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An example of a D-metric space is given, in which D-metric convergence does not define a
topology and in which a convergent sequence can have infinitely many limits. Certain meth-
ods for constructing D-metric spaces from a given metric space are developed and are used
in constructing (1) an example of a D-metric space in which D-metric convergence defines a
topology which is T1 but not Hausdorff, and (2) an example of a D-metric space in which D-
metric convergence defines a metrizable topology but the D-metric is not continuous even
in a single variable.
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1. Introduction. Dhage [2] introduced the notion of D-metric spaces and claimed

that D-metric convergence defines a Hausdorff topology and that the D-metric is (se-

quentially) continuous in all the three variables. Many authors (see [1, 2, 3, 4, 5, 6, 7,

8, 9, 10, 11, 12, 13, 14]) have taken these claims for granted and used them in proving

fixed point theorems in D-metric spaces.

In this paper, we give examples to show that in a D-metric space

(1) D-metric convergence does not always define a topology,

(2) even when D-metric convergence defines a topology, it need not be Hausdorff,

(3) even when D-metric convergence defines a metrizable topology, the D-metric

need not be continuous even in a single variable.

In fact, we develop certain methods for constructing D-metric spaces from a given

metric space and obtain from them, as by-products, examples illustrating the last two

assertions. We also introduce the notions of strong convergence, and very strong con-

vergence in aD-metric space and study in a decisive way the mutual implications among

the three notions of convergence, strong convergence, and very strong convergence.

Throughout this paper, R denotes the set of all real numbers, R+ the set of all non-

negative real numbers, N the set of all positive integers, and (R+)3∗ = {(t1, t2, t3) ∈
(R+)3 : t1 ≤ t2+t3, t2 ≤ t3+t1, t3 ≤ t1+t2}.

Note 1.1. If (X,d) is a metric space, then (d(x,y),d(y,z),d(z,x))∈ (R+)3∗ for all

x,y,z ∈X.

Definition 1.2 [2]. Let X be a nonempty set. A function ρ : X×X×X → [0,∞) is

called a D-metric on X if

(i) ρ(x,y,z)= 0 if and only if x =y = z (coincidence),
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(ii) ρ(x,y,z)= ρ(p(x,y,z)) for all x,y,z ∈ X and for any permutation p(x,y,z)
of x,y,z (symmetry),

(iii) ρ(x,y,z) ≤ ρ(x,y,a)+ρ(x,a,z)+ρ(a,y,z) for all x,y,z,a ∈ X (tetrahedral

inequality).

If X is a nonempty set and ρ is D-metric on X, then the ordered pair (X,ρ) is called a

D-metric space. When the D-metric ρ is understood, we say that X is a D-metric space.

Definition 1.3 [2, 8]. A sequence {xn} in a D-metric space (X,ρ) is said to be con-

vergent (or ρ-convergent) if there exists an element x of X with the following property:

given ε > 0, there exists an N ∈ N such that ρ(xm,xn,x) < ε for all m,n ≥ N. In such

a case, {xn} is said to converge to x and x is called a limit of {xn}.

Definition 1.4 [2, 8]. A sequence {xn} in a D-metric space (X,ρ) is said to be

Cauchy (or ρ-Cauchy) if, given ε > 0, there exists an N ∈N such that ρ(xm,xn,xp) < ε
for all m,n,p ≥N.

Remark 1.5. The definition of ρ-Cauchy sequence as given by Dhage [2] appears

to be slightly different from Definition 1.4, but it is actually equivalent to it. It can be

shown that in a D-metric space every convergent sequence is Cauchy.

Definition 1.6 [2, 8]. AD-metric space (X,ρ) is said to be complete (or ρ-complete)

if every ρ-Cauchy sequence in X is ρ-convergent in X.

Notation 1.7. For a subset E of a D-metric space (X,ρ), Ec denotes {x ∈ X: there

is a sequence in E which converges to x under the D-metric ρ}. For any set X, P(X)
denotes the power set of X, that is, the collection of all subsets of X.

We now give an example of a completeD-metric space in whichD-metric convergence

does not define a topology and in which there are convergent sequences with infinitely

many limits.

Example 1.8. Let X =A∪B∪{0}, where A= {1/2n :n∈N} and B = {2n :n∈N}.
Define ρ :X×X×X →R+ as follows:

(i) ρ(x,y,z)= 0 if x =y = z,

(ii) ρ(x,y,z)=min{max{x,y},max{y,z},max{z,x}} if x,y,z ∈A∪{0}, 0 does not

occur more than once among x, y , z, and at least two among x, y , z are distinct,

(iii) ρ(x,y,z)= 1 if 0 and at least one element of B occur among x, y , z, or 0 occurs

exactly twice among x, y , z,

(iv) ρ(x,y,z) = min{x,y,z} if x,y,z ∈ A∪B and exactly one element of B occurs

exactly once among x, y , z,

(v) ρ(x,y,z)=min{max{1/x,1/y},max{1/y,1/z},max{1/z,1/x}}, ifx,y,z∈A∪B
and exactly one element of A occurs exactly once among x, y , z,

(vi) ρ(x,y,z)= |1/x−1/y|+|1/y−1/z|+|1/z−1/x| if x,y,z ∈ B.

Then (X,ρ) is a completeD-metric space. But ρ-convergence does not define a topology

on X.

Proof. Clearly ρ is symmetric in all the three variables and ρ(x,y,z) = 0 if and

only if x =y = z. We note that ρ(x,y,z)≤ 1 for all x,y,z ∈X. Let x,y,z,u∈X.
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Case (i). x =y = z.

Then ρ(x,y,z)= 0≤ ρ(u,y,z)+ρ(x,u,z)+ρ(x,y,u).
Case (ii). x,y,z ∈ A∪{0}, 0 does not occur more than once among x, y , z, and at

least two among x, y , z are distinct.

We may assume that x ≥ y ≥ z. If u ∈ A∪{0}, then ρ(x,y,z) = y ≤ ρ(u,y,z)+
ρ(x,u,z)+ ρ(x,y,u), since when u > y , ρ(u,y,z) = y ; when u = y , ρ(x,y,z) =
ρ(x,u,z); and when u<y , ρ(x,y,u)=y . If u∈ B, then

ρ(x,y,z)=y =min{x,y,u} = ρ(x,y,u)
≤ ρ(u,y,z)+ρ(x,u,z)+ρ(x,y,u). (1.1)

Case (iii). 0 occurs exactly twice among x, y , z.

We may assume that x =y = 0. Then z ≠ 0. If u∈X\{0}, then

ρ(x,y,z)= ρ(0,0,z)= 1= ρ(0,0,u)= ρ(x,y,u)
≤ ρ(u,y,z)+ρ(x,u,z)+ρ(x,y,u). (1.2)

If u= 0, then

ρ(x,y,z)= ρ(0,0,z)= 1= ρ(u,y,z)
≤ ρ(u,y,z)+ρ(x,u,z)+ρ(x,y,u). (1.3)

Case (iv). 0 and at least one element of B occur among x, y , z.

We may assume that x = 0 and y ∈ B. Then

ρ(x,y,z)= ρ(0,y,z)= 1= ρ(0,y,u)= ρ(x,y,u)
≤ ρ(u,y,z)+ρ(x,u,z)+ρ(x,y,u). (1.4)

Case (v). x,y,z ∈A∪B and exactly one element of B occurs exactly once among x,

y , z.

We may assume that x ∈ B. Then y,z ∈A. We may also assume that y ≥ z. If u∈ B,

then

ρ(x,y,z)=min{x,y,z} = z = ρ(u,y,z)
≤ ρ(u,y,z)+ρ(x,u,z)+ρ(x,y,u). (1.5)

If u∈A∪{0}, then

ρ(x,y,z)=min{x,y,z} = z ≤ ρ(u,y,z)+ρ(x,u,z)+ρ(x,y,u), (1.6)

since when u < z, ρ(u,y,z) = z; when u = z, ρ(x,y,z) = ρ(x,y,u); and when u > z,

ρ(u,y,z)=min{u,y} ≥ z.

