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1. Introduction. Although the theory of linear difference equations over base fields

is well understood, the theory over arbitrary ground rings and modules is still under

development. It is becoming more interesting and is gaining increasingly special impor-

tance mainly because of recent applications in coding theory and cryptography (e.g.,

[10, 15]).

In a series of papers, Taft et al. (e.g., [17, 22, 24]) developed a coalgebraic aspect

for the study of linearly recursive sequences over fields. Moreover, Grünenfelder et al.

studied in [8, 9] the linearly recursive sequences over finite-dimensional vector spaces.

Linearly recursive (bi)sequences over arbitrary rings and modules were studied inten-

sively by Nechaev et al. (e.g., [16, 20, 21]); however, the coalgebraic approach in their

work was limited to the field case. Generalization to the case of arbitrary commuta-

tive ground rings was studied by several authors including Kurakin [12, 13, 14] and

eventually Abuhlail, Gómez-Torrecillas, and Wisbauer [4].

In this paper, we develop a coalgebraic aspect for the study of solutions of linear

difference equations over arbitrary rings and modules. For some of our results, we

assume that the ground ring is Artinian. Besides the new results, this paper extends

results in [4] and “Kapitel 4” of my doctoral thesis [2]. A standard reference for the

theory of linearly recursive sequences over rings and modules is the comprehensive

work of Mikhalev et al. [16]. For the theory of Hopf algebras, the reader may refer to

any of the classical references (e.g., [1, 19, 23]).

By R we denote a commutative ring with 1R ≠ 0R and with U(R) = {r ∈ R | r is

invertible} the group of units of R. The category of R-(bi)modules will be denoted by

�R . For an R-module M , we call an R-submodule K ⊂M pure (in the sense of Cohn) if

for every R-module N, the induced map ιk⊗ idN :K⊗RN →M⊗RN is injective.

For an R-algebra A and an A-module M , we call an A-submodule K ⊂ M R-cofinite

if M/K is finitely generated in �R . For an R-algebra A, we denote by �A the class of

R-cofinite ideals. If A is an R-algebra with �A a filter, then we define for every left
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A-module M the finite dual right A-module

M◦ := {f ∈M∗ | Ke(f )⊃ IM
for some A-ideal I with A/I finitely generated over R

}
.

(1.1)

By N (resp., Z) we denote the set of natural numbers (resp., the ring of integers). More-

over, we set N0 := {0,1,2,3, . . .}. For an n×n matrix M over R, we denote the charac-

teristic polynomial by χ(M). The identity matrix of order n over R is denoted by En.

For an m×n matrix A and a k× l matrix B, the Kronecker product (tensor product ) of

A and B is the mk×nl matrix

A⊗B :=


a11 ·B a12 ·B ··· ··· a1n ·B
a21 ·B a22 ·B ··· ··· a2n ·B

...
...

...
...

...

am1 ·B am2 ·B ··· ··· amn ·B

 . (1.2)

2. Preliminaries. Let M be an R-module and

M[x] :=M[x1, . . . ,xk
]
, M

[
x,x−1] :=M[x1,x−1

1 , . . . ,xk,x−1
k
]
. (2.1)

We consider the polynomial ring R[x] and the ring of Laurent polynomials R[x,x−1] as

commutative R-algebras with the usual multiplication and the usual unity. For every R-

module M , M[x] (resp., M[x,x−1]) is an R[x]-module (resp., an R[x,x−1]-module) with

action induced from the R-module structure on M and we have, moreover, canonical

R-module isomorphisms

M[x]�M⊗R R[x]�M(Nk0), M
[
x,x−1]�M⊗R R[x,x−1]�M(Zk). (2.2)

For n = (n1, . . . ,nk) ∈ Nk0 (resp., z = (z1, . . . ,zk) ∈ Zk), we set xn := xn1
1 , . . . ,xnkk (resp.,

xz := xz1
1 , . . . ,x

zk
k ).

2.1. Let M be an R-module, l = (l1, . . . , lk) ∈ Nk0, and consider the system of linear

difference equations (SLDE)

xn+(l1,0,...,0)+
l1∑
i=1

p(1,l1−i)(n)xn+(l1−i,0,...,0) = g1(n),

xn+(0,l2,0,...,0)+
l2∑
i=1

p(2,l2−i)(n)xn+(0,l2−i,0,...,0) = g2(n),

...

xn+(0,...,0,lk)+
lk∑
i=1

p(k,lk−i)(n)xn+(0,...,0,lk−i) = gk(n),

(2.3)

where the pjl’s are R-valued functions and the gj ’s are M-valued functions defined for

all n ∈ Nk0. If the gj ’s are identically zero, then (2.3) is said to be a homogenous SLDE.

If the pjl’s are constants, then (2.3) is said to be an SLDE with constant coefficients.
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2.2. For an R-module M and k≥ 1, let

�〈k〉M := {u :Nk0 �→M
}�MNk0 (2.4)

be the R-module of k-sequences over M . If M (resp., k) is not mentioned, then we mean

that M = R (resp., k= 1). For f(x)=∑iaixi ∈ R[x] and w ∈�〈k〉M , define

f(x) ⇀w =u∈�〈k〉M , u(n) :=
∑

i

aiw(n+ i) ∀n∈Nk0. (2.5)

With this action, �〈k〉M is an R[x]-module. For subsets I ⊂ R[x] and L ⊂ �〈k〉M , consider

the annihilator submodules

An
�
〈k〉
M
(I)= {w ∈�〈k〉M | f ⇀w = 0 for every f ∈ I},

AnR[x](L)=
{
h∈ R[x] | h⇀u= 0 for every u∈ L}. (2.6)

Note that An〈k〉�M (I)⊂�〈k〉M is an R[x]-submodule and AnR[x](L) � R[x] is an ideal.

2.3. A polynomial f(x) ∈ R[x] is called monic if its leading coefficient is 1R . For

every monic polynomial f(x) = xl+al−1xl−1+···+a1x+a0 ∈ R[x], the companion

matrix of f is defined to be the l×l matrix

Sf :=



0R 0R ··· 0R −a0

1R 0R ··· 0R −a1

0R 1R ··· 0R −a2

...
...

...
...

...

0R 0R ··· 1R −al−1


. (2.7)

In fact Sf is a matrix that has f(x) as its characteristic polynomial as well as its mini-

mum polynomial (see [11, Theorem 4.18]).

Definition 2.1. An ideal I � R[x] will be called monic, if it contains a nonempty

subset of monic polynomials{
fj
(
xj
)= xljj +a(j)lj−1x

lj−1

j +···+a(j)1 xj+a(j)0 | j = 1, . . . ,k
}
. (2.8)

In this case, the polynomials (2.8) are called elementary polynomials and (f1(x1), . . . ,
fk(xk)) � R[x] an elementary ideal. A monic polynomial q(x) ∈ R[x] is called re-

versible if q(0) ∈ U(R). An ideal I � R[x,x−1] will be called reversible if it contains a

subset of reversible polynomials {q1(x1), . . . ,qk(xk)}.
2.4. Let M be an R-module. We call u∈ �〈k〉M a linearly recursive k-sequence (resp., a

linearly birecursive k-sequence) if AnR[x](u) is a monic ideal (resp., a reversible ideal).

