, there is also a lowering operator or an inverse operator to Ul. Namely, if

F(τ,z) is a Jacobi form of index m such that p2 divides m and all of the associated

hµ(τ) are zero unless p divides µ, then we can define an inverse of Ul by

F(τ,z)|U−1
l =

∑
µmod(2m/p2)

gµ(τ)θµ,2m/p2(τ,z), (3.3)

where

gµ(τ)=
∑

{apmod2m|a≡µmod(2m/p2)}
hap(τ). (3.4)

Then F(τ,z)|U−1
l is a form of index m/(p2). To see this, we just check the vector-

valued modular form conditions. Namely, it is easy to see that

gµ(τ+1)= e
( −µ2

2m/p2

)
gµ(τ). (3.5)

The inversion formula is only slightly more complicated and relies on the fact that the

only nonzero components are the hbp . Simply compute

gµ
(−1
τ

)
=

∑
{ap|a≡µmod(2m/p2)}

hap
(−1
τ

)

= (τ)k−1/2(√
2m/i

) ∑
{ap|a≡µmod(2m/p2)}

∑
{νpmod2m}

e2m(apνp)hνp(τ)

= (τ)
k−1/2√

2m/i

∑
{ap|a≡µmod(2m/p2)}

∑
{νmod(2m/p2)}

∑
{bp|b≡νmod(2m/p2)}

e2m/p2(ab)hbp(τ)

= (τ)k−1/2/
(√

2m/ip2
) ∑
νmod(2m/p2)

e2m/p2(µν)gν(τ).

(3.6)

In particular, F(τ,z)|Ul|U−1
l = lF(τ,z). Therefore, all Jacobi forms with such a Fourier

expansion are images of a form with lower index.

4. Jacobi forms on subgroups of the Jacobi group. In this section, we examine

the Fourier expansions of Jacobi forms on subgroups of the Jacobi group and then

investigate the relation to vector-valued modular forms for subgroups of Sl2(Z). This

method is applicable for any congruence subgroup. To begin, assume f is a Jacobi

form on Γ(M)�(a)2, where Γ(M) is some congruence subgroup of level M and (a) is
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the ideal generated by a ∈ Z, a ≠ 0. For a Jacobi form on this subgroup, f(τ+M,z) =
f(τ,z+a)= f(τ,z); so in this case, f has a Fourier expansion of the form

f(τ,z)=
∑
n

∑
r
c(n,r)qn/Mξr/a. (4.1)

The analyticity condition on the second sum is that 4mn/M − (r/a)2 ≥ 0. Following

the classical argument (i.e., using the invariance with respect to the (a)2), we find that

c(n,r) depends only on rmod2ma2 and on 4mn/M−(r/a)2. Replacing the variable

z by az (i.e., applying the operator Ua as above), this becomes a Jacobi form of weight

k and index a2m on Γ(M)�Z2. So for the purposes of decomposing the Jacobi form,

without loss of generality, we may consider just those forms on Γ(M)�Z2.

Now a Jacobi form f(τ,z) on Γ(M)�Z2 has a Fourier expansion

f(τ,z)=
∑
n

∑
r
c(n,r)qn/Mξr (4.2)

and as above, define cµ(N = 4mn−Mr 2) = c((N+Mr 2)/4m,r) (where r ≡ µmod2m
and cµ(N)= 0 if N �≡ −Mµ2 mod2m). Define the functions for µmod2m:

hµ(τ)=
∑
N≥0

cµ(N)qN/4mM,

θµ,m(τ,z)=
∑

{r∈Z|r≡µmod2m}
qr

2/4mξr .
(4.3)

These are exactly the same theta functions used in [3, page 58] and above. This leads

to the decomposition

∑
n

∑
r
c(n,r)qn/Mξr

=
∑

µmod2m

∑
r≡µmod2m

∑
{N≥0|N≡−Mr2 mod2m}

c
(
N+Mr 2

4m
,r
)
q(N+Mr

2)/4mMξr

=
∑

µmod2m
hµ(τ)θµ,m(τ,z).