Case (vi). x,y,z ∈A∪B and exactly one element of A occurs exactly once among x,

y , z.
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We may assume that x ∈A. Then y,z ∈ B. We may also assume that y ≥ z. If u∈A,

then

ρ(x,y,z)=max
{

1
y
,
1
z

}
= 1
z
= ρ(u,y,z)

≤ ρ(u,y,z)+ρ(x,u,z)+ρ(x,y,u).
(1.7)

If u= 0, then

ρ(x,y,z)=max
{

1
y
,
1
z

}
= 1
z
≤ 1

2
< 1= ρ(u,y,z)

≤ ρ(u,y,z)+ρ(x,u,z)+ρ(x,y,u).
(1.8)

If u∈ B, then

ρ(x,y,z)=max
{

1
y
,
1
z

}
= 1
z

≤max
{

1
u
,
1
z

}
= ρ(x,u,z)

≤ ρ(u,y,z)+ρ(x,u,z)+ρ(x,y,u).

(1.9)

Case (vii). x,y,z ∈ B.

We may assume that 1/x ≥ 1/y ≥ 1/z. If u= 0, then

ρ(x,y,z)= 2
(

1
x
− 1
z

)
< 1= ρ(u,y,z)

≤ ρ(u,y,z)+ρ(x,u,z)+ρ(x,y,u).
(1.10)

If u∈A, then

ρ(x,y,z)= 2
(

1
x
− 1
z

)
≤ 1
x
+ 1
x

= ρ(x,u,z)+ρ(x,y,u)
≤ ρ(u,y,z)+ρ(x,u,z)+ρ(x,y,u).

(1.11)

If u∈ B, then

ρ(x,y,z)=
∣∣∣∣ 1
x
− 1
y

∣∣∣∣+
∣∣∣∣ 1
y
− 1
z

∣∣∣∣+
∣∣∣∣1
z
− 1
x

∣∣∣∣
≤ ρ(u,y,z)+ρ(x,u,z)+ρ(x,y,u),

(1.12)

since |1/x−1/y| ≤ ρ(x,y,u), |1/y −1/z| ≤ ρ(u,y,z), and |1/z−1/x| ≤ ρ(x,u,z).
Thus, for all x,y,z,u ∈ X, we have ρ(x,y,z) ≤ ρ(u,y,z)+ ρ(x,u,z)+ ρ(x,y,u).
Hence ρ is a D-metric on X.

To show that (X,ρ) is D-complete.

Let {xn} be a Cauchy sequence in X.
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Case 1. There exists N ∈N such that xn = xN for all n≥N.

In this case, evidently {xn} converges to xN .

Case 2. Given N ∈N, there exist i,j ∈N such that i > N, j > N, and xi ≠ xj .
Then there exists N0 ∈N such that xi ≠ 0 for each i≥N0, since ρ(0,0,x)= 1, for all

x ∈X\{0}, and {xn} is Cauchy.

Subcase (i). There exists N1 ∈N such that N1 ≥N0 and xi ∈A for all i≥N1.

Claim 1.9. xn→ 0 as n→∞ in the usual sense.

Suppose the claim does not hold. Then there exists a positive real number ε such

that xn ≥ ε for infinitely many n∈N. Given N ∈N, we can choose i,j,k∈N such that

k > j > i >max{N,N1}, xi ≥ ε, xj ≥ ε, and xk ≠ xj . Then

ρ
(
xi,xj,xk

)=min
{

max
{
xi,xj

}
,max

{
xj,xk

}
,max

{
xk,xi

}}≥ ε. (1.13)

This is a contradiction since {xn} is Cauchy. Hence the claim.

For m,n≥N1 and a∈A∪{0}, we have

ρ
(
a,xm,xn

)=min
{

max
{
a,xm

}
,max

{
xm,xn

}
,max

{
xn,a

}}
≤max

{
xm,xn

}
�→ 0 as m,n �→∞. (1.14)

Hence {xn} converges to a for any a∈A∪{0}. It can also be shown that {xn} converges

to b for any b ∈ B.

Subcase (ii). There exists N2 ∈N such that N2 ≥N0 and xi ∈ B for all i≥N2.

Claim 1.10. xn→+∞ as n→+∞.

Suppose the claim does not hold. Then there exists a positive real number M such

that xn ≤ M for infinitely many n ∈ N. Given N ∈ N, we can find i,j,k ∈ N such that

k > j > i > max{N,N2}, xi ≤ M , xj ≤ M , and xj ≠ xk. Then ρ(xi,xj,xk) ≥ |1/xj −
1/xk| ≥ 1/2xj ≥ 1/2M . This is a contradiction since {xn} is Cauchy. Hence the claim.

For m,n≥N2 and a∈A, we have

ρ
(
a,xm,xn

)=max
{

1
xm

,
1
xn

}
�→ 0 as m,n �→∞. (1.15)

Hence {xn} converges to a for any a∈A.

Subcase (iii). Given N ∈ N, there exist i,j ∈ N such that i > N, j > N, xi ∈ A, and

xj ∈ B.

Claim 1.11. Any element of A occurs only finitely many times in the sequence {xn}.
Suppose the claim does not hold. Then there exists a0 ∈ A such that a0 = xn for

infinitely manyn∈N. LetN ∈N. Then there exist i,j,k∈N such that k > j > i >N,xi =
xj = a0, and xk ∈ B. Then ρ(xi,xj,xk) = min{xi,xj,xk} = a0. This is a contradiction

since {xn} is Cauchy. Hence the claim.
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Claim 1.12. Any element of B occurs only finitely many times in the sequence {xn}.
Suppose the claim does not hold. Then there exists b ∈ B such that b = xn for in-

finitely many n ∈ N. Let N ∈ N. Then there exist i,j,k ∈ N such that k > j > i > N,

xi = xj = b, and xk ∈A. Then ρ(xi,xj,xk)= 1/b. This is a contradiction since {xn} is

Cauchy. Hence the claim.

Let c ∈ A. Let ε > 0. From Claim 1.11, it follows that there exists N3 ∈ N such that

xn <min{ε,c} whenever n≥N3 and xn ∈A. From Claim 1.12, it follows that there ex-

ists N4 ∈N such that xn > 1/ε whenever n≥N4 and xn ∈ B. Let N5 =max{N0,N3,N4}.
Let m,n∈N be such that m≥N5 and n≥N5. Then xn,xm ∈A∪B. If both xn,xm ∈A,

thenρ(c,xn,xm)=max{xn,xm}< ε. If bothxn,xm ∈ B, thenρ(c,xn,xm)=max{1/xn,
1/xm} < ε. Suppose that one of xn, xm belongs to A and the other belongs to B. We

may assume that xn ∈ A and xm ∈ B. Then ρ(c,xn,xm) = min{c,xn,xm} = xn < ε.
Thus ρ(c,xn,xm) < ε for all n,m≥N5. Hence {xn} converges to c.

Thus, in any case, {xn} is convergent in X with respect to the D-metric ρ. Hence

(X,ρ) is a complete D-metric space.

To show that (Bc)c ≠ Bc .
Let p ∈ Bc . Then there exists a sequence {xn} in B such that {xn} converges to p.

Hence {xn} is Cauchy. If there exists N ∈ N such that xk = xN for all k ≥ N, then

ρ(p,xN,xN)= 0 and hence p = xN ∈ B.
Suppose that such anN does not exist. Then givenN ∈N, there exist i,j ∈N such that

i > N, j > N, and xi ≠ xj . As in Subcase (ii) of Case 2 in the proof of the completeness

of ρ, it can be shown that xn → +∞ as n → ∞ and that {xn} converges to x for any

x ∈A.

For any x ∈ B,

ρ
(
x,xn,xm

)=
∣∣∣∣ 1
x
− 1
xn

∣∣∣∣+
∣∣∣∣ 1
xn
− 1
xm

∣∣∣∣+
∣∣∣∣ 1
xm

− 1
x

∣∣∣∣ �→ 2
x

as m,n �→∞. (1.16)

Hence {xn} does not converge to x for any x ∈ B. We have ρ(0,xn,xm) = 1 for all

m,n∈N. Therefore {xn} does not converge to 0. Hence p ∈A. Thus Bc ⊆ B∪A. Clearly

B ⊆ Bc . {2n} converges to x for any x in A. Hence A ⊆ Bc . Therefore A∪B = Bc . Since

{1/2n} is a sequence inA and it converges to x for any x ∈X, (Bc)c =X. Since 0 ∉A∪B,

(Bc)c ≠ Bc . Therefore the function f : P(X)→ P(X) defined as f(E)= Ec for all E ∈ P(X)
is not a closure operator. Hence ρ-convergence does not define a topology on X.

