
IJMMS 2004:50, 2695–2704
PII. S0161171204303145

http://ijmms.hindawi.com
© Hindawi Publishing Corp.
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Let 0 < p ≤ q ≤ +∞. Let T be a bounded sublinear operator from a Banach space X into
an Lp(Ω,µ) and let ∇T be the set of all linear operators ≤ T . In the present paper, we
will show the following. Let C be a positive constant. For all u in ∇T , Cpq(u) ≤ C (i.e., u

admits a factorization of the form X ũ
�����������������→ Lq(Ω,µ)

Mgu�������������������������������������������������������������������������������������→ Lp(Ω,µ), where ũ is a bounded linear
operator with ‖ũ‖ ≤ C , Mgu is the bounded operator of multiplication by gu which is in
BL+r (Ω,µ) (1/p = 1/q+1/r ), u =Mgu ◦ ũ and Cpq(u) is the constant of q-convexity of u) if
and only if T admits the same factorization; this is under the supposition that {gu}u∈∇T is
latticially bounded. Without this condition this equivalence is not true in general.

2000 Mathematics Subject Classification: 46B42, 46B40, 47B65.

1. Introduction. The origin of this kind of factorization comes first from the work

of Grothendieck [4] where he established that for each linear operator from an L∞(S,λ)
into an L1(Ω,µ) admits a factorization of the form

L∞(S,λ)
ũ
��������������������������������������������→ L2(Ω,µ)

Mgu���������������������������������������������������������������������������������������������������������→ L1(Ω,µ), (1.1)

where ũ is a bounded linear operator and Mgu is the bounded linear operator of mul-

tiplication by a function gu which is in L2(Ω,µ).
In the same circle of ideas Nikishin has proved in [12] that, any bounded linear opera-

tor from a Banach spaceX into L0(Ω,µ) ((Ω,µ) probability space) admits a factorization

of the form

X ũ
��������������������������������������������→ Lp(Ω,µ) Mgu���������������������������������������������������������������������������������������������������������→ L0(Ω,µ), (1.2)

where ũ is a bounded linear operator, Mgu is the bounded linear operator of multipli-

cation by a measurable function gu and 0<p < 1.

This type of factorization through Lp was amplified and generalized by Kwapien [6].

For more informations, we refer to Pisier’s book [14, Chapter 2].

In his thesis [8], Maurey gave some necessary and sufficient conditions so that every

linear operator u :X → Lp(Ω,µ) ((Ω,µ) any measure space) factors through Lq(Ω,µ) of

the form

X ũ
��������������������������������������������→ Lq(Ω,µ) Mgu���������������������������������������������������������������������������������������������������������→ Lp(Ω,µ), (1.3)

where ũ is a bounded linear operator, Mgu is the bounded linear operator of multi-

plication by a function gu in Lr (Ω,µ) and p, q, r are such that 0 < p ≤ q ≤ ∞ with

1/p = 1/r +1/q.
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Mezrag has suppressed in [10] the metric approximation hypothesis in Maurey’s the-

orems and improved them in [11].

In [15], Pisier proved a more general result and gave some necessary and sufficient

conditions so that every bounded linear operator u : X → Lr (Ω,µ) ((Ω,µ) an arbitrary

measure space) factors through Lp∞(Ω,ν), 0< r < p <∞, of the form

X ũ
��������������������������������������������→ Lp∞(Ω,ν) M

�����������������������������������������������������→ Lr (Ω,µ), (1.4)

where ũ is a bounded linear operator,M is the bounded linear operator of multiplication

by a function g1/r in Lr (Ω,µ) and ν = g ·µ.

He also treated the dual problem (i.e., factorization of linear operators from Ls(S,λ)
into a Banach space Y by Lq1(S,ν), for 1≤ q < s <∞). This work was generalized in [1]

to sublinear operators.