Note that a k-sequence u ∈ �〈k〉M is linearly recursive if and only if it is a solution of a

homogenous SLDE with constant coefficients of the form (2.3). If AnR[x](u) contains a

set of monic polynomials {f1(x1), . . . ,fk(xk)}, where fj(xj) is of order mj , j = 1, . . . ,k,

then these are called elementary characteristic polynomials of u, and u is said to have

order m := (m1, . . . ,mk). Characteristic polynomials of u of least degree nj , j = 1, . . . ,k,
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are called minimal polynomials of u and n := (n1, . . . ,nk) is called the rank of u. The

subsets �〈k〉
M ⊆�〈k〉M of linearly recursive k-sequences and �〈k〉

M ⊆�〈k〉M of linearly birecur-

sive k-sequences are obviously R[x]-submodules.

2.5. The lexicographical linear order (�) onNk0 is defined as follows: for i = (i1, . . . , ik)
and n= (n1, . . . ,nk)∈Nk0, we say i � n if the first number in the sequence of integers

(
n1+···+nk

)−(i1+···+ik), n1−i1, . . . ,nk−ik (2.9)

that is different from zero is positive (see [18, page 170]).

LetM be anR-module, F := {f1(x1), . . . ,fk(xk)} ⊂ R[x] a subset of monic polynomials

with deg(fj(xj))= lj for j = 1, . . . ,k, l := (l1, . . . , lk), 1 := (1, . . . ,1), and IF := (f1, . . . ,fk) �
R[x]. Note that the natural order “≤” on N0 induces on Nk0 a partial order and we

define the polyhedron ΠF = Π(l) := {i ∈ Nk0 | i ≤ l−1}. The initial polyhedron of values

of ω ∈ �〈k〉M is defined as ω(ΠF) := {ω(i) | i ∈ ΠF}. For l = l1, . . . , lk, the points of the

polyhedron ΠF build a chain 0= i0 � i1 � ··· � il−1 and we can writeω(ΠF) as an initial

vector of values (ω(0),ω(i1), . . . ,ω(il−1))∈Ml.

Let ω ∈ An
�
〈k〉
M
(f1(x1), . . . ,fk(xk)), where fj(xj) is monic for j = 1, . . . ,n and write,

for every n= (n1, . . . ,nk)∈Nk0,

x
nj
j = hj

(
xj
)
fj
(
xj
)+rj(xj), deg

(
rj
(
xj
))
< lj. (2.10)

If we set

g(n)(x) :=
k∏
j=1

rj
(
xj
)= ∑

i∈ΠF

a(n)i xi, v := xn ⇀ω= g(n)(x) ⇀ω, (2.11)

then

ω(n)= v(0)=
∑

i∈ΠF

a(n)i ω(i) for every n∈Nk0. (2.12)

Consequently, ω is completely determined by the initial polyhedron of values ω(ΠF).
For t∈ΠF, define the sequence eF

t ∈An
�
〈k〉
R
(IF) with initial polyhedron of values eF

t (i)=
δi,t for all i ∈ΠF. The sequence eF

l−1 is called the impulse sequence of An
�
〈k〉
R
(IF).

3. Examples. We now give some examples of linearly recursive sequences. For more

examples, the reader may refer to [16].

Example 3.1 (geometric progression). Let M be an R-module, m ∈ M , r ∈ R, and

consider w ∈�M given by

w(n) := rnm for every n∈N0. (3.1)

Thenw ∈�M with initial conditionw(0)=m and elementary characteristic polynomial

f(x)= x−r . Moreover, AnR[x](w)= R[x](x−r)+R[x]AnR(r).
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Example 3.2 (arithmetic progression). Let M be an R-module, {p,q} ⊂M , and con-

sider w ∈�M given by

w(n) := p+nq for every n∈N0. (3.2)

Then w ∈ �M with initial vector (p,p+q) and elementary characteristic polynomial

f(x) = (x − 1)2. If AnR(q) = 0, then f(x) is a unique minimal polynomial of w. If

r ∈AnR(q), then fr (x)= (x−1)2+r(x−1) is another minimal polynomial of w.

Remark 3.3. An example of a nonrecursive sequence over Z is the sequence of prime

positive numbers {2,3,5,7, . . .}.
Example 3.4. Let E = {f1(x), . . . ,fk(x)} ⊂ R[x] be a subset of monic polynomials.

(1) Let M be an R-module, ui ∈ An�M (fi) for i = 1, . . . ,k, and consider u := u1
·+

··· ·+uk ∈ �〈k〉M defined by u(n) = u1(n1)+···+uk(nk). Then u ∈ An
�
〈k〉
M
(g1(x1), . . . ,

gk(xk)), where for i= 1, . . . ,k,

gi
(
xi
)=
fi
(
xi
)
, fi

(
1R
)= 0R,

fi
(
xi
)(
xi−1R

)
, otherwise.

(3.3)

(2) Let M1, . . . ,Mk be R-modules, ui ∈ An�Mi
(fi) for i = 1, . . . ,k, M := M1⊕···⊕Mk,

and consider u∈�〈k〉M defined by u(n) := (u1(n1), . . . ,uk(nk)). Then u∈An
�
〈k〉
M
(g1(x1),

. . . ,gk(xk)), where the gi’s are defined as in (3.3).

(3) Let ui ∈ An�R (fi) for i = 1, . . . ,k and consider u ∈ �〈k〉R defined by u(n) :=
u1(n1), . . . ,uk(nk). Then u∈An

�
〈k〉
R
(f1(x1), . . . ,fk(xk)) and

An
�
〈k〉
R

(
f1
(
x1
)
, . . . ,fk

(
xk
))�An�R

(
f1
)⊗R ···⊗RAn�R

(
fk
)
. (3.4)

(4) Let M1, . . . ,Mk be R-modules, ui ∈An�Mi
(fi) for i= 1, . . . ,k, M :=M1⊗R ···⊗RMk,

and consideru∈�〈k〉M defined byu(n) :=u1(n1)⊗···⊗uk(nk). Thenu∈An
�
〈k〉
M
(f1(x1),

. . . ,fk(xk)) and

An
�
〈k〉
M

(
f1
(
x1
)
, . . . ,fk

(
xk
))�An�M1

(
f1
)⊗R ···⊗RAn�Mk

(
fk
)
. (3.5)

4. Admissible R-bialgebras and Hopf R-algebras. For every R-coalgebra (C,∆C,εC),
there is a dual R-algebra C∗ :=HomR(C,R) with the so-called convolution product mul-

tiplication

(f∗g)(c) :=
∑
f
(
c1
)
g
(
c2
) ∀f ,g ∈ C∗, c ∈ C, (4.1)

and unity εC . Although every algebra A has a dual coalgebra, if the ground ring is

hereditary Noetherian (e.g., a field), the existence of dual coalgebras of algebras over an

arbitrary commutative ground ring is not guaranteed! One way to handle this problem

is to restrict the class of R-algebras for which the dual R-coalgebras are defined.
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Definition 4.1. Let A be an R-algebra (resp., an R-bialgebra, a Hopf R-algebra).

