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For any univariate polynomial P whose coefficients lie in an ordinary differential field F of
characteristic zero, and for any constant indeterminate α, there exists a nonunique nonzero
linear ordinary differential operator R of finite order such that the αth power of each root
of P is a solution of Rzα = 0, and the coefficient functions of R all lie in the differential ring
generated by the coefficients of P and the integers Z. We call R an α-resolvent of P . The
author’s powersum formula yields one particular α-resolvent. However, this formula yields
extremely large polynomials in the coefficients of P and their derivatives. We will use the A-
hypergeometric linear partial differential equations of Mayr and Gelfand to find a particular
factor of some terms of this α-resolvent. We will then demonstrate this factorization on an
α-resolvent for quadratic and cubic polynomials.
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1. Introduction. Factoring polynomials in several variables is often a daunting, com-

putationally intensive task. When those variables bear certain algebraic relations among

each other, the factoring can become considerably easier. It is often the case that a poly-

nomial can be too big to factor on a computer, so algebraic identities must be used to

aid the factorization. In the case of computing a differential resolvent of a polynomial,

one often looks for the resolvent of lowest possible order and/or weight. We call such a

resolvent the Cohnian of the polynomial. The author in [9] has computed upper bounds

on the weight of the Cohnian for polynomials whose distinct roots are differentially in-

dependent over constants.

In order to get to the Cohnian, one must first use the powersum formula [10] to

compute a certain multiple of the Cohnian. This multiple is extremely large, resulting

in an intermediate blowup problem. For example, the Cohnian of a cubic polynomial

with three indeterminate coefficients fits on the 12 GB harddrive of a desktop computer.

But it is impossible to use the powersum formula with Mathematica 4.0 on an ordinary

desktop to compute a resolvent of such a cubic. This paper attempts to circumvent

the intermediate blowup problem by algebraically factoring some of the terms of the

resolvent with the use of partial differential equations, matrices, and a lot of linear

algebra. This factoring culminates in a reduction in the weight of some of the terms of

the resolvent by an amount given by (8.7) in Remark 8.3.

Definition 1.1. Let the Nth degree monic polynomial P(t) ≡∑N
i=0(−1)N−ieN−i ·ti

with coefficients e ≡ {ei}Ni=1 have n distinct roots {zj}nj=1. Let α be a transcendental

constant over the ordinary differential field, Q〈e〉, generated by the rational numbers
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Q and the coefficients e with derivation D. For each root zj , let yj denote a nonzero

solution of the logarithmic differential equation, Dyj/yj =α·(Dzj/zj).
Such a solution is guaranteed to exist by [3]. We call yj the αth power of the root zj .

For convenience, we will drop the index j and use the letter z to denote any one of the

roots {zj}nj=1. We will use y to denote any given integer power of z as well as the αth

power of z, depending upon the context.

By Theorem A.3 in the appendix (originally [7, Theorem 37, page 67]), there exist

linear ordinary differential equations of finite order of the form Ry ≡∑rm=0

∑Ω−m
i=0 Ri,m·

αiDmy = 0 such that eachy is a solution, all the coefficient functionsRi,m (terminology

of [7, page 725]) lie in Q〈e〉, and not all Ri,m are zero. In this equation, Ω ≡ r · (r −
1)/2+ 1, where the order r is greater than or equal to the number of y which are

linearly independent over constants. We call such a linear ordinary differential equation,

and any of its differential consequences, an αth-power ordinary differential resolvent

of the polynomial P , or simply an α-resolvent. By multiplying through by a common

denominator, we may take all the coefficient functions Ri,m of the resolvent R to lie in

Z{e}, the differential ring generated by the e over the ring of integers Z. We say such a

resolvent is integral. To perform the factorization in Theorem 8.2, we will need to use

several nonzero linear partial differential equations which are satisfied by each y and

whose terms lie in Q{e}. We call these linear partial differential equations αth-power

partial differential resolvents of P .

Definition 1.2. For any particular α-resolvent
∑
(i,m)Ri,m ·αiDmy = 0, denote by

S the set of pairs (i,m) such that Ri,m ≠ 0.

Under the stringent condition that the coefficient ring Z{e} is a unique factorization

domain, such as the case under study in this paper when all the roots of P are dif-

ferentially independent over constants, the weight of monomials in Z{e} is given by

Definition 3.4. We can then define the Cohnian of a polynomial as the particular α-

resolvent of P which is minimal first in order, then minimal in the weight of its terms.