In this paper, we give the generalization of Maurey’s theorem of factorization to sub-

linear operators which is a simple application of [8, Theorem 2] (also, by another method

Defant in [3] has generalized this type of factorization to homogeneous operators) and

we study the following equivalence which is our main result.

Let 0<p ≤ q ≤∞. Let T :X → Lp(Ω,µ) be a bounded sublinear operator.∀u∈∇T , u
factors through Lq(Ω,µ)� T factors through Lq(Ω,µ) where ∇T = {linear operators

u :X → Lp(Ω,µ) such that u≤ T}.
In Section 2, we give some preliminaries on the (quasi-)Banach lattices and sublinear

operators. We also give some relations between linear and sublinear operators.

In Section 3, we give our main result. We establish necessary and sufficient condition

under which the above equivalence has a positive answer. In other words, we show that,

ifu is a q-convex linear operator for allu in∇T and Cpq(u) (the constant of q-convexity

of u) are uniformly bounded then the equivalence as mentioned in the abstract holds

under the assumption that the {gu} for u in ∇T is latticially bounded. Without this

condition the equivalence fails.

2. Sublinear operators. In this section, we give some elementary definitions and fun-

damental properties on the (quasi-)Banach lattice. The reader is referred to the mono-

graphs [7, 9, 16] as general references for (quasi-)Banach lattices. We also study the

class of sublinear operators by giving briefly some relation between linear and sublin-

ear operators. We refer the reader to Pallu de la Barrière [13] for more information on

sublinear operators as well as [1, 2].

A real vector space X that is partially ordered by a partial order denoted by ≤ is

called an order vector space if

x ≤y �⇒ x+z ≤y+z, for every z ∈X;

x ≥ 0 �⇒αx ≥ 0, for every α≥ 0 in R.
(2.1)

We denote by X+ = {x ∈X : x ≥ 0}. An element x of X is positive if x ∈X+. A subset

A of X is called order bounded (or simply bounded) if there exists an element y in

X such that x ≤ y for all x ∈ A and y is then called an upper bound for A or the

supremum of A. If A is order bounded then z is called the least upper bound of A if z
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is an upper bound for A and z ≤y for every upper bound of A. An order vector space

in which each pair of elements has least upper bound is called a vector lattice. The least

upper bound of a set with two elements x, y is denoted by

x∨y or sup{x,y}. (2.2)

By a complete vector lattice we mean an order space for which every non-empty order

bounded subset has a least upper bound.

Recall that a quasi-norm on a real vector space X is a function x → ‖x‖ from X to

R+ which satisfies

(i) ‖x‖> 0 for all x ≠ 0;

(ii) ‖tx‖ = |t|‖x‖ for all t ∈R and x ∈X;

(iii) ∃CX ≥ 1 : ‖x+y‖ ≤ CX(‖x‖+‖y‖) for all x,y ∈X,

CX is called the modulus of concavity of ‖·‖.
We also recall that a real quasi-Banach space is a complete metrizable real vector

space whose topology is given by a quasi-norm. If in addition X is a vector lattice and

‖x‖ ≤ ‖y‖whenever |x| ≤ |y| (|x| = sup{x,y})we say thatX is a quasi-Banach lattice.

Note that this implies that for any x ∈ X the elements x and |x| have the same norm.

For more details see [16].

If (iii) is substituted by (iii)′ ‖x+y‖p ≤ ‖x‖p+‖y‖p , for all x,y ∈ X and for some

fixed p ∈]0,1], then ‖·‖ is called a p-norm on X. Note that 1-norm is the usual norm.

A quasi-Banach space is isomorphic to a Banach space if and only if it is locally convex.

Every p-norm is a quasi-norm with C = 21/p−1. Also for every quasi-Banach space X
there is a number 0<p < 1 and an equivalent p-norm satisfying

‖x+y‖p ≤ ‖x‖p+‖y‖p, (2.3)

for all x,y ∈X.