(4.4)

These theta functions θµ,m(τ,z) satisfy

θµ,m(τ+1,z)= e4m
(
µ2)θµ,m(τ,z), (4.5)

θµ,m
(−1
τ
,
z
τ

)
=
√
τ/2mie2πimz2/τ

∑
νmod2m

e2m(−µν)θν,m(τ,z), (4.6)

but the Jacobi form only transforms with respect to Γ(M); so we need to calculate how

the θµ,m transform with respect to these elements. To determine these formulas, it is

sufficient to compute them on generators of the subgroup. In order to simplify the

discussion for now, we consider the Hecke triangle and the Γ0(p) groups because they

are generated by a small number of elements. To begin, let ΓH(M) be the Hecke triangle
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group generated by

(
1 1

0 1

)
,

(
1 0

M 1

)
. (4.7)

This group has infinite index in Sl2(Z) for any M > 4; however, this relatively small

group is enough to restrict the possible Fourier expansions of a Jacobi form. Note that

(
1 0

M 1

)
=
(

0 1

−1 0

)(
1 −M
0 1

)(
0 −1

1 0

)
(4.8)

and we have the transformation for the translation matrix and so it remains to calculate

the formula for the other generator. Using (4.5) and (4.6), the theta functions satisfy

(using matrix notation for convenience)

(
θµ,m

(
τ

Mτ+1
,

z
Mτ+1

))
µmod2m

=−
√
(Mτ+1)

2m
e2πimMz2/(Mτ+1)(e2m(−µν)

)−1
µ,ν

×Diag
[
e4m

(−Mµ2)]
µ
(
e2m(−µν)

)
µ,ν
(
θν,m

)
νmod2m,

(4.9)

where Diag[·] is a diagonal matrix with the given entries and µ, ν always run from

0,1, . . . ,2m−1.

It is interesting to note at this point that if 2m|M , this product of matrices becomes

the identity and so each of the theta functions is a Jacobi form on ΓH(2m)�Z2. This

may also be stated as the associated hµ(τ) are modular forms of weight k−1/2 on

ΓH(2m) (with a multiplier); or in representation-theoretic terms, this representation of

Sl2(Z) is reducible to one-dimensional representations on ΓH(2m). Because of this fact,

the only conditions on the hµ(τ) are that they be modular forms on ΓH(2m) (with the

appropriate multipliers). Furthermore, any such functions satisfying the above trans-

lation and inversion formulas may be put together with the theta functions to yield a

Jacobi form on ΓH(2m)�Z2.

These transformation formulas for the theta functions can now be translated into

transformation formulas for the hµ . Namely, since

f(τ,z)=
∑

µmod2m
hµ(τ)θµ,m(τ,z) (4.10)

and f is a Jacobi form on ΓH(M)�Z2, each of the hµ satisfies

hµ(τ+1)= e4m
(−µ2)hµ(τ), (4.11)

hµ
(

τ
Mτ+1

)
= (Mτ+1)k−1/2

2m

∑
µmod2m

a(µ,ν)hν(τ), (4.12)
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wherea(µ,ν) is the µ, ν entry in the inverse of the matrix in the theta function inversion.

The matrix in this transformation of the hµ(τ) may be written as

(
a(µ,ν)

)
µ,ν =

(2m−1∑
k=0

e4m
(
2(µ−ν)k+Mk2))

0≤µ,ν<2m
, (4.13)

where each entry is a form of a Gauss sum. These entries may be evaluated using stan-

dard techniques as in [1] and are explicitly calculated in [5]. A short calculation shows

that the µ, ν entry is zero unless (M,2m)|(µ−ν), that is, unless µ ≡ νmod(M,2m). If

(2m,M)= 1, then the µ, ν entry is

e
(−M−1

2m
(µ−ν)2

)(
4m
M

)(
1+iM)√m, (4.14)

where the inverse of M is the inverse modulo 2m. If (M,2m)= d> 1 (denote M = dN,

2m= dn), then if d|(µ−ν), the µ, ν entry is

a(µ,ν)=




de
(
(−N)−1

2n

(
µ−ν
d

)2
)(

2n
N

)(
1+i−N)√n

2
if 2|n,

de
(
(−N)−1

8n

(
µ−ν
d

)2
)(

2N
n

)√
n if n≡ 1mod4,

de
(
(−N)−1

8n

(
µ−ν
d

)2
)(

2N
n

)
i
√
n if n≡ 3mod4,

(4.15)

where again (−N)−1 is taken modulo n. These calculations lead to a statement (to [3,

Theorem 5.1]) statement relating Jacobi forms and vector-valued modular forms on

these Hecke groups.

