AN EXTENSION OF q-ZETA FUNCTION

T. KIM, L. C. JANG, and S. H. RIM

Received 27 February 2004

We will define the extension of q-Hurwitz zeta function due to Kim and Rim (2000) and study its properties. Finally, we lead to a useful new integral representation for the q-zeta function.

2000 Mathematics Subject Classification: 11B68, 11S40.

1. Introduction. Let $0<q<1$ and for any positive integer k, define its q-analogue $[k]_{q}=\left(1-q^{k}\right) /(1-q)$. Let \mathbb{C} be the field of complex numbers. The q-zeta function due to T. Kim was defined as

$$
\begin{equation*}
\zeta_{q}^{(h)}(s)=\sum_{n=1}^{\infty} \frac{q^{n h}}{[n]_{q}^{s}}+(q-1) \frac{1-s+h}{1-s} \sum_{n=1}^{\infty} \frac{q^{n h}}{[n]_{q}^{s-1}} \tag{1.1}
\end{equation*}
$$

for any $s, h \in \mathbb{C}(c f .[3,4])$. This function can be considered on the spectral zeta function of the quantum group $\mathrm{SU}_{\mathcal{q}}(2)$ (cf. [2, 4]). Also, the q-zeta function $\zeta_{q}^{(h)}(s)$ was studied at negative integers (see [4]). In this note, we lead to a useful new integral representation for the q-zeta function $\zeta_{q}^{(h)}(s)$. Finally, we define the extension of q-Hurwitz zeta function, and study its properties.
2. q-zeta functions. For $q \in \mathbb{C}$ with $|q|<1$, we define q-Bernoulli polynomials as follows:

$$
\begin{align*}
F_{q}^{(h)}(t, x) & =\sum_{n=0}^{\infty} \frac{\beta_{n, q}^{(h)}(x)}{n!} t^{n} \\
& =e^{(1 /(1-q)) t} \sum_{j=0}^{\infty} \frac{j+h}{[j+h]_{q}}(-1)^{j} q^{j x}\left(\frac{1}{1-q}\right)^{j} \frac{t^{j}}{j!} \tag{2.1}\\
& =-t \sum_{l=0}^{\infty} q^{l(h+1)+x} e^{[l+x] q} t+(1-q) h \sum_{l=0}^{\infty} q^{l h} e^{[l+x]]_{q} t}
\end{align*}
$$

for $h \in \mathbb{Z}, x \in \mathbb{C}(c f .[2,4])$. In the case $x=0, \beta_{n, q}^{(h)}\left(=\beta_{n, q}^{(h)}(0)\right)$ will be called the q-Bernoulli numbers (cf. [4]). By (2.1), we easily see that

$$
\begin{align*}
\beta_{n, q}^{(h)}(x) & =\sum_{j=0}^{m}\binom{m}{j}[x]_{q}^{n-j} q^{j x} \beta_{j, q}^{(h)} \tag{2.2}\\
& =\left(\frac{1}{1-q}\right)^{n} \sum_{j=0}^{n}\binom{n}{j}(-1)^{j} \frac{j+h}{[j+h]_{q}} q^{j x} \quad(\text { cf. [2]), }
\end{align*}
$$

where $\binom{n}{j}$ is a binomial coefficient.
Thus we note that

$$
\begin{equation*}
q^{h}\left(q \beta^{(h)}+1\right)^{n}-\beta_{n, q}^{(h)}=\delta_{1, n}, \tag{2.3}
\end{equation*}
$$

where we use the usual convention about replacing $\left(\beta^{(h)}\right)^{n}$ by $\beta_{n, q}^{(h)}$ and $\delta_{1, n}$ is the Kronecker symbol.

EXAMPLE 2.1.

$$
\begin{equation*}
\beta_{0}^{(2)}=\frac{2}{[2]}, \quad \beta_{1}^{(2)}=-\frac{2 q+1}{[2][3]}, \quad \beta_{2}^{(2)}=\frac{2 q^{2}}{[3][4]}, \quad \beta_{3}^{(2)}=-\frac{q^{2}(q-1)\left(2[3]_{q}+q\right)}{[3][4][5]}, \quad \ldots \tag{2.4}
\end{equation*}
$$

Let $F_{q}^{(h)}(t)=\sum_{n=0}^{\infty}\left(\beta_{n, q}^{(h)} / n!\right) t^{n}$. Then we easily see that

$$
\begin{align*}
F_{q}^{(h)}(x, t) & =e^{[x]_{q} t} F_{q}^{(h)}\left(q^{x} t\right) \\
& =-t \sum_{l=0}^{\infty} q^{l(h+1)+x} e^{[l+x]]_{q} t}+(1-q) h \sum_{l=0}^{\infty} q^{l h} e^{[l+x]_{q} t} . \tag{2.5}
\end{align*}
$$