Definition 1.13. Let (X,ρ) be a D-metric space and {xn} a sequence in X. {xn} is

said to converge strongly to an element x of X if

(i) ρ(x,xm,xn)→ 0 as m,n→∞,

(ii) {ρ(y,y,xn)} converges to ρ(y,y,x) for all y in X.

In such a case, x is said to be a strong limit of {xn}.
Definition 1.14. Let (X,ρ) be a D-metric space and {xn} a sequence in X. {xn} is

said to converge very strongly to an element x of X if

(i) ρ(x,xm,xn)→ 0 as m,n→∞,

(ii) {ρ(y,z,xn)} converges to ρ(y,z,x) for any elements y , z of X.

In such a case, x is said to be a very strong limit of {xn}.



ON THE TOPOLOGY OF D-METRIC SPACES . . . 2725

Remark 1.15. Let {xn} be a sequence in a D-metric space X and x ∈ X. If {xn}
converges very strongly to x, then {xn} converges strongly to x. If {xn} converges

strongly to x, then it converges to x with respect to ρ. Examples 1.21, 1.39, and 1.40

show that the converse statements are false.

Proposition 1.16. Let (X,ρ) be a D-metric space. Let {xn} be a sequence in X con-

verging to an element x of X. Then {ρ(x,x,xn)} is convergent.

Proof. Since {xn} is convergent, it isD-Cauchy. We haveρ(x,x,xn)≤ρ(xm,x,xn)+
ρ(x,xm,xn)+ρ(x,x,xm). Hence ρ(x,x,xn)−ρ(x,x,xm) ≤ 2ρ(x,xm,xn). Similarly,

we have ρ(x,x,xm)− ρ(x,x,xn) ≤ 2(x,xn,xm). Hence |ρ(x,x,xn)− ρ(x,x,xm)| ≤
2ρ(x,xn,xm). Since this inequality is true for allm,n∈N and {xn} converges to x un-

der the D-metric ρ, it follows that {ρ(x,x,xn)} is a Cauchy sequence of real numbers

and hence convergent.

Remark 1.17. Example 1.21 shows that the hypothesis of Proposition 1.16 does not

ensure that the limit of {ρ(x,x,xn)} is ρ(x,x,x).

Proposition 1.18. In a D-metric space, every strongly convergent sequence has a

unique strong limit.

Proof. Let (X,ρ) be a D-metric space and {xn} a strongly convergent sequence in

X. Let y , z be strong limits of {xn}. Then {ρ(y,y,xn)} converges to both ρ(y,y,y)
and ρ(y,y,z). Hence ρ(y,y,z)= ρ(y,y,y)= 0. Hence y = z.

Theorem 1.19. Let (X,d) be a metric space, x0 ∈X, and let A be a nonempty subset

of X\{x0}. Define ρ :A×A×A→R+ as

ρ(x,y,z)=




0 if x =y = z,
min

{
max

{
d
(
x0,x

)
,d
(
x0,y

)}
,

max
{
d
(
x0,y

)
,d
(
x0,z

)}
,

max
{
d
(
x0,z

)
,d
(
x0,x

)}}
otherwise.

(1.17)

Then (A,ρ) is a complete D-metric space and ρ-convergence defines a topology τ on A.

If A∩{x ∈X : d(x0,x) < r0} =φ for some r0 ∈ (0,∞), then τ is the discrete topology on

X; otherwise τ = {φ}∪{E ⊆ A : {x ∈ A : d(x0,x) < r} ⊆ E for some r ∈ (0,∞)} and, in

particular, τ is T1 but not Hausdorff.

Let {xn} ⊆A. Then {xn} converges to x with respect to ρ for some x ∈A and xn ≠ x
for all sufficiently large n⇒ d(xn,x0)→ 0 as n→∞⇒ {xn} converges to x with respect

to ρ for each x in A. If A has at least two elements, there does not exist a sequence in A
which is strongly convergent with respect to ρ.

Proof. Clearly ρ is symmetric in all the three variables and ρ(x,y,z) = 0 if and

only if x =y = z. Let x,y,z,u∈A. We may assume that d(x0,x)≥ d(x0,y)≥ d(x0,z).
Irrespective of whether d(x0,u) < d(x0,y) or d(x0,u)≥ d(x0,y), we have

ρ(x,y,z)= d(x0,y
)≤ ρ(x,y,u). (1.18)
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Hence ρ(x,y,z)≤ ρ(u,y,z)+ρ(x,u,z)+ρ(x,y,u) for all x,y,z,u ∈ A. Hence ρ is a

D-metric on A. Let {xn} be a sequence in A and x ∈A. If xn ≠ x, we have

ρ
(
x,xn,xn

)=min
{

max
{
d
(
x0,x

)
,d
(
x0,xn

)}
,

max
{
d
(
x0,xn

)
,d
(
x0,xn

)}
,

max
{
d
(
x0,xn

)
,d
(
x0,x

)}}
≥ d(x0,xn

)
.

(1.19)

That is, ρ(x,xn,xn) ≥ d(x0,xn) if xn ≠ x. Hence d(x0,xn) → 0 as n → ∞ if {xn}
converges to x with respect to ρ for some x ∈A and xn ≠ x for all sufficiently large n.

We have

ρ
(
xn,xm,x

)≤min
{

max
{
d
(
x0,xn

)
,d
(
x0,xm

)}
,

max
{
d
(
x0,xm

)
,d
(
x0,x

)}
,

max
{
d
(
x0,x

)
,d
(
x0,xn

)}}
≤max

{
d
(
x0,xn

)
,d
(
x0,xm

)} ∀n,m∈N.

(1.20)

Thus {xn} converges to x with respect to ρ for each x in A if d(x0,xn)→ 0 as n→∞.

If xm ≠ xn, then we have

ρ
(
xn,xm,xn

)=min
{

max
{
d
(
x0,xn

)
,d
(
x0,xm

)}
,

max
{
d
(
x0,xm

)
,d
(
x0,xn

)}
,

max
{
d
(
x0,xn

)
,d
(
x0,xn

)}}
≥ d(x0,xn

)
.

(1.21)

Hence d(x0,xn)→ 0 as n→∞ if {xn} is ρ-Cauchy and there does not exist an N ∈ N
such that xn = xN for all n>N. If there exists N ∈N such that xn = xN for all n>N,

then, evidently, {xn} converges to xN with respect to ρ.

If such an N does not exist and {xn} is ρ-Cauchy, then d(x0,xn) → 0 as n → ∞,

and hence {xn} converges to x with respect to ρ for any x in A. Hence every ρ-Cauchy

sequence inA is convergent with respect to ρ. Therefore (A,ρ) isD-complete. If xn ≠ x,

we have

ρ
(
x,x,xn

)=min
{

max
{
d
(
x0,x

)
,d
(
x0,x

)}
,

max
{
d
(
x0,x

)
,d
(
x0,xn

)}
,

max
{
d
(
x0,xn

)
,d
(
x0,x

)}}
≥ d(x0,x

)
.

(1.22)

Since x ∈ A ⊆ X\{x0}, d(x0,x) > 0. Hence {ρ(x,x,xn)} does not converge to 0 if

xn ≠ x for infinitely many n. Consequently, {xn} is not strongly ρ-convergent if A has

at least two elements. Let E be a subset of A. Clearly, E ⊆ Ec .
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Case 1. E∩{x ∈X : d(x,x0) < r} =φ for some r ∈ (0,∞).
Let z ∈ Ec . Then there exists a sequence {xn} in E such that {xn} converges to z

with respect to ρ. Suppose that xn ≠ z for each n. Then d(x0,xn)→ 0 as n→∞. Since

E ∩{x ∈ X : d(x,x0) < r} = φ, we have d(x,x0) ≥ r for all x ∈ E. Hence d(xn,x0) ≥
r for all n ∈ N. Therefore {d(xn,x0)} does not converge to 0. Thus we arrived at a

contradiction. Consequently, xn = z for some n ∈ N. Hence z ∈ E. Therefore Ec ⊆ E.

Thus E = Ec .
Case 2. Case 1 is false.

Then E∩{x ∈X : d(x,x0) < 1/n}≠φ for each n∈N. Hence there exists a sequence

{un} in E such that d(un,x0) < 1/n for all n ∈ N. Therefore d(un,x0)→ 0 as n→∞.

Hence {un} converges to x with respect to ρ for each x in A. Hence Ec =A.