(It is conjectured that one gets the same resolvent by minimizing by weight first and

then by order.) Specifically, there exists no common factor among the terms of the

Cohnian in the differential ring Z{e} except ±1. In the case when all the roots of P are

differentially independent over constants, r =N =n, Ω =n·(n−1)/2+1, and we will

denote the Cohnian by
∑n
m=0

∑Ω−m
i=0 θi,m ·αiDmy = 0, where gcd(i,m)∈S(θi,m)= 1. By [6,

Theorem 40, page 71] S equals the complete set of pairs (i,m) indicated in this dou-

ble summation, excluding (0,0). We will define Ω in Theorem A.3 for the more general

case of resolvents for polynomials whose roots’ αth powers bear linear relations over

constants. But until the appendix, we give

Ω = n·(n−1)
2

+1 (1.1)

as the formula for Ω, consistent with the definition given in Theorem A.3 in the case of

the Cohnian of a polynomial whose roots are differentially independent over constants.

If the distinct roots of P are differentially independent over constants, the author’s

powersum formula [10] yields a nonzero multiple
∑n
m=0

∑Ω−m
i=0 Fi,m · αiDmy = 0 of
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the Cohnian [7, Theorem 4.1] that has a weight many times larger than the weight of the

Cohnian. Under the more stringent condition that all the roots of P are differentially

independent over constants, Theorem 8.2, the main factorization theorem, assures us

that the determinant of a certain matrix, later called M, whose entries lie in Q{e}, di-

vides certain terms of the resolvent, specifically FΩ−m,m, F0,m, and F1,0. We will apply

Theorem 8.2 to a quadratic polynomial, in which all the terms happen to factor. We

conjecture that detM divides all the coefficient functions Fi,m in Q{e}. If so, we seek

formulae for the quotient ϑi,m from which we hope to extract yet another unknown

factor Ξ to arrive at the Cohnian θi,m. Thus, we wish to complete the factorization

Fi,m = (detM)·ϑi,m = (detM)·Ξ·θi,m. (1.2)

The author has also applied Theorem 8.2 in [6, Example 77, page 135] to a cubic poly-

nomial whose coefficients are differentially independent over constants. Theorem 8.2

guarantees that eight of the thirteen coefficient functions of the Cohnian of the cubic

possess the same factor. Massive computations with the computer algebra system Math-

ematica verified the conjecture that the determinant of M divides all thirteen coefficient

functions of the Cohnian. Unfortunately, the author was unsuccessful in reducing the

size of these programs for this particular case of the cubic for this paper. It is for this

reason that much algebraic work must still be done to factor resolvents before imple-

menting them on a computer algebra system. However, the author successfully tested

the conjecture on the particular cubic

z3−x ·z2+x2 ·z−(3x3+2x2−11x−10
)= 0 (1.3)

to be shown in Section 12.

The very first differential resolvent had been discovered by Sir James Cockle in 1860.

Writing on Cockle’s work, the Reverend Robert Harley coined the term differential resol-

vent in 1862 [2]. Both authors considered only polynomials in the ring Q(x)[t]. Since

then, the present author has related the first-power resolvent of a quadratic polynomial

to the nonlinear Riccati differential equation [8].

2. Weights, lengths, and multi-index notation for partial derivatives. Let N denote

the set of positive integers. LetN0 denote the set of nonnegative integers. For anyn∈N,

let Nn0 denote the set of ordered n-tuples of nonnegative integers.

Definition 2.1. For any m∈N, define [m]≡ {k∈N� 1≤ k≤m}.
Definition 2.2. For any m∈N0, define [m]0 ≡ {k∈N0 � 0≤ k≤m}.
Definition 2.3. For any integers i and j, define δi,j ≡ 1 if i= j and δi,j = 0 if i≠ j.

Definition 2.4. For any m∈N, let Im denote the m×m identity matrix.

Definition 2.5. For any matrix M, let M† denote its transpose, and let |M| or detM

denote its determinant. All rings and fields will be assumed to have characteristic zero.

Definition 2.6. For any finite set X, let |X| denote the size of X.