Then A is called

(1) anα-algebra (resp., anα-bialgebra, a Hopf α-algebra) if �A is a filter andA◦ ⊂ RA
is pure;

(2) cofinitary if �A is a filter and, for every I ∈�A, there exists an A-ideal Ī ⊆ I with

A/Ī finitely generated and projective.

4.1. LetH be an R-bialgebra and consider the class of R-cofiniteH-ideals �H . We call

H an admissible R-bialgebra if H is cofinitary and �H satisfies the following axioms:

(A1) for all I,J ∈�H , there exists L∈�H , such that ∆H(L)⊆ Im(I⊗RH)+ Im(H⊗R J),
(A2) there exists I ∈�H , such that Ke

(
εH
)⊃ I.

We call a Hopf R-algebra H an admissible Hopf R-algebra if H is cofinitary and �H

satisfies (A1), (A2), and

(A3) for every I ∈�H , there exists J ∈�H , such that SH(J)⊆ I.
Remark 4.2. It follows from the proof of [3, Proposition 4.2.] that every cofinitary

R-algebra (resp., R-bialgebra, Hopf R-algebra) is an α-algebra (resp., an α-bialgebra, a

Hopf α-algebra). By [2, Lemma 2.5.6.], every cofinitary bialgebra (Hopf algebra) over a

Noetherian ground ring is admissible.

Proposition 4.3 (see [2, Propositions 2.4.13 and 2.5.7]). (1) If A is a cofinitary R-

algebra, thenA◦ is an R-coalgebra. IfH is an admissible R-bialgebra (resp., an admissible

Hopf R-algebra), then H◦ is an R-bialgebra (resp., a Hopf R-algebra).

(2) Let R be Noetherian. If A is an α-algebra (resp., an α-bialgebra, a Hopf α-algebra),

then A◦ is an R-coalgebra (resp., an R-bialgebra, a Hopf R-algebra).

Proposition 4.4. Let A be an α-algebra (resp., an α -bialgebra, a Hopf α-algebra),

B a cofinitary R-algebra (resp., R-bialgebra, Hopf R-algebra), and consider the canonical

map σ :A◦⊗R B◦ → (A⊗R B)◦. Then

(1) σ is injective,

(2) if R is Noetherian, then σ is an isomorphism of R-coalgebras (resp., R-bialgebras,

Hopf R-algebras).

Proof. (1) The proof is along the lines of the proof of [14, Proposition 5].

(2) The proof is along the lines of the proof of [3, Theorem 4.10].

The proof of [3, Lemma 4.12] can be generalized to prove the following lemma.

Lemma 4.5. For any set of reversible polynomials {q1(x1), . . . ,qk(xk)} ⊆ R[x], there

is an isomorphism of R-algebras

R[x]/
(
q1
(
x1
)
, . . . ,qk

(
xk
))� R[x,x−1]/(q1(x1

)
, . . . ,qk

(
xk
))
. (4.2)

Lemma 4.6 (see [14, Proposition 1]). Let R be an arbitrary commutative ring.

(1) An ideal I � R[x] is R-cofinite if and only if it is monic. Consequently, every R-

cofinite R[x]-ideal contains an ideal Ī � R[x] such that R[x]/Ī is free of finite rank. In

particular, R[x] is cofinitary.
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(2) An ideal I � R[x,x−1] is R-cofinite if and only if it is reversible. Consequently, every

R-cofinite R[x,x−1]-ideal contains an ideal Ī � R[x,x−1] such that R[x,x−1]/Ī is free of

finite rank. In particular, R[x,x−1] is cofinitary.

5. Linearly (bi)recursive sequences. In this section, we study the linearly (bi)recur-

sive k-sequences over R-modules, where R is an arbitrary commutative ground ring.

5.1. Let (G,µG,eG) be a (commutative) monoid. Considering the elements of the basis

G as group-like elements, the monoid algebra RG becomes a (commutative) cocommu-

tative R-bialgebra (RG,µ,η,∆g,εg), where

∆g(x)= x⊗x, εg(x)= 1R for every x ∈G. (5.1)

If G is a group, then RG is a Hopf R-algebra with antipode

Sg : RG �→ RG, x � �→ x−1 for every x ∈G. (5.2)

5.2. Bialgebra structures on R[x]. Consider the commutative monoid G generated

by {xj | j = 1, . . . ,k}. ThenR[x]= RG has the structure of a commutative cocommutative

R-bialgebra R[x;g] = (R[x],µ,η,∆g,εg), where µ is the usual multiplication, η is the

usual unity, and for all n≥ 0, j = 1, . . . ,k,

∆g : R[x] �→ R[x]⊗R R[x], xnj � �→ xnj ⊗xnj ,
εg : R[x] �→ R, xnj � �→ 1R.

(5.3)

On the other hand, R[x;p] = (R[x],µ,η,∆p,εp) is a commutative cocommutative Hopf

R-algebra, where µ is the usual multiplication, η is the usual unity, and for all n ≥ 0,

j = 1, . . . ,k,

∆p : R[x] �→ R[x]⊗R R[x], xnj � �→
n∑
t=0

(
n
t

)
xtj⊗xn−tj ,

εp : R[x] �→ R, xnj � �→ δn,0,
Sp : R[x] �→ R[x], xnj � �→ (−1)nxnj .

(5.4)

Remarks 5.1. (1) Let R be an integral domain, then it follows by [7, Theorem 1.3.6]

that for every set G, the class of group-like elements of the R-coalgebra RG is G itself.

Then one can show, as in the field case [6], that R[x;g] and R[x;p] are the only possible

R-bialgebra structures on R[x] with the usual multiplication and the usual unity.

(2) The R-bialgebra R[x;g] has no antipode because the group-like elements in a Hopf

R-algebra should be invertible.

The proof of the following result depends mainly on the arguments of [14, Theorem 2].