Case (I). A∩{x ∈X : d(x,x0) < r0} =φ for some r0 ∈ (0,∞).
In this case, for any subset E of A, we have Ec = E, and hence (Ec)c = Ec = E. Thus

the function f defined on the power set P(A) of A as f(E) = Ec for all E ∈ P(A) is a

closure operator. Therefore ρ-convergence defines a topology τ on A in which every

subset of A is closed. Hence τ = {E : E ⊆ A}. Consequently, τ is the discrete topology

on X.

Case (II). A∩{x ∈X : d(x,x0) < r}≠φ for any r ∈ (0,∞).
In this case, for a subset E of X, we have Ec = E or A according to whether Case 1 or

Case 2 holds. Hence (Ec)c = Ec for all E ∈ P(A). Therefore the function f defined on

P(A) as f(E)= Ec for all E ∈ P(A) is a closure operator. Thus ρ-convergence defines a

topology τ on A with respect to which a subset B of A is closed if and only if B = Ec
for some E ∈ P(A). Hence

τ = {A\Ec : E ∈ P(A)}
= {φ}∪{E ∈ P(A) :

{
x ∈A : d

(
x0,x

)
< r

}⊆ E for some r ∈ (0,∞)}. (1.23)

If U1, U2 are nonempty open sets in τ , then U1∩U2 ≠φ since there exist r1,r2 ∈ (0,∞)
such that

{
x ∈A : d

(
x0,x

)
< ri

}⊆Ui, i= 1,2. (1.24)

Hence τ is not Hausdorff. Let p, q be distinct elements of A. Since x0 ∉A, d(p,x0) and

d(q,x0) are positive real numbers. Let 0 < r < min{d(p,x0),d(q,x0)}. Let V0 = {x ∈
A : d(x,x0) < r}. Then V0∪{p} is a τ-open subset of A containing p but not q, and

V0∪{q} is a τ-open subset of A containing q but not p. Hence the topology τ is T1.

Example 1.20. Let X = R with the usual metric, x0 = 0, and A = [1,2]. Then the

function ρ defined in Theorem 1.19 on A×A×A reduces to the following:

ρ(x,y,z)=



0 if x =y = z,
min

{
max{x,y},max{y,z},max{z,x}} otherwise.

(1.25)

From Theorem 1.19 it follows that (A,ρ) is a complete D-metric space and that ρ-

convergence defines a topology τ on A, which is the discrete topology on A.
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Example 1.21. Let X =R with the usual metric, x0 = 0, and A= {1/n :n∈N}. Then

the function ρ defined in Theorem 1.19 on A×A×A has the same form as that given in

Example 1.20. From Theorem 1.19 it follows that (A,ρ) is a complete D-metric space,

any sequence in A which converges to zero in the usual sense converges to x with

respect to ρ for each x in A, and that ρ-convergence defines a topology τ on A with

respect to which nonempty subset E of A is open if and only if E contains {1/n :n∈N
and n ≥ N} for some N ∈ N. Further, τ is T1 but not Hausdorff. Let xn = 1/n for

all n ∈ N and x0 = 1/2. Then {xn} converges to 1/2 under the D-metric ρ. We have

ρ(x0,x0,xn) = ρ(1/2,1/2,1/n) = 1/2 for all n ∈ N\{2}. Hence {ρ(x0,x0,xn)} does

not converge to 0= ρ(x0,x0,x0). We note that {1/n} does not converge strongly even

though it converges to every element of X.

Theorem 1.22. Let (X,d) be a metric space, x0 ∈ X, and let {xn} be a convergent

sequence in X\{x0} with limit x0, A a proper subset of X\{x0} containing {xn}, and B
a subset of X\{x0} which contains A properly. Define ρ : B×B×B→R+ as

ρ(x,y,z)=




0 if x =y = z,
min

{
max

{
d
(
x0,x

)
,d
(
x0,y

)}
,

max
{
d
(
x0,y

)
,d
(
x0,z

)}
,

max
{
d
(
x0,z

)
,d
(
x0,x

)}}
otherwise.

(1.26)

Let ρ0 denote the restriction of ρ to A×A×A. Then (B,ρ) and (A,ρ0) are complete D-

metric spaces, A ⊆ B, but {x ∈ B: there is a sequence {yn} in A which converges to x
with respect to ρ} = B ≠A.

Proof. The proof follows from Theorem 1.19.

Remark 1.23. If (X,d) is a metric space, Y ⊆ X, d0 is the restriction of d to Y ×Y ,

and (Y ,d0) is complete, then {x ∈X: there is a sequence {yn} in Y which converges to

x} = Y . Theorem 1.22 shows that an analogous result does not hold inD-metric spaces.

Theorem 1.24. Suppose that Φ : (R+)3∗ →R+ is

(i) symmetric in all the three variables,

(ii) Φ(t1, t2, t3)= 0 if and only if t1 = t2 = t3 = 0,

(iii) Φ(t1, t2, t3)≤ Φ(t1, t′2, t′3)+Φ(t′1, t2, t′′3 )+Φ(t′′1 , t′′2 , t3) whenever (t1, t2, t3), (t1, t′2,
t′3), (t

′
1, t2, t

′′
3 ), (t

′′
1 , t

′′
2 , t3)∈ (R+)3∗ and ti ≤ t′i+t′′i for all i= 1,2,3.

Let d be a metric on X and let ρ :X×X×X →R+ be defined as

ρ(x,y,z)= Φ(d(x,y),d(y,z),d(z,x)). (1.27)

Then ρ is a D-metric on X. If Φ is continuous at (0,0,0), then

(1) any d-Cauchy sequence in X is ρ-Cauchy,

(2) {xn} ⊆X, x ∈X, and d(xn,x)→ 0 as n→∞⇒ {xn} converges to x with respect

to the D-metric ρ.

Suppose that Φ has the following property:

(iv) given ε > 0, there exists δ > 0 such that t < ε whenever t ∈R+ and Φ(0, t,t) < δ.
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Then

(1) any ρ-Cauchy sequence is d-Cauchy,

(2) {xn} (⊆X) converges to x ∈X with respect to ρ⇒ d(xn,x)→ 0 as n→∞.

If Φ is continuous at (0,0,0), {Φ(0, tn,tn)} converges to Φ(0, t,t) whenever t ∈ R+, and

{tn} is a sequence in R+ converging to t, then {xn} ⊆ X, x ∈ X, and d(xn,x) → 0 as

n→∞⇒ {xn} converges strongly to x with respect to the D-metric ρ.

If Φ is continuous at (0,0,0) and is continuous in any two variables, then {xn} ⊆ X,

x ∈ X, and d(xn,x)→ 0 as n→∞⇒ {xn} converges very strongly to x with respect to

the D-metric ρ.

Proof. We prove that ρ is a D-metric on X. Since Φ is symmetric in all the three

variables, so is ρ. From property (ii) of Φ, it follows that ρ(x,y,z)= 0 if and only if

x =y = z.

Let x,y,z,u∈X. From property (iii) of Φ, we have

ρ(x,y,z)= Φ(d(x,y),d(y,z),d(z,x))
≤ Φ(d(x,y),d(y,u),d(u,x))
+Φ(d(u,y),d(y,z),d(z,u))
+Φ(d(x,u),d(u,z),d(z,x))

(1.28)

since d(x,y) ≤ d(u,y)+d(x,u), d(y,z) ≤ d(y,u)+d(u,z), and d(z,x) ≤ d(u,x)+
d(z,u). Henceρ(x,y,z)≤ ρ(x,y,u)+ρ(u,y,z)+ρ(x,u,z) for allx,y,z,u∈X. Hence

ρ is a D-metric on X.

Suppose that Φ is continuous at (0,0,0).
(1) Let {xn} be a d-Cauchy sequence in X. Then d(xn,xm)→ 0 as n,m→∞. We have

ρ
(
xn,xm,xk

)= Φ(d(xn,xm),d(xm,xk),d(xk,xn))
�→ Φ(0,0,0)= 0 as n,m,k �→∞ (since Φ is continuous at (0,0,0)).

(1.29)

Hence {xn} is ρ-Cauchy in X.

(2) Let {xn} ⊆X and let x ∈X be such that d(xn,x)→ 0 as n→∞. We have

ρ
(
x,xn,xm

)= Φ(d(x,xn),d(xn,xm),d(xm,x))
�→ Φ(0,0,0)= 0 as n,m �→∞ (1.30)

(since every d-convergent sequence is d-Cauchy and Φ is continuous at (0,0,0)).
Hence ρ(x,xn,xm)→ 0 as n,m→∞. Hence {xn} converges to x with respect to ρ.