Theorem 4.1. The correspondence f(τ,z)→ (hµ(τ))µmod2m gives an isomorphism

between the spaces of Jacobi forms of weight k and index m on ΓH(M)�Z2 and vector-

valued modular forms on ΓH(M) satisfying (4.11), (4.12) and bounded as Im(τ)→∞.

The above method is easily generalized to Jacobi forms on congruence subgroups by

simply looking at the transformation of the theta functions on generators.

This theorem has an interesting consequence concerning how many of the vector

components must be nonzero because of the condition that the entry of the matrix in

(4.12) is zero unless µ = νmod(M,2m). This implies that the only functions hν(τ),
0≤ ν < 2m, involved in the transformation formula for hµ(τ/(Mτ+1)) are those such

that µ ≡ νmod(M,2m). Therefore, for a fixed congruence class µ, as long as at least

some of the hν for ν ≡±µmod(M,2m) (there is still the relation that hν = (−1)kh−ν )

are nonzero, all of the other components may be zero. Therefore, by increasing (M,2m),
the minimum number of nonzero components decreases.

Corollary 4.2. If f(τ,z) is a Jacobi form of weight k and index m on Γ J with the

decomposition (4.10) being satisfied and if n divides 2m, then the function

gα,n(τ,z)=
∑

ν≡±αmodn
hν(τ)θν,m(τ,z) (4.16)

is a Jacobi form on ΓH(n)�Z2.
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Actually assuming the original form transforms on Γ J is overkill. All that is required

is that it transform on a subgroup containing ΓH(n)�Z2.

Thus we have that as the greatest common divisor of the level M and the index m
increases, the minimum number of congruence classes (modulo 2m) of nonzero co-

efficients decreases. The first instance of a Jacobi form with only one nonzero hµ(τ)
does not occur until level m and then the only ones that occur have the form (as-

suming even weight) h0(τ)θ0,m(τ,z), hm(τ)θm,m(τ,z). At this level, we also have

the first instance of only two of the hµ(τ) being nonzero (for index greater than 2).

That is, given a Jacobi form on ΓJ(Z), create the functions for (µmod(m)) gµ(τ,z) =
hµ(τ)θµ,m(τ,z)+h−µ(τ)θ−µ,m(τ,z) which will be Jacobi forms on ΓH(m)�Z2.

Now we consider Jacobi forms of index m on the congruence subgroup Γ0(p)�Z2,

where p is a prime that divides m. A convenient set of generators (see Frasch [4] and

Rademacher [8]) for Γ0(p) is

(
1 a
0 1

)(
0 −1

1 0

)(
1 b
0 1

)(
0 1

−1 0

)(
1 a
0 1

)(
0 −1

1 0

)

=
(
a−a(ab−1) ab−1

1−ab b

)
≡ Va,b,

(4.17)

where a runs through a set of congruence class representatives p, and b is chosen

so that ab ≡ 1modp. In order to make some of the calculations simpler, choose the

representatives modulo p so that each is relatively prime to 2m. In the case of Γ0(N)
for general N, the generators are more complicated; see, for example, Chuman [2], and

for the principal congruence groups of prime level, see Frasch [4]. Following the same

method, as above, the transformation formulas for the θµ,m(τ,z) and the hµ(τ) are

computed. The transformation matrix corresponding to the last three matrices in Va,b
was calculated above and is

√
m
(
1+i−a)( m−a

)(
exp

(
πi(ν−µ)2(a−1

)
2m

))
0≤µ,ν<2m

, (4.18)

where (a−1) is the inverse modulo 2m. The transformation matrix corresponding to

the first three elements of Va,b is

(
exp

(
πi
(−aµ2−bν2+2µν

)
2m

))
0≤µ,ν<2m

(4.19)

and thus their product is (neglecting the constant factors)

(2m−1∑
k=0

exp
(
πi
2m

(−aµ2+(a−1)ν2+k2[−b+(a−1)]+2k
[
µ−(a−1)ν]))

)
µ,ν
. (4.20)

Now because b was chosen to be equivalent to (a−1)mod2p, the k2 bracket is zero

modulop. So the sum is zero unlessp divides µ−(a−1)ν . Therefore, the transformation

of thehµ(τ) for the matrix Va,b depends only on thehν(τ) for bν equivalent to µmodp.
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In particular, if p is a prime dividing 2m and p divides µ, then hµ(τ) depends only on

hν(τ) for p dividing ν for all of its transformations under Γ0(p). These considerations

imply the following proposition (using the earlier notations).