Proposition 5.2. Let R be an arbitrary commutative ring. Then R[x;g] is an ad-

missible R-bialgebra and R[x;p] is an admissible Hopf R-algebra. Hence, R[x;g]◦ is an

R-bialgebra and R[x;p]◦ is a Hopf R-algebra.
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Proof. Denote by (R[x],∆,ε) either of the cofinitaryR-bialgebrasR[x;g] andR[x;p].
Let I,J � R[x] be R-cofinite ideals and assume without loss of generality that R[x]/I
and R[x]/J are free of finite rank (see Lemma 4.6). Let β be a basis of the free R-module

B := R[x]/I⊗R R[x]/J and consider the R-algebra morphism ∆̄ := (πI⊗πJ)◦∆ : R[x]→
R[x]/I⊗R R[x]/J. For j = 1, . . . ,k, let Mj be the matrix of the R-linear map

Tj : B �→ B, b � �→ ∆̄(xj)b, (5.5)

with respect to β, and χj(λ) its characteristic polynomial. Then χj(∆̄(xj)) = 0 for j =
1, . . . ,k. Since ∆̄ is an R-algebra morphism, it follows that χj(xj) ∈ Ke(∆̄) = ∆−1(I⊗R
R[x]+R[x]⊗R J) for j = 1, . . . ,k. If we set L := (χ1(x1), . . . ,χk(xk)) � R[x], then ∆(L)⊆
I ⊗R R[x]+R[x]⊗R J, that is, �R[x] satisfies axiom (A1). Note that R[x]/Ke(ε) � R,

hence �R[x] satisfies axiom (A2). Consequently, R[x;g] and R[x;p] are admissible R-

bialgebras. Consider now the Hopf R-algebra R[x;p] with the bijective antipode Sp .

For every ideal I � R[x], S−1
p (I) � R[x;p] is an ideal and we have an isomorphism

of R-modules R[x]/S−1
p (I) � R[x]/I, hence �R[x;p] satisfies axiom (A3). Consequently,

R[x;p] is an admissible Hopf R-algebra. The last statement follows now by Proposition

4.3.

If M is an arbitrary R-module, then we have obviously an isomorphism of R[x]-
modules

ΦM :M[x]∗ �→�〈k〉M∗ , � � �→ [n � �→ [m � �→ �(mxn
)]]
, (5.6)

with inverse u� [mxn �u(n)(m)].

Proposition 5.3. LetM be an R-module. Then (5.6) induces an isomorphism of R[x]-
modules

M[x]◦ ��〈k〉
M∗ . (5.7)

Proof. Consider the R[x]-module isomorphism M[x]∗
ΦM� �〈k〉M∗ , see (5.6). Let � ∈

M[x]◦. Then there exists an R-cofinite R[x]-ideal I such that I ⇀ �= 0. So I ⇀ ΦM(�)=
ΦM(I ⇀ �)= 0, that is, I ⊂AnR[x](ΦM(�)). By Lemma 4.6(1), I is monic, that is, ΦM(�)∈
�〈k〉
M∗ .

On the other hand, let u ∈�〈k〉
M∗ . By definition, J := AnR[x](u) is a monic ideal and it

follows by Lemma 4.6(1) that J � R[x] is R-cofinite. For � := Φ−1
M (u), we have J ⇀ � =

J ⇀ Φ−1
M (u)= Φ−1

M (J ⇀u)= 0, that is, �∈M[x]◦.
5.3. The coalgebra structure on �〈k〉. By Lemma 4.6(1), (R[x],µ,η) is a cofinitary R-

algebra, where µ is the usual multiplication and η is the usual unity. Hence, (R[x]◦,µ◦,
η◦) is (by Proposition 4.3) an R-coalgebra, where

µ◦ : R[x]◦ �→ R[x]◦⊗R R[x]◦, f � �→ [xsi ⊗xtj � �→ f (xsi xtj), s,t ≥ 0, i,j = 1, . . . ,k
]
,

η◦ : R[x]◦ �→ R, f � �→ f (1R).
(5.8)
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So �〈k〉 � R[x]◦ has the structure of an R-coalgebra with counity

ε�〈k〉 : �〈k〉 �→ R, u � �→u(0), (5.9)

and comultiplication described as follows (see [16, Proposition 14.16]).

Let u ∈ �〈k〉, {f1(x1), . . . ,fk(xk)} ⊆ AnR[x](u) a subset of elementary characteristic

polynomials with deg(fj(xj))= lj , and l := (l1, . . . , lk). So we have for all n, i ∈Nk0,

u(n+ i)= (xi ⇀u
)
(n)=

 ∑
t≤l−1

(
xi ⇀u

)
(t)·eF

t

(n)= ∑
t≤l−1

(
xt ⇀u

)
(i)·eF

t (n). (5.10)

The comultiplication of �〈k〉 is given then by

∆�〈k〉 : �〈k〉 �→�〈k〉⊗R�〈k〉, u � �→
∑

t≤l−1

(
xt ⇀u

)⊗eF
t . (5.11)

Example 5.4. Consider the Fibonacci sequence � = (0,1,1,2,3,5, . . .). Clearly, � is

given by

�(0)= 0, �(1)= 1, �(n+2)=�(n+1)+�(n) ∀n≥ 0, (5.12)

that is, �∈�Z with initial vector (0,1) and elementary characteristic polynomial f(x)=
x2−x−1∈ Z[x]. By (5.11), one can easily calculate

∆�Z(�)=�⊗Z (x ⇀�)+(x ⇀�)⊗Z�−�⊗Z�. (5.13)

5.4. The R-bialgebra (�〈k〉
R ;g). Consider the R-bialgebra R[x;g]. Then �〈k〉 � RNk0 �

R[x;g]∗ is an R-algebra with multiplication given by the Hadamard product

∗g : �〈k〉 ⊗R�〈k〉 �→�〈k〉, u⊗v � �→ [n � �→u(n)v(n)], (5.14)

and the unity

ηg : R �→�〈k〉, 1R � �→
[
n � �→ 1R

]
for every n∈Nk0. (5.15)

By Propositions 5.2 and 5.3, (�〈k〉
R ;g)� R[x;g]◦ has the structure of an R-bialgebra with

the coalgebra structure described in Section 5.3, the Hadamard product (5.14), and the

unity (5.15).

5.5. The Hopf R-algebra (�〈k〉
R ;p). Consider the Hopf R-algebra R[x;p]. Then �〈k〉 �

RN
k
0 � R[x;p]∗ is an R-algebra with multiplication given by the Hurwitz product

∗p : �〈k〉 ⊗R�〈k〉 �→�〈k〉, u⊗v � �→
[

n � �→
∑
t≤n

(
n

t

)
u(t)v(n−t)

]
, (5.16)

and the unity

ηp : R �→�〈k〉, 1R � �→
[
n � �→ δn,0

]
for every n∈Nk0. (5.17)
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By Propositions 5.2 and 5.3, (�〈k〉
R ;p) � R[x;p]◦ has the structure of a Hopf R-algebra

with the coalgebra structure described in Section 5.3, the Hurwitz product (5.16), the

unity (5.17), and the antipode

S�〈k〉 : �〈k〉 �→�〈k〉, u � �→ [i � �→ (−1)iu(i)
]
. (5.18)

Proposition 5.5 (see [14, Theorem 3]). Let u and v be linearly recursive sequences

over R of ordersm,n and with characteristic polynomials f(x), g(x), respectively. Then

(1) u∗gv is a linearly recursive sequence over R of order m ·n and characteristic

polynomial χ(Sf ⊗Sg);
(2) u∗pv is a linearly recursive sequence over R of order m ·n and characteristic

polynomial χ(Sf ⊗En+Em⊗Sg).
Example 5.6. Let R be any ring and let {xn}∞n=0, {yn}∞n=0 ∈ �R be solutions of the

difference equations

xn+3−xn+2+xn−1−xn = 0; x0 = 0, x1 = 1, x2 = 2;

yn+2−yn+1+yn = 0; y0 = 1, y1 = 0.
(5.19)

Then {xn}∞n=0 is a linearly recursive sequence over R with characteristic polynomial

f(x)= x3−x2+x−1 and {yn}∞n=0 is a linearly recursive sequence over R with charac-

teristic polynomial g(x)= x2−x+1.