Suppose that Φ has property (iv).

(1) Let {xn} be a ρ-Cauchy sequence in X. Let ε be a positive real number. Then

there exists δ > 0 such that t < ε whenever t ∈ R+ and Φ(0, t,t) < δ. Since ρ(xn,xm,
xn) → 0 as n,m → ∞, there exists N ∈ N such that ρ(xn,xm,xn) < δ for all n,m ≥
N. That is, Φ(d(xn,xm),d(xm,xn),d(xn,xn)) < δ for all n,m ≥ N. In other words,

Φ(0,d(xn,xm),d(xn,xm)) < δ for all n,m≥N (since Φ is symmetric). Hence d(xn,xm)
< ε for all n,m≥N. Therefore {xn} is d-Cauchy.
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(2) Let {xn} ⊆ X converge to x ∈ X with respect to the D-metric ρ. Let ε > 0. Then

there exists δ > 0 such that t < εwhenever t ∈R+ andΦ(0, t,t) < δ. Since ρ(xn,xn,x)→
0 as n → ∞, there exists N ∈ N such that ρ(xn,xn,x) < δ for all n ≥ N. That is,

Φ(d(xn,xn),d(xn,x),d(x,xn)) < δ for all n ≥ N. That is Φ(0,d(xn,x),d(xn,x)) < δ
for all n ≥ N. Hence d(xn,x) < ε for all n ≥ N. Therefore {xn} converges to x with

respect to the metric d.

Suppose that Φ is continuous at (0,0,0) and {Φ(0, tn,tn)} converges to Φ(0, t,t)
whenever t ∈ R+ and {tn} is a sequence in R+ converging to t. Let {xn} ⊆ X and

let x ∈ X be such that d(xn,x) → 0 as n → ∞. Let y ∈ X. Then d(xn,y) → d(x,y)
as n→∞. Hence {Φ(0,d(xn,y),d(xn,y))} → Φ(0,d(x,y),d(x,y)) as n→∞. That is,

ρ(y,y,xn) → ρ(y,y,x) as n → ∞. Since Φ is continuous at (0,0,0), from what we

have already proved, it follows that {xn} converges to x with respect to ρ. Hence {xn}
converges strongly to x with respect to the D-metric ρ. Suppose that Φ is continu-

ous at (0,0,0) and is continuous in any two variables. Let {xn} ⊆ X and let x ∈ X be

such that d(xn,x) → 0 as n → ∞. Let y,z ∈ X. Then {d(z,xn)} and {d(xn,y)} con-

verge to d(z,x) and d(x,y), respectively. Since Φ is continuous in any two variables, it

follows that {Φ(d(y,z),d(z,xn),d(xn,y))} converges to Φ(d(y,z),d(z,x),d(x,y)),
that is, {ρ(y,z,xn)} converges to ρ(y,z,x). Since Φ is continuous at (0,0,0), {xn}
converges to x with respect to ρ. Hence {xn} converges very strongly to x with respect

to ρ.

Corollary 1.25. Let (X,d) be a metric space and let Φ : (R+)3∗ →R+ be continuous

at (0,0,0), and have properties (i), (ii), (iii), and (iv) specified in Theorem 1.24. Let ρ be

defined as in Theorem 1.24. Then ρ is a D-metric on X, a sequence in X is D-Cauchy

if and only if it is ρ-Cauchy, and a sequence {xn} in X converges with respect to d to

an element x of X if and only if {xn} converges to x with respect to ρ. In particular,

ρ-convergence defines a topology on X which coincides with the metric topology induced

by the metric d on X, and X is complete with respect to the metric d if and only if it is

complete with respect to the D-metric ρ. Further, the following statements are true.

(1) If {Φ(0, tn,tn)} converges to Φ(0, t,t) whenever t ∈ R+ and {tn} is a sequence in

R+ converging to t,{xn} ⊆ X, and x ∈ X, then {xn} converges to x with respect to ρ if

and only if {xn} converges strongly to x with respect to ρ.

(2) If Φ is continuous in any two variables, {xn} ⊆X, and x ∈X, then {xn} converges

to x with respect to ρ if and only if {xn} converges very strongly to x with respect to ρ.

(3) If Φ is continuous on (R+)3∗ , then ρ is sequentially continuous in all the three

variables, that is, {ρ(un,vn,wn)} converges to ρ(u,v,w) whenever u,v,w ∈ X and

{un}, {vn}, and {wn} are sequences in X converging to u, v , and w, respectively with

respect to ρ.

Note 1.26. Corollary 1.25 is useful in generating a number ofD-metrics from a given

metric on a set.

We now prove a number of propositions which show that the class of functions Φ :

(R+)3∗ →R+, which are continuous at (0, t,t) for all t ∈R+ and which satisfy properties

(i), (ii), (iii), and (iv) specified in Theorem 1.24, is very rich.
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Lemma 1.27. Let p ∈ [1,∞). Then (a+b)p ≥ ap+bp for all a,b ∈R+.

Proof. Define f : R+ → R as f(t) = (1+ t)p −1− tp for all t ∈ R+. Then f ′(t) =
p(1+t)p−1−pt(p−1) = p[(1+t)p−1−t(p−1)]. Since 1+t ≥ t for all t ∈R+ and p−1≥ 0,

we have (1+t)p−1 ≥ t(p−1) for all t ∈R+.

Hence f ′(t) ≥ 0 for all t ∈ R+. Therefore f is monotonically increasing on R+. We

have f(0)= 0. Hence f(t)≥ f(0) for all t ∈R+. Therefore

(1+t)p ≥ 1+tp ∀t ∈R+. (1.31)

Let a,b ∈R+. We may assume that a≥ b. If a= 0, then b = 0 and (a+b)p = 0= ap+bp .

Suppose that a> 0. Then, from what we have already proved above, we have

(
1+ b

a

)p
≥ 1+

(
b
a

)p
, (1.32)

that is,

(
a+b
a

)p
≥ 1+ b

p

ap
. (1.33)

Hence (a+b)p ≥ ap+bp .

Corollary 1.28. Let p ∈ [1,∞). Then (a+b+c)p ≥ ap+bp+cp for all a,b,c ∈R+.

Proof. Let a,b,c ∈R+. Then, from Lemma 1.27, we have

(a+b+c)p = [(a+b)+c]p ≥ (a+b)p+cp ≥ ap+bp+cp. (1.34)

Proposition 1.29. Suppose thatΨ :R+→R+ is monotonically increasing andΨ(t)=0

if and only if t = 0. Let p ∈ [1,∞). Define Φ : (R+)3∗ →R+ as

Φ
(
t1, t2, t3

)= [[Ψ(t1)]p+[Ψ(t2)]p+[Ψ(t3)]p]1/p ∀(t1, t2, t3)∈ (R+)3∗ . (1.35)

Then Φ has properties (i), (ii), (iii), and (iv) specified in Theorem 1.24. If Ψ is continuous

at 0, then Φ is continuous at (0,0,0), and if Ψ is continuous on R+, then Φ is continuous

on (R+)3∗ .

Proof. Clearly Φ is symmetric in all the three variables:

Φ
(
t1, t2, t3

)= 0⇐⇒ [[Ψ(t1)]p+[Ψ(t2)]p+[Ψ(t3)]p]1/p = 0

⇐⇒ [Ψ(ti)]p = 0 ∀i
⇐⇒ Ψ(ti)= 0 ∀i
⇐⇒ ti = 0 ∀i.

(1.36)
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Let t1, t′1, t
′′
1 , t2, t

′
2, t

′′
2 , t3, t

′
3, t

′′
3 ∈R+. Let

a= [[Ψ(t1)]p+[Ψ(t′2)]p+[Ψ(t′3)]p]1/p,
b = [[Ψ(t′1)]p+[Ψ(t2)]p+[Ψ(t′′3 )]p]1/p,
c = [[Ψ(t′′1 )]p+[Ψ(t′′2 )]p+[Ψ(t3)]p]1/p.

(1.37)

We have

(a+b+c)p ≥ ap+bp+cp

= [[Ψ(t1)]+[Ψ(t′2)]+[Ψ(t′3)]]

+[[Ψ(t′1)]p+[Ψ(t2)]p+[Ψ(t′′3 )]p]

+[[Ψ(t′′1 )]p+[Ψ(t′′2 )]p+[Ψ(t3)]p]

≥ [Ψ(t1)]p+[Ψ(t2)]p+[Ψ(t3)]p.