3078 JOHN MICHAEL NAHAY

Letn∈N. On the ordinary differential fieldQ〈e〉 apply the partial derivations {∂1,i}ni=1

such that ∂1,iej = δi,j . In other words, for each i∈ [n], ∂1,i is the natural derivation with

respect to ei holding all other ej≠i fixed. For eachm∈N, denote themth composition

of ∂1,i by ∂m1,i. For each k∈N0, define e(k)j ≡Dkej , where D0ej ≡ ej .
Let λ1, . . . ,λn,ı be n+1 nonnegative integers with ı ≥ ∑n

k=1λk. Let λ represent the

ordered n-tuple, (λ1, . . . ,λn) ∈ Nn0 . We will call n the dimension of λ. The multinomial

function is defined by

(
ı
λ

)
≡
(

ı
λ1, . . . ,λn

)
≡ ı!(
ı−∑nk=1λk

)
!·∏n

k=1λk!
. (2.1)

Definition 2.7. Define the weight of λ to be
∑n
k=1k·λk and denote it by |λ|.

Definition 2.8. Define the length of λ to be
∑n
k=1λk and denote it by �(λ).

These definitions and notations are related to the definitions and notations used in

[4] in the following way. Define a finite nonincreasing sequence, υ ≡ (υj), of positive

integers consisting of λk k’s for each k∈ [n]. Then, we say υ is a partition of the integer,

|λ|, with the same weight and length as λ. We say λk is the multiplicity of k in υ and

write υ = (1λ12λ2 ···nλn). For reference, there exist only finitely many λ ∈ Nn0 of any

given weight or any given length. The n-tuple (0)n is the only n-tuple with � = 0 and

w = 0.

Definition 2.9. For any λ∈Nn0 , define the partial derivative operator, ∂λ, on Q〈e〉
to be ∂λ1

1,1∂
λ2
1,2 ···∂λn1,n. Define the weight of ∂λ to be |λ| given by Definition 2.7. Define

the length or order of ∂λ to be �(λ) given by Definition 2.8.

By a well-known theorem in [5], we have the partial differential resolvent

∂λy = ∂σy (2.2)

if �(λ) = �(σ) and |λ| = |σ |. Hence, we may indicate the partial derivative operator,

∂λ, simply by the length, �, and weight, w, of λ and denote it by ∂�,w . We will separate

� and w in the subscript of ∂�,w with a comma. Hence, the derivation ∂1,j has length

1 and weight j for each j ∈ [n]. For any � ∈ N, ∂�,w exists only for w in the range,

� ≤w ≤ �·n. The unique partial derivative of order � and minimal weightw = � is ∂�,�.
The unique partial derivative of order � and maximal weight w = �·n is ∂�,�·n.

3. Powersums and the powersum formula. When the roots of P are distinct, for

each q ∈ Z, define the qth powersum of the roots to be pq ≡
∑n
j=1z

q
j . By the determi-

nantal formula given by [4, page 28], we have that pq ∈ Z[e], the nondifferential ring

generated by the e and Z, for each q ∈N0.

Definition 3.1. For any m∈N0, define Z{e}m to be the (nondifferential) ring gen-

erated by the coefficients e of the polynomial P of Definition 1.1, their derivatives up

through mth order, and the integers. Define Q{e}m to be the (nondifferential) ring

generated by e, their derivatives up through mth order, and the rationals.
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A differential ring must contain infinitely many derivatives of all its members.

Definition 1.1 implies Z{e}0 = Z[e] and Dmqipq ∈ Z{e}m ⊂ Z{e} for every m,i,q ∈N0.

From Section 5 onward it is important to remember that the derivation, D, is a

Z-homomorphic map D : Z{e}m → Z{e}m+1 which may be expressed as D =∑m
k=0

∑n
j=1 e

(k+1)
j (∂/∂e(k)j ) on the ring, Z{e}m, where we have extended the natural deriva-

tion, ∂1,iej = δi,j , to (∂/∂e(k)j )e
(l)
i ≡ δi,j ·δk,l. It is worth mentioning that Z{e}m is a par-

tial differential ring with derivations, ∂/∂e(k)j , with k∈ [m]0 and j ∈ [n], but does not

possess D as a derivation.