Notice that

Sf ⊗Sg =

0 0 1

1 0 −1

0 1 1

⊗
[

0 −1

1 1

]

=



0 0 0 0 0 −1

0 0 0 0 1 1

0 −1 0 0 0 1

1 1 0 0 −1 −1

0 0 0 −1 0 −1

0 0 1 1 1 1


.

(5.20)

Hence, {zn}∞n=0 := {xn}∞n=0 ∗g {yn}∞n=0 is by Proposition 5.5 a linearly recursive se-

quence over R with characteristic polynomial

χ
(
Sf ⊗Sg

)= x6−x5+x3−x+1, (5.21)

that is, {zn}∞n=0 is a solution of the difference equation

zn+6−zn+5+zn+3−zn+1+zn = 0 with initial vector (0,0,−2,−1,0,1). (5.22)

Table 5.1 gives the first 11 terms of the sequence {zn}∞n=0.
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Table 5.1

n 0 1 2 3 4 5 6 7 8 9 10

xn 0 1 2 1 0 1 2 1 0 1 2

yn 1 0 −1 −1 0 1 1 0 −1 −1 0

zn 0 0 −2 −1 0 1 2 0 0 −1 0

Example 5.7. Consider the sequences {xn}∞n=0 and {yn}∞n=0 of Example 5.6. Then

Sf ⊗E2+E3⊗Sg =



0 −1 0 0 1 0

1 1 0 0 0 1

1 0 0 −1 −1 0

0 1 1 1 0 −1

0 0 1 0 1 −1

0 0 0 1 1 2


. (5.23)

By Proposition 5.5, {zn}∞n=0 = {xn}∞n=0∗p{yn}∞n=0 := {∑nj=0

(
n
j

)
xj ·yn−j}∞n=0 is a linearly

recursive sequence over R with characteristic polynomial

χ
(
Sf ⊗E2+E3⊗Sg

)= x6−5x5+14x4−25x3+28x2−15x+3. (5.24)

Hence, {zn}∞n=0 is a solution of the difference equation

zn+6−5zn+5+14zn+4−25zn+3+28zn+2−15zn+1+3zn = 0 (5.25)

with initial vector (0,1,2,−2,−16,−29).
Table 5.2 gives the first 9 terms of the sequence {zn}∞n=0.

Table 5.2

n 0 1 2 3 4 5 6 7 8

xn 0 1 2 1 0 1 2 1 0

yn 1 0 −1 −1 0 1 1 0 −1

zn 0 1 2 −2 −16 −29 −12 29 0

5.6. Cofree comodules. Let C be an R-coalgebra. A right C-comodule (M,�M) is

called cofree if there exists an R-module K such that (M,�M) � (K⊗R C,idK ⊗∆C) as

right C-comodules. Note that if K � R(Λ), a free R-module, thenM � R(Λ)⊗RC � C(Λ) as

right C-comodules (this is one reason for the terminology cofree).

As a direct consequence of Lemma 4.6, we get the following corollary.

Corollary 5.8. Let M be an R[x]-module. Then there are isomorphisms of R[x]◦-
comodules

�〈k〉
M∗ �M[x]◦ �M∗⊗R R[x]◦ �M∗⊗R�〈k〉

R . (5.26)

In particular, M[x]◦ (�〈k〉
M∗ ) is a cofree R[x]◦-comodule (�〈k〉

R -comodule).
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6. Linearly (bi)recursive bisequences. In this section, we consider the linearly (bi)re-

cursive k-bisequences and the reversible k-sequences over R-modules, where R is an ar-

bitrary commutative ground ring. We generalize the results of [16, 17] concerning the

bialgebra structure of the linearly recursive sequences over a base field to the case of

arbitrary Artinian ground rings.

6.1. Let M be an R-module, l = (l1, . . . , lk) ∈ Nk0, and consider the system of linear

bidifference equations (SLBE):

xz+(l1,0,...,0)+
l1∑
i=1

p(1,l1−i)(z)xz+(l1−i,0,...,0) = g1(z),

xz+(0,l2,0,...,0)+
l2∑
i=1

p(2,l2−i)(z)xz+(0,l2−i,0,...,0) = g2(z),

...

xz+(0,...,0,lk)+
lk∑
i=1

p(k,lk−i)(z)xz+(0,...,0,lk−i) = gk(z),

(6.1)

where the pjl’s are R-valued functions and the gj ’s are M-valued functions defined for

all z∈ Z〈k〉. If the gj ’s are identically zero, then (6.1) is said to be a homogenous SLBE.

If the pjl’s are constants, then (6.1) is said to be an SLBE with constant coefficients.

6.2. Bisequences. For an R-module M and k≥ 0, let

�̃〈k〉M := {ν̃ : Zk �→M}�MZk (6.2)

be the R-module of k-bisequences over M . If M (resp., k) is not mentioned, then we

mean M = R (resp., k= 1). For w̃ ∈ �̃〈k〉M and f(x)=∑iaixi ∈ R[x,x−1], define

f(x) ⇀ w̃ = ν̃ ∈ �̃〈k〉M , where ν̃(z) :=
∑

i

aiw̃(z+ i) ∀z∈ Zk. (6.3)

With this action, �̃〈k〉M becomes an R[x,x−1]-module. For subsets I ⊂ R[x,x−1] and Y ⊂
�̃〈k〉M , consider

An
�̃
〈k〉
M
(I)=

{
w̃ ∈ �̃〈k〉M | g ⇀ w̃ = 0 for every g ∈ I

}
,

AnR[x,x−1](Y)=
{
h∈ R[x,x−1] | h⇀ ν̃ = 0 for every ν̃ ∈ Y}. (6.4)

Obviously, An
�̃
〈k〉
M
(I) ⊂ �̃〈k〉M is an R[x,x−1]-submodule and AnR[x,x−1](Y) � R[x,x−1] is

an ideal.

Definition 6.1. Let M be an R-module. We call w̃ ∈ �̃〈k〉M a linearly recursive k-

bisequence (resp., a linearly birecursive k-bisequence) if AnR[x](w̃) is a monic ideal (resp.,

a reversible ideal). Note that a k-bisequence ũ ∈ �̃〈k〉M is linearly recursive if and only

if it is a solution of a homogenous SLBE with constant coefficients of the form (6.1).