(1.38)

Hence a+b+ c ≥ [[Ψ(t1)]p + [Ψ(t2)]p + [Ψ(t3)]p]1/p . Therefore Φ has property (iii).

We have

Φ(0, t,t)= [[Ψ(0)]p+[Ψ(t)]p+[Ψ(t)]p]1/p

= [2[Ψ(t)]p]1/p
= 21/pΨ(t).

(1.39)

Let ε be a positive real number. Choose δ= 21/pΨ(ε). Then δ > 0 since Ψ(t)= 0 implies

t = 0.

Φ(0, t,t) < δ �⇒ 21/pΨ(t) < 21/pΨ(ε)

�⇒ Ψ(t) < Ψ(ε)
�⇒ t < ε (since Ψ is monotonically increasing).

(1.40)

Hence Φ has property (iv).

Corollary 1.30. Let p ∈ [1,∞). Then the function Φ : (R+)3∗ → R+ defined as

Φ(t1, t2, t3) = [tp1 + tp2 + tp3 ]1/p for all (t1, t2, t3) ∈ (R+)3∗ is continuous on (R+)3∗ and

has properties (i), (ii), (iii), and (iv) specified in Theorem 1.24.

Proof. The proof follows from Proposition 1.29 by taking Ψ(t) = t for all t ∈ R+.

Proposition 1.31. Suppose thatΨ :R+→R+ is monotonically increasing andΨ(t)=0

if and only if t = 0. Define Φ : (R+)3∗ →R+ as

Φ
(
t1, t2, t3

)=max
{
Ψ
(
t1
)
,Ψ
(
t2
)
,Ψ
(
t3
)} ∀(t1, t2, t3)∈ (R+)3∗ . (1.41)
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Then Φ has properties (i), (ii), (iii), and (iv) specified in Theorem 1.24. If Ψ is continuous

at 0, then Φ is continuous at (0,0,0), and if Ψ is continuous on R+, then Φ is continuous

on (R+)3∗ .

Proof. Clearly Φ is symmetric in all the three variables.

Φ
(
t1, t2, t3

)= 0⇐⇒max
{
Ψ
(
t1
)
,Ψ
(
t2
)
,Ψ
(
t3
)}= 0

⇐⇒ Ψ(ti)= 0 ∀i
⇐⇒ ti = 0 ∀i.

(1.42)

Hence Φ has property (ii).

Let t1, t′1, t
′′
1 , t2, t

′
2, t

′′
2 , t3, t

′
3, t

′′
3 ∈R+. Then

max
{
Ψ
(
t1
)
,Ψ
(
t2
)
,Ψ
(
t3
)}≤max

{
Ψ
(
t1
)
,Ψ
(
t′2
)
,Ψ
(
t′3
)}

+max
{
Ψ
(
t′1
)
,Ψ
(
t2
)
,Ψ
(
t′′3
)}

+max
{
Ψ
(
t′′1
)
,Ψ
(
t′′2
)
,Ψ
(
t3
)}
.

(1.43)

Hence Φ has property (iii).

Let ε be a positive real number. Choose δ= Ψ(ε). Then δ > 0 since Ψ(t)= 0 implies

t = 0.

Φ(0, t,t) < δ �⇒max
{
Ψ(0),Ψ(t),Ψ(t)

}
< Ψ(ε)

�⇒ Ψ(t) < Ψ(ε)
�⇒ t < ε (since Ψ is monotonically increasing).

(1.44)

Hence Φ has property (iv).

Corollary 1.32. The function Φ : (R+)3∗ → R+ defined as Φ(t1, t2, t3) =max{t1, t2,
t3} for all (t1, t2, t3)∈ (R+)3∗ is continuous on (R+)3∗ and has properties (i), (ii), (iii), and

(iv) specified in Theorem 1.24.

Proof. The proof follows from Proposition 1.31 by taking Ψ(t) = t for all t ∈ R+.

Proposition 1.33. Suppose that Ψ :R+ →R+ is monotonically increasing, Ψ(s+t)≤
Ψ(s)+Ψ(t) for all s,t ∈R+, and Ψ(t)= 0 if and only if t = 0. Define Φ : (R+)3∗ →R+ as

Φ
(
t1, t2, t3

)=min
{

max
{
Ψ
(
t1
)
,Ψ
(
t2
)}
,max

{
Ψ
(
t2
)
,Ψ
(
t3
)}
,

max
{
Ψ
(
t3
)
,Ψ
(
t1
)}} ∀(t1, t2, t3)∈ (R+)3∗ .

(1.45)
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Then Φ has properties (i), (ii), (iii), and (iv) specified in Theorem 1.24. If Ψ is continuous

at 0, then Φ is continuous at (0,0,0), and if Ψ is continuous on R+, then Φ is continuous

on (R+)3∗ .

Proof. Clearly Φ is symmetric in all the three variables.

Φ
(
t1, t2, t3

)= 0⇐⇒min
{

max
{
Ψ
(
t1
)
,Ψ
(
t2
)}
,max

{
Ψ
(
t2
)
,Ψ
(
t3
)}
,

max
{
Ψ
(
t3
)
,Ψ
(
t1
)}}= 0

⇐⇒max
{
Ψ
(
t1
)
,Ψ
(
t2
)}= 0

or max
{
Ψ
(
t2
)
,Ψ
(
t3
)}= 0

or max
{
Ψ
(
t3
)
,Ψ
(
t1
)}= 0

⇐⇒ t1 = t2 = 0 or t2 = t3 = 0 or t3 = t1 = 0

⇐⇒ t1 = t2 = t3 = 0
(
since

(
t1, t2, t3

)∈ (R+)3∗).

(1.46)

Hence Φ has property (ii).

Let t1, t′1, t
′′
1 , t2, t

′
2, t

′′
2 , t3, t

′
3, t

′′
3 ∈ R+ be such that ti ≤ t′i + t′′i for all i = 1,2,3. We

have

max
{
Ψ
(
t1
)
,Ψ
(
t′2
)}+max

{
Ψ
(
t′′1
)
,Ψ
(
t′′2
)}

≥max
{
Ψ
(
t1
)
,Ψ
(
t′2+t′′2

)} (
since Ψ(s+t)≤ Ψ(s)+Ψ(t))

≥max
{
Ψ
(
t1
)
,Ψ
(
t2
)} (

since Ψ is monotonically increasing

and t2 ≤ t′2+t′′2
)
.

(1.47)

Clearly, we have

max
{
Ψ
(
t1
)
,Ψ
(
t′2
)}+max

{
Ψ
(
t′′2
)
,Ψ
(
t3
)}≥max

{
Ψ
(
t1
)
,Ψ
(
t3
)}
,

max
{
Ψ
(
t1
)
,Ψ
(
t′2
)}+max

{
Ψ
(
t3
)
,Ψ
(
t′′1
)}≥max

{
Ψ
(
t1
)
,Ψ
(
t3
)}
.

(1.48)

Hence

max
{
Ψ
(
t1
)
,Ψ
(
t′2
)}+min

{
max

{
Ψ
(
t′′1
)
,Ψ
(
t′′2
)}
,max

{
Ψ
(
t′′2
)
,Ψ
(
t3
)}
,

max
{
Ψ
(
t3
)
,Ψ
(
t′′1
)}}

≥min
{

max
{
Ψ
(
t1
)
,Ψ
(
t2
)}
,max

{
Ψ
(
t1
)
,Ψ
(
t3
)}}
.