If ‖|·|‖ denotes the original quasi-norm onX with the constantC in the quasi-triangle

inequality, then the p-norm (C = 21/p−1) can be defined as follows:

‖x‖ = inf

{( n∑
i=1

∥∥∣∣xi∣∣∥∥p
)1/p

:n> 0, x =
n∑
i=1

xi

}
. (2.4)

This assertation is due to Aoki and Rolewicz [5].

Definition 2.1. A mapping T from a Banach space X into a (quasi-)Banach lattice

Y is said to be sublinear if for all x, y in X and λ in R+, there exist

(i) T(λx)= λT(x) (i.e., positively homogeneous),

(ii) T(x+y)≤ T(x)+T(y) (i.e., subadditive).

Note that the sum of two sublinear operators is a sublinear operator and the multi-

plication by a positive number is also a sublinear operator.

Let us denote

SL(X,Y)= {sublinear mappings T :X �→ Y} (2.5)
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and equip it with the natural order induced by Y

T1 ≤ T2 ⇐⇒ T1(x)≤ T2(x), ∀x ∈X, (2.6)

∇T = {u∈ L(X,Y) :u≤ T (i.e.,∀x ∈X, u(x)≤ T(x))}. (2.7)

The set ∇T is not empty by Proposition 2.3 below. As a consequence,

u≤ T ⇐⇒−T(−x)≤u(x)≤ T(x), ∀x ∈X, (2.8)

λT(x)≤ T(λx), ∀λ∈R. (2.9)

Now, we will give the following well-known fact and we leave the details to the reader.

Let T be a sublinear operator from a Banach space X into a (quasi-)Banach lattice Y . T
is continuous if and only if

∃C > 0 :∀x ∈X, ∥∥T(x)∥∥≤ C‖x‖. (2.10)

In this case, we also say that T is bounded and we put

‖T‖ = sup
{∥∥T(x)∥∥ : ‖x‖BX = 1

}
. (2.11)

We denote

SB(X,Y)= {bounded sublinear operators T :X �→ Y} (2.12)

and

B(X,Y)= {bounded linear operators u :X �→ Y}. (2.13)

We will need the following remark.

Remark 2.2. Let X be an arbitrary Banach space. Let Y , Z be (quasi-)Banach lattices.

(i) Consider T in SL(X,Y) and u in L(Y ,Z). Assume that u is positive. Then, u◦T ∈
SL(X,Z).

(ii) Consider u in L(X,Y) and T in SL(Y ,Z). Then, T ◦u∈ SL(X,Z).
The following proposition will be useful in the sequel for the proof of Theorem 3.6.

Proposition 2.3. Let X be a Banach space and let Y be a complete (quasi-)Banach

lattice. Let T ∈ SL(X,Y). Then, for all x in X there is ux ∈∇T such that, T(x)=ux(x),
(i.e., the supremum is attained, T(x)= sup{u(x) :u∈∇T}).

Proof. Let x be in X. Consider vx : R·x → Y defined by vx(λx)= λT(x), for all λ
in R. We have by (2.9), vx ≤ T on R ·x. By Hahn-Banach theorem applied to sublinear

operators, see, for example, [16, page 244], there is a linear extension of vx noted ux
such that ux(λx) = vx(λx), for all λ in R and ux(y) ≤ T(y), for all y in Y and the

proof is completed.
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As an immediate consequence of Proposition 2.3, we have the following corollaries.

Corollary 2.4. In the same conditions of the above proposition, it holds that

(i) ∀x ∈X, ‖T(x)‖ ≤ supu∈∇T ‖u(x)‖ ≤ ‖T(x)‖+‖T(−x)‖;
(ii) ‖T‖ ≤ supu∈∇T ‖u‖ ≤ 2‖T‖.

Corollary 2.5. Let T : X → Y be a sublinear operator between a Banach space X
and a complete (quasi-)Banach lattice Y . Then, the following properties are equivalent:

(i) T is bounded;

(ii) ∀u∈∇T , u is bounded.