The subsets �̃〈k〉
M ⊆ �̃〈k〉M of linearly recursive k-bisequences and �̃〈k〉

M ⊆ �̃〈k〉M of linearly

birecursive k-bisequences over M are obviously R[x,x−1]-submodules.
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7. Reversible sequences over modules

7.1. Let M be an R-module. A k-bisequence ũ is said to be a reverse of u ∈ �〈k〉M if

ũ|Nk0 = u and AnR[x](ũ) = AnR[x](u). A linearly recursive k-sequence u will be called

reversible if u has a reverse ũ∈ �̃〈k〉
M . With �〈k〉

M ⊂�〈k〉
M , we denote the R[x]-submodule

of reversible k-sequences over M .

Lemma 7.1 (cf. [16, Proposition 14.11]). Let R be Artinian.

(1) Every monic ideal I � R[x] contains a subset of monic polynomials{
x
dj
j qj

(
xj
) | qj(xj) is reversible for j = 1, . . . ,k

}
. (7.1)

(2) LetM be anR-module. Then every linearly recursive k-bisequence overM is linearly

birecursive (i.e., �̃〈k〉
M = �̃〈k〉

M ).

Proof. (1) By [5, Theorem 8.7] every commutative Artinian ring is (up to isomor-

phism) a direct sum of local Artinian rings. Without loss of generality, let R be a local

Artinian ring. The Jacobson radical of R,

J(R)= {r ∈ R | r is not invertible in R}, (7.2)

is nilpotent, hence there exists a positive integer n such that J(R)n = 0. Let I be a

monic ideal with a subset of monic polynomials {g1(x1), . . . ,gk(xk)} ⊂ I. If gj(xj) ≡
fj(xj)(modJ(R)[xj]) for j = 1, . . . ,k, then gj(xj)|fj(xj)n, where n is the index of

nilpotency of the ideal J(R). Hence, fj(xj)n ∈ I. If we write fj(xj)n = xdjj qj(xj) with

(xj,qj(xj)) = 1, then qj(0) ∈ U(R), that is, qj(xj) is a reversible polynomial for j =
1, . . . ,k.

(2) Let ũ be a linearly recursive k-bisequence over M . If R is Artinian, then by (1)

AnR[x](ũ) contains a subset of monic polynomials {xdjj qj(xj) | qj(xj) is reversible for

j = 1, . . . ,k}. Then for every z∈ Zk, we have (qj(xj) ⇀ ũ)(z1, . . . ,zj, . . . ,zk)= (xdjj qj(xj)
⇀ ũ)(z1, . . . ,zj − dj, . . . ,zk) = 0. Hence, {qj(xj) | i = 1, . . . ,k} ⊂ AnR[x](ũ), that is,

AnR[x](ũ) is a reversible ideal.

7.2. Backsolving. LetM be an R-module. Let u be a linearly recursive sequence over

M and assume that AnR[x](u) contains some monic polynomial of the form xdq(x)=
xd(a0+a1x+···+al−1xl−1+xl), a0 ∈U(R). Then

a0u(j+d)+a1u(j+d+1)+···+al−1u(j+d+l−1)+u(j+d+l)= 0 ∀j ≥ 0 (7.3)

and we get by backsolving a unique linearly birecursive bisequence ũ ∈ An�̃M
(q(x))

with ũ(n) = u(n) for all n ≥ d. In case l = 0, The bisequence ũ ≡ 0 and is given for

l≠ 0 by

ũ(z) :=
u(z), z ≥ d,
−a−1

0

(
a1ũ(z+1)+···+al−1ũ(z+l−1)+ũ(z+l)), z < d.

(7.4)

If there are two bisequences ṽ,w̃ ∈An�̃M
(q(x))with ṽ(n)=u(n)= w̃(n) for alln≥ d,

then one can easily show by backsolving using q(x) that ṽ = w̃. Moreover, we claim that
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AnR[x](ũ) = AnR[x](u). It is obvious that AnR[x](ũ) ⊆ AnR[x](u). On the other hand,

assume that g(x)=∑mj=0bjxj ∈AnR[x](u). We prove by induction that (g ⇀ ũ)(z)= 0

for all z ∈ Z. First of all, note that for all z ≥ d, we have (g ⇀ ũ)(z) = (g ⇀ u)(z) = 0.

Now, let z0 < d and assume that (g ⇀ ũ)(z) = 0 for z ∈ {z0,z0+1, . . . ,z0+ l−1} ⊆ Z.

Then we have, for z = z0−1,

(
g ⇀ ũ

)(
z0−1

)= m∑
j=0

bjũ
(
j+z0−1

)

=
m∑
j=0

bj

 l∑
i=1

−a−1
0 aiũ

(
j+z0−1+i)


=−

l∑
i=1

a−1
0 ai

m∑
j=0

bjũ
(
j+z0−1+i)

=−
l∑
i=1

a−1
0 ai

(
g ⇀ ũ

)(
z0−1+i)= 0.

(7.5)

If u is a linearly recursive k-sequence over M with k > 1 and AnR[x](u) contains a

set of monic polynomials {xdjj qj(xj) | qj is reversible for j = 1, . . . ,k}, then we get by

backsolving through qj(xj) along the jth row for j = 1, . . . ,k a unique linearly birecur-

sive k-bisequence ũ ∈ An
�̃
〈k〉
M
(q1(x1), . . . ,qk(xk)) with ũ(n) = u(n) for all n ≥ d and it

follows moreover that AnR[x](ũ)=AnR[x](u).

Lemma 7.2. Let M be an R-module.

(1) Every birecursive k-sequence over M is reversible with unique reverse (which we

denote by Rev(u)). Moreover, �〈k〉
M becomes a structure of an R[x,x−1]-module through

f ⇀u := (f ⇀ Rev(u))|Nk0 .

(2) If R is Artinian, then every reversible k-sequence over M is birecursive as well (i.e.,

�〈k〉
M =�〈k〉

M ).

Proof. (1) If u ∈ �〈k〉
M , then AnR[x](u) contains a set of reversible polynomials

{qj(xj) | j = 1, . . . ,k} and we get by backsolving (see Section 7.2) a unique linearly bire-

cursive k-bisequence ũ ∈ An
�̃
〈k〉
M
(q1(x1), . . . ,qk(xk)) with ũ(n) = u(n) for all n ∈ Nk0.

For the bisequence ũ, we have as shown above AnR[x](ũ) = AnR[x](u), that is, ũ is a

reverse of u. The last statement is obvious.

(2) By (1), �〈k〉
M ⊆�〈k〉

M . If R is Artinian and u∈�〈k〉
M with reverse ũ, then AnR[x](u)=

AnR[x](ũ) is, by Lemma 7.1(2), reversible, that is, u∈�〈k〉
M .