(1.49)
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Similarly,

max
{
Ψ
(
t′3
)
,Ψ
(
t1
)}+min

{
max

{
Ψ
(
t′1
)
,Ψ
(
t2
)}
,max

{
Ψ
(
t2
)
,Ψ
(
t′′3
)}
,max

{
Ψ
(
t′′3
)
,Ψ
(
t′1
)}}

≥min
{

max
{
Ψ
(
t1
)
,Ψ
(
t2
)}
,max

{
Ψ
(
t1
)
,Ψ
(
t3
)}}
,

max
{
Ψ
(
t′1
)
,Ψ
(
t2
)}+min

{
max

{
Ψ
(
t′′1
)
,Ψ
(
t′′2
)}
,max

{
Ψ
(
t′′2
)
,Ψ
(
t3
)}
,max

{
Ψ
(
t3
)}
,Ψ
(
t′′1
)}}

≥min
{

max
{
Ψ
(
t1
)
,Ψ
(
t2
)}
,max

{
Ψ
(
t2
)
,Ψ
(
t3
)}}
,

max
{
Ψ
(
t2
)
,Ψ
(
t′′3
)}+min

{
max

{
Ψ
(
t1
)
,Ψ
(
t′2
)}
,max

{
Ψ
(
t′2
)
,Ψ
(
t′3
)}
,max

{
Ψ
(
t′3
)
,Ψ
(
t1
)}}

≥min
{

max
{
Ψ
(
t1
)
,Ψ
(
t2
)}
,max

{
Ψ
(
t2
)
,Ψ
(
t3
)}}
,

max
{
Ψ
(
t′′2
)
,Ψ
(
t3
)}+min

{
max

{
Ψ
(
t1
)
,Ψ
(
t′2
)}
,max

{
Ψ
(
t′2
)
,Ψ
(
t′3
)}
,max

{
Ψ
(
t′3
)
,Ψ
(
t1
)}}

≥min
{

max
{
Ψ
(
t1
)
,Ψ
(
t3
)}
,max

{
Ψ
(
t2
)
,Ψ
(
t3
)}}
,

max
{
Ψ
(
t3
)
,Ψ
(
t′′1
)}+min

{
max

{
Ψ
(
t′1
)
,Ψ
(
t2
)}
,max

{
Ψ
(
t2
)
,Ψ
(
t′′3
)}
,max

{
Ψ
(
t′′3
)
,Ψ
(
t′1
)}}

≥min
{

max
{
Ψ
(
t1
)
,Ψ
(
t3
)}
,max

{
Ψ
(
t2
)
,Ψ
(
t3
)}}
.

(1.50)

We have

max
{
Ψ
(
t′2
)
,Ψ
(
t′3
)}+max

{
Ψ
(
t′′3
)
,Ψ
(
t′1
)}+max

{
Ψ
(
t′′1
)
,Ψ
(
t′′2
)}

≥max
{

max
{
Ψ
(
t′′3
)
,Ψ
(
t′1
)}+max

{
Ψ
(
t′′1
)
,Ψ
(
t′′2
)}
,

max
{
Ψ
(
t′2
)
,Ψ
(
t′3
)}+max

{
Ψ
(
t′′1
)
,Ψ
(
t′′2
)}
,

max
{
Ψ
(
t′2
)
,Ψ
(
t′3
)}+max

{
Ψ
(
t′′3
)
,Ψ
(
t′1
)}}

≥max
{
Ψ
(
t′1
)+Ψ(t′′1 ),Ψ(t′2)+Ψ(t′′2 ),Ψ(t′3)+Ψ(t′′3 )}

≥max
{
Ψ
(
t′1+t′′1

)
,Ψ
(
t′2+t′′2

)
,Ψ
(
t′3+t′′3

)} (
ΘΨ(s+t)≤ Ψ(s)+Ψ(t) ∀s,t ∈R+)

≥max
{
Ψ
(
t1
)
,Ψ
(
t2
)
,Ψ
(
t3
)} (

since Ψ is monotonically increasing

and ti ≤ t′i+t′′i ∀i= 1,2,3
)
.

(1.51)

Hence

min
{

max
{
Ψ
(
t1
)
,Ψ
(
t2
)}
,max

{
Ψ
(
t2
)
,Ψ
(
t3
)}
,max

{
Ψ
(
t3
)
,Ψ
(
t1
)}}

≤min
{

max
{
Ψ
(
t1
)
,Ψ
(
t′2
)}
,max

{
Ψ
(
t′2
)
,Ψ
(
t′3
)}
,max

{
Ψ
(
t′3
)
,Ψ
(
t1
)}}

+min
{

max
{
Ψ
(
t′1
)
,Ψ
(
t2
)}
,max

{
Ψ
(
t2
)
,Ψ
(
t′′3
)}
,max

{
Ψ
(
t′′3
)
,Ψ
(
t′1
)}}

+min
{

max
{
Ψ
(
t′′1
)
,Ψ
(
t′′2
)}
,max

{
Ψ
(
t′′2
)
,Ψ
(
t3
)}
,max

{
Ψ
(
t3
)
,Ψ
(
t′′1
)}}
.

(1.52)

Therefore Φ(t1, t2, t3) ≤ Φ(t1, t′2, t
′
3) + Φ(t′1, t2, t′′3 ) + Φ(t′′1 , t′′2 , t3) whenever (t1, t2, t3),

(t1, t′2, t
′
3),(t

′
1, t2, t

′′
3 ),(t

′′
1 , t

′′
2 , t3) ∈ (R+)3∗ and ti ≤ t′i + t′′i for all i = 1,2,3. Thus Φ has

property (iii).
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Let ε be a positive real number. Choose δ= Ψ(ε). Then δ > 0 since Ψ(t)= 0 implies

t = 0.

Φ(0, t,t) < δ �⇒min
{

max
{
Ψ(0),Ψ(t)

}
,max

{
Ψ(t),Ψ(t)

}
,

max
{
Ψ(t),Ψ(0)

}}
< Ψ(ε)

�⇒min
{
Ψ(t),Ψ(t),Ψ(t)

}
< Ψ(ε)

�⇒ Ψ(t) < Ψ(ε)
�⇒ t < ε (since Ψ is monotonically increasing).

(1.53)

Hence Φ has property (iv).

Corollary 1.34. The functionΦ : (R+)3∗ →R+ defined asΦ(t1, t2, t3)=min{max{t1,
t2},max{t2, t3},max{t3, t1}} for all (t1, t2, t3)∈ (R+)3∗ is continuous on (R+)3∗ and has

properties (i), (ii), (iii), and (iv) specified in Theorem 1.24.

Proof. The proof follows from Proposition 1.33 by taking Ψ(t) = t for all t ∈ R+.

Proposition 1.35. The function Φ : (R+)3∗ →R+ defined as

Φ
(
t1, t2, t3

)=


t1+t2+t3 if min

{∣∣t1−t2∣∣,∣∣t2−t3∣∣,∣∣t3−t1∣∣}≤ 1,

1+t1+t2+t3 otherwise,
(1.54)

has properties (i), (ii), (iii), and (iv) specified in Theorem 1.24 and is continuous at (t1, t2,
t3)∈ (R+)3∗ if min{|t1−t2|,|t2−t3|,|t3−t1|}≠ 1.

Proof. Clearly Φ has properties (i) and (ii).

Let (t1, t2, t3),(t1, t′2, t
′
3),(t

′
1, t2, t

′′
3 ),(t

′′
1 , t

′′
2 , t3)∈ (R+)3∗ be such that ti ≤ t′i+t′′i for all

i= 1,2,3.

Case (i). min{|t1−t2|,|t2−t3|,|t3−t1|} ≤ 1.

Then

Φ
(
t1, t2, t3

)= t1+t2+t3
≤ (t1+t′2+t′3)+(t′1+t2+t′′3 )+(t′′1 +t′′2 +t3)
≤ Φ(t1, t′2, t′3)+Φ(t′1, t2, t′′3 )+Φ(t′′1 , t′′2 , t3).

(1.55)

Case (ii). min{|t1−t2|,|t2−t3|,|t3−t1|}> 1.

Then max{t1, t2, t3}> 1, hence

Φ
(
t1, t2, t3

)= 1+t1+t2+t3
< 2

(
t1+t2+t3

)
≤ (t1+t′2+t′3)+(t′1+t2+t′′3 )+(t′′1 +t′′2 +t3)(

since ti ≤ t′i+t′′i ∀i= 1,2,3
)
.

≤ Φ(t1, t′2, t′3)+Φ(t′1, t2, t′′3 )+Φ(t′′1 , t′′2 , t3).

(1.56)

Thus, in either case, Φ(t1, t2, t3) ≤ Φ(t1, t′2, t′3)+Φ(t′1, t2, t′′3 )+Φ(t′′1 , t′′2 , t3). Hence Φ has

property (iii).
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Let ε be a positive real number. Let δ= ε. We have

Φ(0, t,t) < δ �⇒ 0+t+t < ε
�⇒ 2t < ε

�⇒ t < ε.
(1.57)

Hence Φ has property (iv).

Proposition 1.36. The function Φ : (R+)3∗ →R+ defined as

Φ
(
t1, t2, t3

)=


t1+t2+t3 if min

{
t1, t2, t3

}≤ 1,

1+t1+t2+t3 otherwise,
(1.58)

has properties (i), (ii), (iii), and (iv) specified in Theorem 1.24 and is continuous at (t1, t2,
t3)∈ (R+)3∗ if min{t1, t2, t3}≠ 1.