3. Our main result. Let 1 ≤ p < q ≤∞. Let X be a Banach space and let (Ω,µ) be a

measure space. Consider T in SB(X,Lp(Ω,µ)). Let C be a positive constant. Suppose

that T admits a factorization of the form

X T̃
�������������������������������������������→ Lq(Ω,µ) MgT������������������������������������������������������������������������������������������������������������→ Lp(Ω,µ), (3.1)

where T̃ is a bounded sublinear operator ‖T̃‖ ≤ C , MgT is the bounded operator of

multiplication by gT which is in BL+r (Ω,µ) (1/p = 1/q+1/r , BL+r (Ω,µ) = {g ∈ L+r (Ω,µ) :

‖g‖ ≤ 1}) and T =MgT ◦ T̃ . Our main objective in this section is to prove the converse

(i.e., to generalize Corollary 2.5 for p ≠ ∞ and Y = Lp(Ω,µ)). If the constant of q-

convexity of u, Cpq(u)≤ C for all u in ∇T (i.e., u admits a factorization of the form

X ũ
��������������������������������������������→ Lq(Ω,µ) Mgu�������������������������������������������������������������������������������������������������������������→ Lp(Ω,µ) (3.2)

with ‖ũ‖ ≤ C) then T factors through Lq(Ω,µ) as above under the supposition that

{gu}u∈∇T is latticially bounded in L+r (Ω,µ).
We start this section by recalling the definition of the q-convexity.

Definition 3.1. Let 0 < p < q ≤ ∞. Let X be a Banach space and let (Ω,µ) be a

measure space. A sublinear operator T : X → Lp(Ω,µ) is called q-convex if there is a

constant C such that, for all finite sequences {xi}1≤i≤n in X, it holds that

∥∥∥∥∥
( n∑
i=1

∣∣T(xi)∣∣q
)1/q∥∥∥∥∥

Lp

≤ C
( n∑
i=1

∥∥xi∥∥qX
)1/q

if 1≤ q <∞,
∥∥∥∥∥ sup

1≤i≤n

∣∣T(xi)∣∣
∥∥∥∥∥
Lp

≤ C sup
1≤i≤n

∥∥xi∥∥X if q =∞.
(3.3)

The smallest constant C for which the above inequality holds is denoted by Cpq(T).

Any sublinear q-convex operator is bounded and ‖T‖ ≤ Cpq(T). We now formulate

the sublinear version of the Maurey’s theorem of factorization. For the ease of the

reader and the coherence of this paper we give the proof which is a simple application

of a theorem due to Maurey [8, Theorem 2]. It was extended by Defant [3] to the case

of homogeneous operators by another method.
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Theorem 3.2. Let p,q,r ∈]0,+∞] be such that 0<p ≤ q ≤+∞ and 1/p = 1/q+1/r .

Let X be a Banach space and T be a sublinear operator from X into an Lp(Ω,µ). Let C
be a fixed constant. The following assertions are equivalent:

(i) the operator T is q-convex and Cpq(T)≤ C ;

(ii) there is a function g in B+Lr (Ω,µ) such that for all x in X, it holds that

(∫
Ω

∣∣∣∣T(x)g
∣∣∣∣qdµ

)1/q

≤ C∥∥x∥∥X ; (3.4)

(iii) there is a function g in B+Lr (Ω,µ) and a bounded sublinear operator S from X into

Lq(Ω,µ), such that ‖S‖ ≤ C and T = Tg ◦S

X
T

S

Lp(Ω,µ)

Lq(Ω,µ)
Tg

(3.5)

Proof. (i)⇒(ii). This is elementary. It suffices to take in [8, Theorem 2] the set {αi =
‖xi‖X}i∈I ∈RI , where I = {1, . . . ,n} and fi = T(xi/‖xi‖X). In fact we have

(∫
Ω

[ n∑
i=1

∣∣T(xi)∣∣q
]p/q

dµ(ω)
)1/p

=
(∫

Ω

[ n∑
i=1

∣∣∣∣∣∥∥xi∥∥XT
(
xi∥∥xi∥∥

)∣∣∣∣∣
q]p/q

dµ(ω)
)1/p

≤ C
[ n∑
i=1

∥∥xi∥∥qX
]1/q

.