By (2.1) and (2.5), we note that

$$
\begin{equation*}
e^{-t} F_{q}^{(h)}(-q t)=q t \sum_{l=0}^{\infty} q^{l(h+1)} e^{-[l+1] q t}+(1-q) h \sum_{l=0}^{\infty} q^{l h} e^{-[l+1] q t} . \tag{2.6}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
\frac{1}{\Gamma(s)} \int_{0}^{\infty} q^{h} t^{s-2} e^{-t} F_{q}^{(h)}(-q t) d t=\sum_{n=1}^{\infty} \frac{q^{n h}}{[n]_{q}^{s}}+(q-1) \frac{h+1-s}{1-s} \sum_{n=1}^{\infty} \frac{q^{n h}}{[n]_{q}^{s-1}} . \tag{2.7}
\end{equation*}
$$

For $h, s \in \mathbb{C}$, we define the q-zeta function as follows:

$$
\begin{equation*}
\zeta_{q}^{(h)}(s)=\sum_{n=1}^{\infty} \frac{q^{n h}}{[n]_{q}^{s}}+(q-1) \frac{1-s+h}{1-s} \sum_{n=1}^{\infty} \frac{q^{n h}}{[n]^{s-1}} \quad(\text { cf. }[1,4]) . \tag{2.8}
\end{equation*}
$$

Note that $\zeta_{q}^{(h)}(s)$ is a meromorphic function for $\operatorname{Re}(s)>1$.
Let $\Gamma(s)$ be the gamma function and let \mathbb{Z} be the set of integers. By (2.3), (2.7), and (2.8), we obtain the following.

For $h, n(>1) \in \mathbb{Z}$, we have

$$
\begin{equation*}
\zeta_{q}^{(h)}(1-n)=-\frac{q^{h}\left(q \beta^{(h)}+1\right)^{n}}{n}=-\frac{\beta_{n, q}^{(h)}}{n} . \tag{2.9}
\end{equation*}
$$

Let x be any nonzero positive real number. Then we define the q-analogue of Hurwitz zeta function as follows:

$$
\begin{equation*}
\zeta_{q}^{(h)}(s, x)=\sum_{n=0}^{\infty} \frac{q^{n h}}{[n+x]_{q}^{s}}+\frac{h+1-s}{1-s}(q-1) \sum_{n=0}^{\infty} \frac{q^{n h}}{[n+x]_{q}^{s-1}} \tag{2.10}
\end{equation*}
$$

for $s, h \in \mathbb{C}$. By (2.5) and (2.10), we easily see that

$$
\begin{equation*}
\zeta_{q}^{(h)}(s, x)=\frac{1}{\Gamma(s)} \int_{0}^{\infty} t^{s-2} F_{q}^{(h)}(x,-t) d t . \tag{2.11}
\end{equation*}
$$

Thus we obtain the following: for $n \in \mathbb{N}, h \in \mathbb{Z}$, we have

$$
\begin{equation*}
\zeta_{q}^{(h)}(1-n)=-\frac{\beta_{n, q}^{(h)}(x)}{n} \tag{2.12}
\end{equation*}
$$

because

$$
\begin{equation*}
\zeta_{q}^{(h)}(s, x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \beta_{n, q}^{(h)}(x) \frac{1}{\Gamma(s)} \int_{0}^{\infty} t^{s+n-2} d t \tag{2.13}
\end{equation*}
$$

Acknowledgments. This research was supported by Kyungpook National University Research Team Fund, 2003. This paper was dedicated to Chung-Seo Park.

References

[1] T. Kim, On Euler-Barnes multiple zeta functions, Russian J. Math. Phys. 10 (2003), no. 3, 261-267.
[2] __ Analytic continuation of multiple q-zeta functions and their values at negative integers, Russ. J. Math. Phys. 11 (2004), no. 1, 71-76.
[3] __, q-Riemann zeta function, Int. J. Math. Math. Sci. 2004 (2004), no. 9-12, 599-605.
[4] T. Kim and S. H. Rim, Generalized Carlitz's q-Bernoulli numbers in the p-adic number field, Adv. Stud. Contemp. Math. (Pusan) 2 (2000), 9-19.
T. Kim: Institute of Science Education, Kongju National University, Kongju 314-701, Korea

E-mail address: tkim@kongju.ac.kr
L. C. Jang: Department of Mathematics and Computer Science, Konkuk University, Choongju 380-701, Korea

E-mail address: 1eechae.jang@kku.ac.kr
S. H. Rim: Department of Mathematics Education, Kyungpook National University, Daegu 702701, Korea

E-mail address: shrim@knu.ac.kr