Proof. The proof is similar to that of Proposition 1.35.

Proposition 1.37. Let Φ : (R+)3∗ →R+ be defined as

Φ
(
t1, t2, t3

)=min
{
t1+t2, t2+t3, t3+t1

} ∀(t1, t2, t3)∈ (R+)3∗ . (1.59)

Then Φ is continuous on (R+)3∗and has properties (i), (ii), (iii), and (iv) specified in

Theorem 1.24.

Proof. Let t1, t′1, t
′′
1 , t2, t

′
2, t

′′
2 , t3, t

′
3, t

′′
3 ∈R+ be such that ti ≤ t′i+t′′i for all i= 1,2,3.

We have
(
t1+t′2

)+(t′′1 +t′′2 )≥ t1+t′2+t′′2 ≥ t1+t2, (
t1+t′2

)+(t′′2 +t3)≥ t1+t3,(
t1+t′2

)+(t3+t′′1 )≥ t1+t3. (1.60)

Hence (t1 + t′2)+min{(t′′1 + t′′2 ),(t′′2 + t3),(t3 + t′′1 )} ≥ min{t1 + t2, t1 + t3}. Similarly,

we have
(
t′3+t1

)+min
{(
t′1+t2

)
,
(
t2+t′′3

)
,
(
t′′3 +t′1

)}≥min
{
t1+t2, t1+t3

}
,(

t′1+t2
)+min

{(
t′′1 +t′′2

)
,
(
t′′2 +t3

)
,
(
t3+t′′1

)}≥min
{
t1+t2, t2+t3

}
,(

t2+t′′3
)+min

{(
t1+t′2

)
,
(
t′2+t′3

)
,
(
t′3+t1

)}≥min
{
t1+t2, t2+t3

}
,(

t′′2 +t3
)+min

{(
t1+t′2

)
,
(
t′2+t′3

)
,
(
t′3+t1

)}≥min
{
t1+t2, t2+t3

}
,(

t3+t′′1
)+min

{(
t′1+t2

)
,
(
t2+t′′3

)
,
(
t′′3 +t′1

)}≥min
{
t2+t3, t3+t1

}
.

(1.61)

We have

(
t′2+t′3

)+(t′′3 +t′1)+(t′′1 +t′′2 )= (t′1+t′′1 )+(t′2+t′′2 )+(t′3+t′′3 )≥ t1+t2+t3. (1.62)

Hence

min
{
t1+t2, t2+t3, t3+t1

}≤min
{(
t1+t′2

)
,
(
t′2+t′3

)
,
(
t′3+t1

)}
+min

{(
t′1+t2

)
,
(
t2+t′′3

)
,
(
t′′3 +t′1

)}
+min

{(
t′′1 +t′′2

)
,
(
t′′2 +t3

)
,
(
t3+t′′1

)}
.

(1.63)
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Hence Φ(t1, t2, t3) ≤ Φ(t1, t′2, t
′
3) + Φ(t′1, t2, t

′′
3 ) + Φ(t′′1 , t

′′
2 , t3) whenever (t1, t2, t3),

(t1, t′2, t
′
3),(t

′
1, t2, t

′′
3 ),(t

′′
1 , t

′′
2 , t3) ∈ (R+)3∗ and ti ≤ t′i+ t′′i for all i = 1,2,3. Hence Φ has

property (iii) specified in Theorem 1.24.

Remark 1.38. Let (X,ρ) be a D-metric space and {xn} a sequence in X. If {xn}
converges to an element, say x ∈X, then {ρ(y,z,xn)} need not converge to ρ(y,z,x)
for all y,z ∈X. The following examples show that it is so, even when every convergent

sequence is strongly convergent and has a unique limit and ρ-convergence defines a

topology on X which is a metric topology. While in the first example we show the

existence of a convergent sequence {xn} with limit, say x, and elements y , z of X such

that {ρ(y,z,xn)} is convergent but not to ρ(y,z,x), in the second example we show

the existence of a convergent sequence {xn} with limit, say, x, and elements y , z of X
such that {ρ(y,z,xn)} is not convergent.

Example 1.39. Define a function Φ : (R+)3∗ →R+ as

Φ
(
t1, t2, t3

)=


t1+t2+t3 if min

{∣∣t1−t2∣∣,∣∣t2−t3∣∣,∣∣t3−t1∣∣}≤ 1,

1+t1+t2+t3 otherwise.
(1.64)

From Proposition 1.35, we know that Φ has properties (i), (ii), (iii), and (iv) specified

in Theorem 1.24, and that Φ is continuous at (t1, t2, t3) if min{|t1− t2|,|t2− t3|,|t3−
t1|}≠ 1. Define ρ :R3 →R+ as ρ(x,y,z)= Φ(|x−y|,|y−z|,|z−x|) for all x,y,z ∈R.

Then, from Corollary 1.25, it follows that ρ is aD-metric on R,(R,ρ) is ρ-complete, and

ρ-convergence defines a topology on R which is nothing but the usual topology on R.

Further, if {un} ⊆R andu∈R, then |un−u| → 0 asn→∞ if and only if {un} converges

to u with respect to ρ if and only if {un} converges to u strongly with respect to ρ.

Hence every ρ-convergent sequence has a unique limit. Let xn = 1+1/n for all n ∈N.

Then {xn} is a sequence in R. Clearly {xn} converges to 1 in the usual sense. Hence

{xn} converges to 1 with respect to ρ. Let x = 1, y = 3, and z = 6. Then we have

ρ(y,z,x)= ρ(3,6,1)= Φ(|3−6|,|6−1|,|1−3|)= Φ(3,5,2)
= 10

(
since min

{|3−5|,|5−2|,|2−3|}=min{2,3,1} = 1
)
,

ρ
(
y,z,xn

)= ρ
(

3,6,1+ 1
n

)
= Φ

(
|3−6|,

∣∣∣∣6−1− 1
n

∣∣∣∣,
∣∣∣∣1+ 1

n
−3
∣∣∣∣
)

= Φ
(

3,5− 1
n
,2− 1

n

)

= 11− 2
n

∀n≥ 2
(

since min
{∣∣∣∣3−5+ 1

n

∣∣∣∣,|5−2|,
∣∣∣∣
(

2− 1
n

)
−3
∣∣∣∣
}
=min

{
3,1+ 1

n
,2− 1

n

}
> 1

)

�→ 11 as n �→∞.

(1.65)

Hence {ρ(y,z,xn)} does not converge to ρ(y,z,x).
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Example 1.40. Define a function Φ : (R+)3∗ →R+ as

Φ
(
t1, t2, t3

)=


t1+t2+t3 if min

{
t1, t2, t3

}≤ 1,

1+t1+t2+t3 otherwise.
(1.66)

From Proposition 1.36 we know that Φ has properties (i), (ii), (iii), and (iv) specified in

Theorem 1.24, and that Φ is continuous at (t1, t2, t3)∈ (R+)3∗ if and only if min{t1, t2,
t3} ≠ 1. Define ρ : R3 → R+ as ρ(x,y,z) = Φ(|x−y|,|y−z|,|z−x|) for all x,y,z ∈ R.

Then, from Corollary 1.25, it follows that ρ is a D-metric on R,(R,ρ) is D-complete,

and ρ-convergence defines a topology on R which is nothing but the usual topology

on R. Further, if {un} ⊆ R and u ∈ R, then |un−u| → 0 as n→∞ if and only if {un}
converges touwith respect to ρ if and only if {un} converges tou strongly with respect

to ρ. Hence every ρ-convergent sequence has a unique limit.

For any y ∈R,

ρ
(
y,y+2,y+3− 1

n

)
= Φ

(
2,1− 1

n
,3− 1

n

)

= 6− 2
n
�→ 6 as n �→∞,

ρ
(
y,y+2,y+3+ 1

n

)
= Φ

(
2,1+ 1

n
,3+ 1

n

)

= 1+6+ 2
n

�→ 7 as n �→∞.

(1.67)

The sequences {y+3−1/n} and {y+3+1/n} both converge to y+3. Let

xn =



y+3− 1

n
if n is odd,

y+3+ 1
n

if n is even.
(1.68)

Then {xn} converges to y+3, but {ρ(y,y+2,xn)} does not converge.
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