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The aim of this note is to generalize the Nakayama lemma to a class of multiplication mod-
ules over commutative rings with identity. In this note, by considering the notion of multi-
plication modules and the product of submodules of them, we state and prove two versions
of Nakayama lemma for such modules. In the first version we give some equivalent condi-
tions for faithful finitely generated multiplication modules, and in the second version we
give them for faithful multiplication modules with a minimal generating set.
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1. Introduction. Let R be a commutative ring with identity and let M be a unitary

R-module. Then M is called a multiplication R-module provided for each submod-

ule N of M there exists an ideal I of R such that N = IM , we call I a presentation

ideal of N. Note that our definitions agree with [2, 3], but in [5], the term multipli-

cation module is used in a different way. (In this note, an R-module M is multipli-

cation if and only if every submodule of M is a multiplication module in the above

sense.)

If N and K are multiplication submodules of M , then NK, the product of N and

K, is defined as IJM , where I and J are presentation ideals of N and K, respectively

[1]. For a module M , the radical of M , denoted by rad(M), is the intersection of all

maximal submodules of M if they exist, and M otherwise (see [3, 4]). We denote the

Jacobson radical of the ring R, the intersection of all maximal ideals of R, by J(R).
Recently, multiplication modules have been studied in a number of papers, see, for

example, [1, 2, 3, 5]. The author in [1] states and proves a version of Nakayama lemma

for multiplication modules (see [1, Theorem 3.23]). But the proof of (ii)⇒(iii) of this

theorem needs to be amended. In this note, first we modify the proof of this theorem,

and then we obtain another version of Nakayama lemma for multiplication modules by

replacing the finitely generated condition with a minimal generating set for them.

Throughout this note, R denotes a commutative ring with identity and all related

modules are unitary R-modules. All definitions and notations follow from [1, 2, 3].

2. Main results

Lemma 2.1. Let M be a finitely generated R-module and M = IM for some ideal I of

R. Then (1−r)M = 0 for some r ∈ R.
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Proof. Let M be generated by elements x1,x2, . . . ,xn. Since M = IM , every xi can

be written as an I-linear combination of x1,x2, . . . ,xn. Thus we have

xi = ai1x1+ai2x2+···+aiixi+···+ainxn, 1≤ i≤n, ai1, . . . ,ain ∈ I. (2.1)

Then
(
1−aii

)
xi = ai1x1+ai2x2+···+aii−1xi−1

+aii+1xi+1+···+ainxn, 1≤ i≤n, ai1, . . . ,ain ∈ I.
(2.2)

Recursively from (2.2) we can find each xi of the form (1−ri)xi = 0 for some ri ∈ R,

1 ≤ i ≤ n. Then we have (1−r1)(1−r2)···(1−rn) = 1−r for some r ∈ I. Thus (1−
r)xi = 0, for all i, 1≤ i≤n. This completes the proof.

Lemma 2.2. If M is a faithful multiplication R-module, then rad(M)= J(R)M .

Proof. Let � denote the collection of all maximal ideals of R. Set P2(M)= {P ∈ � |
ann(M) ⊆ P}. Since M is faithful, P2(M) = �. Then, by [1, Theorem 2.13], rad(M) =
(
⋂
P∈P2(M) P)M = J(R)M .

Definition 2.3 (See [5]). Let M be an R-module. An element u ∈M is called a unit

element if 〈u〉 =M .

In the next result we modify the proof of [1, Theorem 3.23].

Theorem 2.4 (first version of Nakayama lemma). Let M be a faithful multiplication

R-module. Then, for every submodule N of M , the following conditions are equivalent:

(i) N is contained in rad(M),
(ii) if u is a unit in M , then u−rx is a unit for all r ∈ R and for all x ∈N,

(iii) if M is a finitely generated R-module such that NM =M , then M = 0,

(iv) if M is finitely generated and K, N are submodules of M such that M =NM+K,

then M =K.

Proof. (i)⇒(ii). The proof is the same as in the proof of [1, Theorem 3.23].

(i)⇒(ii). Since u is a unit in M , then M = 〈u〉 by [1, Theorem 3.19]. By contradiction

let N �⊆ rad(M). Then there exists a maximal submodule K ofM such that N �⊆K. Thus,

there exists x ∈N \K, and hence 〈x〉+K =M by the maximality of K. Thus, u= rx+a
for some r ∈ R and a∈K. Then, by hypothesis, a=u−rx is a unit, and hence K =M ,

which is a contradiction. Therefore, N ⊆ rad(M).
(i)⇒(iii). Let I be a presentation ideal ofN, that is,N = IM . Then, by the product of two

submodules (see [1, Definition 3.3]) and the hypothesis, we have M =NM = IM ·RM =
IM . On the other hand, by hypothesis, we have N ⊆ rad(M), and from Lemma 2.2 we

conclude that M = J(R)M . Thus, by Lemma 2.1, there exists an r ∈ J(R) such that

(1−r)M = 0, and hence M = 0 since 1−r is a unit in R.

(iii)⇒(iv). By [1, Corollary 3.22], K/N is a multiplication R-module. Now, it is easy to

verify that (K+N)/K(M/K) = M/K, and hence, by (iii), we must have M/K = 0, and

hence M =K.

(iv)⇒(i). Let K be any maximal submodule of M ; then K ⊆ NM +K. Consequently,

NM +M = M or NM +M = K by the maximality of K. If NM +K = M , then, by (iv),
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we must have K = M , a contradiction. Thus, K = NM +K, and hence N ⊆ NM ⊆ K.

Therefore, N is contained in every maximal submodule of M .

Definition 2.5. Let M be an R-module. A subset X of M is called a minimal gener-

ating set if 〈X〉 =M and no proper subset of X generates M .

Theorem 2.6 (second version of Nakayama lemma). Let M be a faithful multiplica-

tion R-module with a minimal generating set. Then, for every submodule N of M , the

following conditions are equivalent:

(i) N is contained in rad(M),
(ii) if NM =M , then M = 0,

(iii) if K is a submodule of M such that M =NM+K, then M =K.

Proof. (i)⇒(ii). Let X be a minimal generating set of M . If M ≠ 0, then consider

m1, m1 ≠ 0, by the minimality of X. Now, let I be a presentation ideal of N. Then

NM =M implies that N = IM ·M =M , and since M is faithful, by Lemma 2.2, we have

N ⊆ rad(M) = J(R)M , and hence M = J(R)M . Thus, m1 = j1m1+ j2m2+···+ jnmn,

ji ∈ J(R), mi ∈ X, whence j1m1 =m1. If n = 1, then (1−j1)m1 = 0; since 1−j1 is a

unit in R, m1 = 0, and for n> 1,

(
1−j1

)
m1 = j2m2+···+jnmn. (2.3)

Since 1−j1 is a unit in R,m1 = (1−j1)−1j2m2+···+(1−j1)−1jnmn. Thus, for n> 1,

m1 is a linear combination ofm2,m3, . . . ,mn. Consequently, {m2, . . . ,mn} generatesM ,

which contradicts the choice of X.

The proofs of (ii)⇒(iii) and (iii)⇒(i) are the same as the proofs of (iii)⇒(iv) and (iv)⇒(i)

of Theorem 2.4.
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