(3.6)

Thus there is by [8, Theorem 2] a function g in B+Lr (Ω,µ) such that

∀i∈ I
(∫

Ω

∣∣∣∣∣T
(
xi/

∥∥xi∥∥X)
g

∣∣∣∣∣
q

dµ(ω)
)1/q

≤ C (3.7)

this implies

∀i∈ I
(∫

Ω

∣∣∣∣T(xi)g

∣∣∣∣qdµ(ω)
)1/q

≤ C∥∥xi∥∥X. (3.8)

As a consequence of the previous inequality, we have for all x in X

(∫
Ω

∣∣∣∣T(x)g
∣∣∣∣qdµ(ω)

)1/q

≤ C∥∥x∥∥X. (3.9)

(ii)⇒(iii). We define S by S(x) = T(x)/g. S is a sublinear operator and clearly we have

T = Tg ◦ S (i.e., the diagram is commutative by Remark 2.2(i)) and ‖S‖ = ‖T/g‖ ≤ C .
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(iii)⇒(i). The Hölder inequality implies, for 1/p = 1/q+1/r ,

∫
Ω

( n∑
i=1

∣∣T(xi)∣∣q
)p/q

dµ =
[∫

Ω

( n∑
i=1

∣∣g∣∣q∣∣∣∣T(xi)g

∣∣∣∣q
)p/q

dµ(ω)
]

≤
(∫

Ω

n∑
i=1

∣∣∣∣T(xi)g

∣∣∣∣qdµ(ω)
)p/q(∫

Ω

(∣∣g∣∣p)r/pdµ(ω))p/r

≤
( n∑
i=1

∫
Ω

∣∣∣∣T(xi)g

∣∣∣∣qdµ(ω)
)p/q(∫

Ω

∣∣g∣∣rdµ(ω))p/r

≤ Cp
( n∑
i=1

∥∥xi∥∥qX
)p/q

.

(3.10)

This proves that (iii)⇒(i).

Proposition 3.3. Given two sublinear operators T1, T2 from a Banach space X into

a (quasi-)Banach lattice Y . If T1 ≤ T2 (in the sense of (2.6)). Then,

(i) |T1(x)| ≤ sup{|T2(x)|,|T2(−x)|};
(ii) ‖T1(x)‖ ≤ CY (‖T2(x)‖+‖T2(−x)‖).

Proof. (i). For all x in X, we have by (2.9)

T1(x)≤ T2(x)⇐⇒−T1(x)≤ T1(−x)≤ T2(−x), (3.11)

this yields ∣∣T1(x)
∣∣≤ sup

{
T2(x),T2(−x)

}≤ sup
{∣∣T2(x)

∣∣,∣∣T2(−x)
∣∣}. (3.12)

Concerning part (ii), we have from (i)∣∣T1(x)
∣∣≤ ∣∣T2(x)

∣∣+∣∣T2(−x)
∣∣, (3.13)

hence ∥∥T1(x)
∥∥≤ ∥∥∣∣T2(x)

∣∣+∣∣T2(−x)
∣∣∥∥≤ CY (∥∥T2(x)

∥∥+∥∥T2(−x)
∥∥), (3.14)

(CY will appear if Y is a quasi-Banach lattice) and we obtain the announced result.

Proposition 3.4. Let 0 < p ≤ q ≤∞ and 1/r = 1/p−1/q. Let X be a Banach space

and T1, T2 be bounded sublinear operators from X into Lp(Ω,µ) such that T1 ≤ T2. If T2

factors through Lq(Ω,µ), then T1 factors through Lq(Ω,µ).