Example 7.3. The Fibonacci sequence �= (0,1,1,2,3,5, . . .) has elementary charac-

teristic polynomial f(x) = x2−x−1. Since f(0) = −1 is invertible in Z, we conclude

that � is reversible with reverse

Rev(�)(z)=
�(z), z ≥ 0,

Rev(�)(z+2)−Rev(�)(z+1), z < 0.
(7.6)

Table 7.1 lists some of the terms of the bisequence Rev(�)∈An�̃Z
(x2−x−1).
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Table 7.1

z −4 −3 −2 −1 0 1 2 3 4

Rev(�)(z) −3 2 −1 1 0 1 1 2 3

Lemma 7.4. There is an isomorphism of R[x,x−1]-modules

�̃〈k〉
M ��〈k〉

M . (7.7)

Proof. By Lemma 7.2, we have the well-defined R[x,x−1]-linear map

Rev(−) : �〈k〉
M �→ �̃〈k〉

M , u � �→ Rev(u), (7.8)

where Rev(u) is the linearly birecursive sequence defined in (7.4).

It is easy to see that Rev(−) is bijective with inverse ũ� ũ|Nk0 .

7.3. Let M be an R-module. We call a k-sequence u ∈ �〈k〉M periodic (resp., degen-

erating) if xd(xt ⇀ u) = 0 for some d ∈ Nk0 and t ∈ Nk (resp., xd ⇀ u = 0 for some

d ∈Nk0). It is clear that the subsets �〈k〉
M ⊆�〈k〉

M of periodic k-sequences and �〈k〉
M ⊆�〈k〉

M

of degenerating k-sequences are R[x]-submodules.

Remark 7.5 (see [16, Proposition 5.2]). IfM is a finite R-module, then every linearly

recursive sequence over M is periodic (i.e., �〈1〉
M =�〈1〉

M ).

Proposition 7.6 (see [16, Proposition 5.27]). Let R be an arbitrary commutative

ring, M an R-module, and denote by ��〈k〉
M the set of reversible periodic k-sequences

over M . Then there is an isomorphism of R[x]-modules

�〈k〉
M ��〈k〉

M ⊕��〈k〉
M . (7.9)

The following result generalizes Proposition 7.6 and describes the R[x]-module

structure of arbitrary linearly recursive k-sequences of R-modules, where R is an Ar-

tinian commutative ground ring.

Proposition 7.7. LetM be anR-module. IfR is Artinian, then there are isomorphisms

of R[x]-modules

�〈k〉
M ��〈k〉

M ⊕�̃〈k〉
M =�〈k〉

M ⊕�̃〈k〉
M ��〈k〉

M ⊕�〈k〉
M =�〈k〉

M ⊕�〈k〉
M . (7.10)

Proof. If u is a linearly recursive sequence over M , then AnR[x](u) contains, by

Lemma 7.1(1), a set of monic polynomials {xdjqj(xj) | qj(xj) is reversible for j =
1, . . . ,k}. By backsolving (see Section 7.2), we have a well-defined morphism of R[x]-
modules

γ : �〈k〉
M �→ �̃〈k〉

M , u � �→ ũ, (7.11)

where ũ is the unique linearly birecursive bisequence ũ∈An�̃M
(q1, . . . ,qk) with ũ(n)=

u(n) for all n≥ d. It is clear that Ke(γ)=�〈k〉
M . On the other hand, there is a morphism
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of R[x]-modules

β= �̃〈k〉
M �→�〈k〉

M , w̃ � �→ w̃|
Nk0
. (7.12)

It is obvious that γ ◦β= id
�̃
〈k〉
M

, hence the exact sequence

0 �→�〈k〉
M �→�〈k〉

M
γ
���������������������������������→ �̃〈k〉

M �→ 0, (7.13)

of R[x]-modules splits, that is, �〈k〉
M ��〈k〉

M ⊕�̃〈k〉
M . Since R is Artinian, we have by Lem-

mata 7.1(2) and 7.2(2) �̃〈k〉
M = �̃〈k〉

M and �〈k〉
M =�〈k〉

M . We are done now by the isomorphism

of R[x]-modules �〈k〉
M � �̃〈k〉

M (Lemma 7.4).

7.4. The Hopf R-algebra R[x,x−1]. Consider the commutative group G generated by

{xj | j = 1, . . . ,k}. Then the ring of Laurent polynomials R[x,x−1]= RG has the struc-

ture of a commutative cocommutative Hopf R-algebra (R[x,x−1],µ,η,∆,ε,S), where µ
(resp., η) is the usual multiplication (resp., the usual unity) and for all z ∈ Z, j = 1, . . . ,k,

∆ : R
[
x,x−1] �→ R[x,x−1]⊗R R[x,x−1], xzj � �→ xzj ⊗xzj ,

ε : R
[
x,x−1] �→ R, xzj � �→ 1R,

S : R
[
x,x−1] �→ R[x,x−1], xzj � �→ x−zj .

(7.14)

Proposition 7.8. Let R be an arbitrary commutative ring. Then R[x,x−1] is an ad-

missible Hopf R-algebra and R[x,x−1]◦ is a Hopf R-algebra.

Proof. Notice that R[x,x−1] is a cofinitary Hopf R-algebra by Lemma 4.6(2). Con-

sider the proof of Proposition 5.2 and replace R[x] with R[x,x−1]. Then the map

Tj : B �→ B, b � �→∆(xj)b (7.15)

is invertible with inverse

Tj : B �→ B, b � �→ ∆̄(x−1
j
)
b. (7.16)

Then the matrix Mj of Tj is invertible and χj(0)∈ U(R) for j = 1, . . . ,k. Consequently,

�R[x,x−1] satisfies axiom (A1). Since R[x,x−1]/Ke(ε) � R, �R[x,x−1] satisfies axiom (A2).

Consider the bijective antipode S of R[x,x−1]. For every ideal I � R[x,x−1], S−1(I) �
R[x,x−1] is an ideal and we have an isomorphism of R-modules R[x,x−1]/S−1(I) �
R[x,x−1]/I. Hence, �R[x,x−1] satisfies axiom (A3). Consequently, R[x,x−1] is an admis-

sible Hopf R-algebra. The last statement follows now by Proposition 4.3.

For every R-module M , we have an isomorphism of R[x,x−1]-modules

ΨM :M
[
x,x−1]∗ �→ �̃〈k〉M∗ , ϕ̃ � �→ [z � �→ [m � �→ ϕ̃(mxz

)]]
(7.17)

with inverse ũ� [mxz � ũ(z)(m)].
As in the proof of Proposition 5.3, we get the following proposition.
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Proposition 7.9. Let R be an arbitrary ring andM an R-module. Then (7.17) induces

an isomorphism of R[x,x−1]-modules

M
[
x,x−1]◦ � �̃〈k〉

M∗ . (7.18)

Proof. Consider the isomorphism of R[x,x−1]-modules M[x,x−1]∗
ΨM� �̃〈k〉M∗ , see

(7.17). Let �∈M[x,x−1]◦. Then I ⇀ �= 0 for someR-cofiniteR[x,x−1]-ideal I � R[x,x−1]
and so I ⇀ ΨM(�) = ΨM(I ⇀ �) = 0. By Lemma 4.6(2), I is a reversible ideal and so

AnR[x](u)⊃ I∩R[x] is a reversible ideal, that is, ΨM(�) is linearly birecursive.