Proposition 4.3. If f(τ,z) is a Jacobi form of weight k and index m on Γ J and p
is an odd prime dividing m, then g0,p(τ,z), f(τ,z)−g0,p(τ,z), and f(τ,z) (trivially)

are Jacobi forms on Γ0(p)�Z2. In addition, no other combinations of the gα,p(τ,z) are

Jacobi forms on this subgroup.

So even on these subgroups, it is possible for more of the vector components, be

zero but due to the transitive way the Va,b act on the vector components, there are only

a limited number of ways.

5. Building Jacobi forms. In the preceding discussion, Jacobi forms were broken

down into simpler forms on subgroups of the Jacobi group. This information allows

one to reverse the process, that is, to begin with one (or more) of the hµ(τ) and create

a Jacobi form from it. This is merely intended as an example to complement the above

work; a more complete theory will appear in a forthcoming paper by the author.

To begin, assume that hµ(τ) is one of the associated vector-valued modular form

components for a Jacobi form of weight k and odd prime index m = p for Γ J , where

µ is relatively prime to 2m. Define the natural slash operator for these vector-valued

components by

hµ(τ)
∣∣∣∣
(
a b
c d

)
= χ

(
a b
c d

)−1

(cτ+d)−k+1/2hµ
(
aτ+b
cτ+d

)
, (5.1)

where

(
hµ
(
aτ+b
cτ+d

))
µmod2m

= χ
(
a b
c d

)
(cτ+d)k−1/2U

(
a b
c d

)(
hν(τ)

)
νmod2m, (5.2)

U
(a b
c d
)

is a unitary matrix, and χ is the multiplier. Using this slash operator and the

earlier calculations, the other components of the vector-valued modular form are re-

covered (created):

haµ(τ)= hµ(τ)|Va,b, (5.3)

where a runs from 1,3,5, . . . ,p−2 and the b’s are chosen so that ab ≡ 1mod2p. Then

using the relation hν(τ) = (−1)kh−ν(τ), all of the vector components with odd sub-

scripts are formed. Applying the slash operator with
( 1 0
p 1

)
to hµ(τ) gives the sum of

hµ(τ) and hµ+p(τ) and so the vector components with even subscripts can now be re-

covered using the Va,b as above. This “new” vector function (hµ(τ))1≤µ≤p−1 transforms

as a vector-valued modular form on Γ0(p). In fact, this is the same Jacobi form as the

one we began with except for the missing h0, hp components. If the weight is odd,

both of these are zero anyway, so we have recovered the original Jacobi form on Γ J (not

just Γ0(p)�Z2). If the weight is even, this is strictly a form on Γ0(p)�Z2; however, we

can add an h0(τ) and hp(τ) components by adding any pair of modular forms with
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the appropriate multipliers (as determined in the calculations for Va,b above) on Γ0(p).
However, there is only one pair of these vector components which raises the form back

to Γ J . These components can be recovered through the series of operations

h0(τ)=
(
hµ(τ)

∣∣∣∣∣
(

0 −1

1 0

)
−

∑
νmod2p
ν≠0,p

e2m(µν)hν(τ)
)[

1−i
∣∣∣∣∣
(

1 1

0 1

)]
. (5.4)

Similarly, hp(τ) can be obtained by applying the same operator as above and replacing

the i with a 1 inside the brackets.

This last construction can also be done beginning with one of the hµ(τ), where µ is

even ((µ,p)= 1) using almost the identical construction.

In the first part of this note, it was shown that a Jacobi form of odd prime index

is entirely determined by any one of its associated vector-valued components and the

above calculation showed how to generate the other components. There are still open

questions. For example, the above construction of a Jacobi form was biased in that a

priori, it was known that there was an associated Jacobi form. Given a function with

some modular properties ((4.11), (4.12) for example), is there an attached Jacobi form?

Is the above construction possible by starting with the h0 component? How will this

construction work for nonprime index, and how many of the components will be neces-

sary to create a Jacobi form? In addition, what are the consequences for the associated

half-integral weight modular forms as in Kohnen’s papers [6, 7]?
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