Proof. Assume that T2 factors through Lq(Ω,µ). From Theorem 3.2, there is a finite

positive constant Cpq such that for all finite sequences (xi)1≤i≤n in X, we have

(∫
Ω

[ n∑
i=1

∣∣T2
(
xi
)∣∣q]p/qdµ(w))1/p

≤ Cpq
[ n∑
i=1

∥∥xi∥∥qX
]1/q

. (3.15)
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By (3.13), we have for all x in X

∣∣T1(x)
∣∣≤ ∣∣T2(x)

∣∣+∣∣T2(−x)
∣∣. (3.16)

Then we clearly have

( n∑
i=1

∣∣T1
(
xi
)∣∣q)1/q

≤ Cq
( n∑
i=1

(∣∣T2
(
xi
)∣∣q)1/q+

( n∑
i=1

∣∣T2
(−xi)∣∣q

)1/q)
, (3.17)

and therefore,∥∥∥∥∥
( n∑
i=1

∣∣T1
(
xi
)∣∣q)1/q∥∥∥∥∥

p
≤ CqCp

(∥∥∥∥∥
( n∑
i=1

∣∣T2
(
xi
)∣∣q)1/q∥∥∥∥∥

p
+
∥∥∥∥∥
( n∑
i=1

∣∣T2
(−xi)∣∣q

)1/q∥∥∥∥∥
p

)
.

(3.18)

Finally, for all finite sequences (xi)1≤i≤n in X, we have

(∫
Ω

( n∑
i=1

∣∣T1
(
xi
)∣∣q)p/qdµ)1/p

≤ C1

[ n∑
i=1

∥∥xi∥∥qX
]1/q

, (3.19)

where C1 = 2Cpq(T2)CqCp is an absolute constant depending only on p and q (Cp =
CLp = 21/p−1 and Cq = CLq = 21/q−1 if p,q < 1). By Theorem 3.2, we deduce that T1

factors by Lq(Ω,µ) and this concludes the proof.

Corollary 3.5. Letp, q, r be the same as in Proposition 3.4 above. LetX be a Banach

space, (Ω,µ) be any measure space and T in SB(X,Lp(Ω,µ)). If T factors by Lq(Ω,µ),
then for all u in ∇T , u factors by Lq(Ω,µ).

Let p, q, r be such that 0 < p ≤ q ≤ ∞ and 1/p = 1/q+ 1/r . Let X be a Banach

space, (Ω,µ) be an arbitrary measure space and T :X → Lp(Ω,µ) be a bounded sublinear

operator. Assume that u factors by Lq(Ω,µ) in the sense of Theorem 3.2 for all u in

∇T . Is it true that T factors by Lq(Ω,µ)? In other words, is it true the converse of

Corollary 3.5 holds? In the next theorem, we give an answer with the supposition that

{gu}u∈∇T is latticially bounded. It is the main result of this paper.

Theorem 3.6. Let T be a sublinear operator from a Banach space X into an Lp(Ω,µ)
(which is a complete (quasi-)Banach lattice). Assume that there is a positive constant C
such that for all u in ∇T , Cpq(u) ≤ C and {gu}u∈∇T is latticially bounded in Lr (Ω,µ)
(i.e., ∃g0 ∈ L+r (Ω,µ) : ∀u ∈ ∇T , gu ≤ g0). Then, T factors through Lq(Ω,µ) (as in

Theorem 3.2).

Proof. We put T̃ (x) = T(x)/g, where g = g0/‖g0‖. Then g0 is in L+r (Ω,µ) and by

Proposition 2.3, we have

∥∥T̃ (x)∥∥= ∥∥∥∥∥T(x)g
∥∥∥∥∥=

∥∥∥∥∥ux(x)g

∥∥∥∥∥≤ ∥∥g0

∥∥∥∥∥∥∥ux(x)g0

∥∥∥∥∥≤ ∥∥g0

∥∥∥∥∥∥∥ux(x)gux

∥∥∥∥∥≤ C∥∥g0

∥∥ (3.20)

and this completes the proof.
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Remark 3.7. Without the additional condition the last theorem does not hold in

general as shown by this counterexample (communicated by Gilles Godefroy, 2002).