On the other hand, let ũ ∈ �̃〈k〉
M∗ . Then AnR[x](ũ) is, by definition, a reversible ideal,

that is, it contains a subset of reversible polynomials {qj(xj), j = 1, . . . ,k}. Note that for

arbitrary g ∈ R[x,x−1], we have gqj ⇀ Ψ−1
M (ũ)= Ψ−1

M (gqj ⇀ ũ)= Ψ−1
M (g ⇀ (qj ⇀ ũ))=

0 for j = 1, . . . ,k. By Lemma 4.6(2), the reversible ideal (q1(x1), . . . ,qk(xk)) � R[x,x−1]
is R-cofinite, that is, Ψ−1

M (ũ)∈M[x,x−1]◦.

7.5. The Hopf R-algebra structures on �̃〈k〉 and �〈k〉. Let R be an arbitrary ring and

consider the Hopf R-algebra R[x,x−1]. Then �̃〈k〉 � RZk � R[x,x−1]∗ is an R-algebra

with the Hadamard product

∗ : �̃〈k〉 ⊗R �̃〈k〉 �→ �̃〈k〉, ũ⊗ ṽ � �→ [z � �→ ũ(z)ṽ(z)], (7.19)

and the unity

η : R �→ �̃〈k〉, 1R � �→
[
z � �→ 1R

]
for every z∈ Zk. (7.20)

By Proposition 7.8,R[x,x−1]◦ is a HopfR-algebra. So �〈k〉 � R[x,x−1]◦ inherits the struc-

ture of a HopfR-algebra (�〈k〉,∗g,ηg,∆�〈k〉 ,ε�〈k〉 ,S�〈k〉), where∗g is the Hadamard prod-

uct (5.14), ηg is the unity (5.15), and

∆�〈k〉 : �〈k〉 �→�〈k〉 ⊗R�〈k〉, u � �→
∑

t≤l−1

(
xt ⇀u

)⊗eF
t ,

ε�〈k〉 : �〈k〉 �→ R, u � �→u(0),
S�〈k〉 : �〈k〉 �→�〈k〉, u � �→ [n � �→ Rev(u)(−n)

]
.

(7.21)

Moreover, �̃〈k〉 � R[x,x−1]◦ becomes a Hopf R-algebra (�̃〈k〉, ∗g , ηg , ∆�̃〈k〉 , ε�̃〈k〉 , S�̃〈k〉),
where ∗ is the Hadamard product (7.19), η is the unity (7.20), and

∆�̃〈k〉 : �̃〈k〉 �→ �̃〈k〉 ⊗R �̃〈k〉, ũ � �→
∑

t≤l−1

Rev
(

xt ⇀ ũ|
Nk0

)
⊗Rev

(
eF

t

)
,

ε�̃〈k〉 : �̃〈k〉 �→ R, ũ � �→ ũ(0),
S�̃〈k〉 : �̃〈k〉 �→ �̃〈k〉, ũ � �→ [z � �→ ũ(−z)

]
.

(7.22)

Note that with these structures the isomorphism �〈k〉 � �̃〈k〉 of Lemma 7.4 turns to be

an isomorphism of Hopf R-algebras.

The following theorem extends the corresponding result from the case of a base field

[17, page 124] (see also [16, Proposition 14.15]) to the case of arbitrary Artinian ground

rings.
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Theorem 7.10. If R is Artinian, then there are isomorphisms of R-bialgebras

�〈k〉 ��〈k〉 ⊕�̃〈k〉 =�〈k〉 ⊕�̃〈k〉 ��〈k〉 ⊕�〈k〉 =�〈k〉⊕�〈k〉. (7.23)

Proof. Consider the isomorphism �〈k〉 � �〈k〉 ⊕ �̃〈k〉, see (7.10). With the help of

Lemmata 4.5 and 7.1, one can show, as in [17, page 123], that γ : �〈k〉 → �̃〈k〉, see (7.11),

and β : �̃〈k〉 → �〈k〉, see (7.12), are in fact bialgebra morphisms. Obviously, Ke(γ) =
�〈k〉 ⊂�〈k〉 is an �〈k〉-subbialgebra and we are done.

As an analog to Corollary 5.8, we get the following corollary.

Corollary 7.11. Let M be an R[x,x−1]-module. Then there are isomorphisms of

R[x,x−1]◦-comodules

�̃〈k〉
M∗ �M

[
x,x−1]◦ �M∗⊗R R

[
x,x−1]◦ �M∗⊗R �̃〈k〉

R . (7.24)

In particular, M[x,x−1]◦ (�̃〈k〉
M∗ ) is a cofree R[x,x−1]◦-comodule (�̃〈k〉

R -comodule).

As a consequence of [2, Theorem 2.4.7] and [2, Corollaray 2.5.10], we get the following

corollary.

Corollary 7.12. Let R be Noetherian and consider the R-bialgebra R[x;g]◦ (resp.,

the Hopf R-algebra R[x;p]◦, the Hopf R-algebra R[x,x−1]◦). If A is an α-algebra (resp.,

an α-bialgebra, a Hopf α-algebra), then there are isomorphisms of R-coalgebras (resp.,

R-bialgebras, Hopf R-algebras)

A[x;g]◦ �A◦⊗R R[x;g]◦, A[x;p]◦ �A◦⊗R R[x;p]◦,

A
[
x,x−1]◦ �A◦⊗R R[x,x−1]◦. (7.25)

7.6. Representative functions. Let G be a monoid (a group) and consider the R-

algebra B = RG with pointwise multiplication. Then B is an RG-bimodule under the left

and right actions

(yf)(x)= f(xy), (fy)(x)= f(yx) ∀x,y ∈G. (7.26)

We call f ∈ RG an R-valued representative function on the monoid G if (RG)f(RG) is

finitely generated as an R-module. If R is Noetherian, then the subset �(G) ⊂ RG of

all representative functions on G is an RG-subbimodule. Moreover, we deduce from [4,

Theorem 2.13 and Corollary 2.15] that in case (RG)◦ ⊂ RG is pure, we have an isomor-

phism of R-bialgebras (Hopf R-algebras) �(G)� (RG)◦.
Corollary 7.13. Let R be Noetherian.

(1) Considering the monoid (Nk0,+), there are isomorphisms of R-bialgebras

�
(
Nk0
)� R[x;p]◦ ��〈k〉

R . (7.27)
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(2) Considering the group (Zk,+), there are isomorphisms of Hopf R-algebras

�
(
Zk
)� R[x,x−1]◦ � �̃〈k〉

R ��〈k〉
R . (7.28)
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