We take as measure space (Ω,µ) the torus T = R/2πZ, equipped with the invariant

measure dθ. Let X be the Hilbert space H = L2(Ω,µ)= L2(T).
For all r such that 0< r ≤π and for all f ∈ L2(T), we define a function 2π -periodic

Srf ≥ 0 by

∀x ∈R, Sr f (x)= 1
2r

∫ x+r
x−r

∣∣f (y)∣∣2dy. (3.21)

We put Trf =
√
Srf . For all x, the expression (Trf )(x) is the L2-norm of the function

1(x−r ,x+r)f , hence the operator Tr is sublinear and the operator T defined by Tf =
sup{Trf : 0< r <π}, is also sublinear from L2(Ω,µ) into L1(Ω,µ). Tf is the square root

of the maximal function Mf 2 (the Hardy-Littlewood maximal operator) of the function

f 2 ∈ L1, we know that Mf 2 is in weak-L1, therefore Tf is in weak-L2. Consider n in

N. We can partition T in n-intervals with the same length and we take x1, . . . ,xn in

H = L2(Ω,µ), the characteristic functions. We have ‖xi‖2 = 2π/n, for all i = 1, . . . ,n,

but every function T(xi) worth at least C/
√

1+(i−j) on the support of xi, for all

j = 1, . . . ,n with C = (4π)−1, hence it results that

∫
Ω

( n∑
i=1

∣∣T(xi)(ω)∣∣2

)1/2

dµ(ω)≥ C
√

1+ 1
2
+···+ 1

n
≥ C

√
logn (3.22)

and
∑n
i=1‖xi‖2 = 2π .

But we have, from the “little Grothendieck’s Theorem, G.T. in short” (see [14, Theorem

5.4(a)]), for all u in ∇T ,

∫
Ω

( n∑
i=1

∣∣u(xi)(ω)∣∣2

)1/2

dµ(ω)

≤
√
π
2

∥∥u∥∥( n∑
i=1

∥∥xi∥∥2

)1/2

≤ 2

√
π
2
‖T‖

( n∑
i=1

∥∥xi∥∥2

)1/2 (
by Corollary 2.4(ii)

)
.

(3.23)

In conclusion, we have Cpq(u) ≤ 2
√
π/2‖T‖ and Cpq(T) = ∞ for p = 1 and q = 2. We

deduce that for allu in∇T ,u factors through L2(Ω,µ) but T cannot factors by L2(Ω,µ).

Acknowledgment. The authors are very grateful to the referee for several valuable

suggestions and comments which improved the paper.

References

[1] D. Achour and L. Mezrag, Factorisation des opérateurs sous-linéaires par Lp∞(Ω,ν) et
Lq1(Ω,ν) [Factoring sublinear operators by Lp∞(Ω,ν) and Lq1(Ω,ν)], Ann. Sci. Math.
Québec 26 (2002), no. 2, 109–121 (French).

[2] M. T. Belaib and L. Mezrag, Sur les opérateurs sous-linéaires p-sommants, Sciences et Tech-
nologie 15 (2001), 7–11 (French).

[3] A. Defant, Variants of the Maurey-Rosenthal theorem for quasi Köthe function spaces, Pos-
itivity 5 (2001), no. 2, 153–175.



2704 L. MEZRAG AND A. TIAIBA

[4] A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques, Bol.
Soc. Mat. São Paulo 8 (1956), 1–79 (French).

[5] N. J. Kalton, N. T. Peck, and J. W. Roberts, An F -Space Sampler, London Mathematical
Society Lecture Note Series, vol. 89, Cambridge University Press, Cambridge, 1984.
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