While partial differential resolvent (2.2) implies that ∂λy1 = ∂σy1 and ∂λy2 = ∂σy2,

when �(λ) = �(σ) and |λ| = |σ | it is important to note that ∂λ(y1y2) ≠ ∂σ (y1y2).
Hence, although it follows that ∂λpq = ∂σpq for all q ∈ Z by summing ∂λy = ∂σy over

all the roots of P , it does not follow that ∂λ(pq ·pr )= ∂σ (pq ·pr ).
For example, for the cubic z3−e1 ·z2+e2 ·z−e3 = 0, one easily sees that λ= (1,2,0)

and σ = (2,0,1) have equal length, �(λ) = �(σ) = 3, and equal weight, |λ| = 1 ·1+2 ·
2+3·0= 5, |σ | = 1·2+2·0+3·1= 5. So ∂λy = ∂1

1,1∂
2
1,2y = ∂2

1,1∂
1
1,3y = ∂σy is correct,

where y = zq for any q ∈ Z. But ∂λ(e1e2
2) = ∂1

1,1∂
2
1,2(e1e2

2) = 2 ≠ 0 = ∂2
1,1∂

1
1,3(e1e2

2) =
∂σ (e1e2

2). Henceforth, when we write ∂λ = ∂σ , we imply that this partial differential

resolvent and all other partial differential resolvents of P hold only when the operators

are applied to y or the powersums pq. We will omit the y or pq for convenience when

necessary.

Definition 3.2. Define Φ to be the number of nonzero coefficient-functions Ri,m in

a resolvent R =∑(i,m)Ri,m ·αi ·Dmy .

So Φ equals the size of the set S given by Definition 1.2.

Definition 3.3. Define Ψ ≡ Φ−1.

In general, one does not know a priori the value of Φ for a given polynomial until

one starts computing R. The powersum formula [10, Corollary 4.3] offers one possible

way to compute the Ri,m. To derive the formula, one first orders the pairs (i,m) in

S. Let sgn(i,m) denote the position of the pair (i,m) in this ordering. Then, one sets

Ri,m = Fi,m as in [10] to get the powersum formula

Ai,m ≡
[
Dm

′
qi

′
pq
]
(i′,m′)×q

(i′,m′)≠(i,m)
, Fi,m ≡ (−1)sgn(i,m) ·detAi,m. (3.1)

Here, Ai,m is the Ψ×Ψ matrix with rows labelled by (i′,m′) and columns labelled by q,

where we take q to lie in the smallest possible set of Ψ nonnegative integers, which is

[Ψ]. This is basically an application of Cramer’s rule.

Since qiDmpq ∈ Z{e} for every q ∈ N0, we could choose q not to lie in [Ψ] but to

lie in Γ for any subset Γ ⊂ N0 of Ψ distinct nonnegative integers. However, in the case

that the e are differentially independent over Z, the weight of monomials in Z{e} is well

defined.

Definition 3.4. Define the weight of the monomial s ·∏j,k(e
(k)
j )

πj,k with s ∈ Z,

s ≠ 0, and πj,k ∈N0 to be
∑
j,k j ·πj,k.
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By Definition 3.4 the weight of integers is zero. The weight of pq is q. Therefore

the powersum formula has been defined for any polynomial such that, in the case of

differentially independent roots, the formula yields a resolvent with terms in Z{e} of

minimal weight over all other possible choices of positive integers q. This will mini-

mize the amount of factoring necessary to get to the Cohnian. Since the polynomial

det[qiDmpq](i,m)×q is homogeneous of weight
∑
q∈Γ q, this weight is minimized by

choosing Γ = [Ψ] and equals Ψ ·(Ψ+1)/2.

4. Examples of low-order resolvents. By Theorem A.3 in the appendix, polynomials

whose n distinct roots have αth powers which are linearly independent over constants

possess differential resolvents of the following forms. By [6, Theorem 40, page 71] or

[7, Theorem 4.1], and in the smaller cases by direct computation, it is known that all

Fi,m ≠ 0 in each of these resolvents.

Two distinct roots. n = 2, Ω = 2, Φ = 5. P(t) = (t−u)πu ·(t−v)πv has a resol-

vent of the form

F0,2 ·D2y+(F0,1+F1,1 ·α
)·Dy+(F1,0 ·α+F2,0 ·α2)·y = 0. (4.1)

The set S given by Definition 1.2 for resolvent (4.1) is

{
(0,2),(0,1),(1,1),(1,0),(2,0)

}
. (4.2)

By [8, Theorem 1], the logarithmic derivative Dz/z satisfies the first-order inhomo-

geneous linear ordinary differential equation

F0,2 ·D
(
Dz
z

)
+F0,1 ·

(
Dz
z

)
+F1,0 = 0 (4.3)

and the quadratic polynomial

F0,2 ·
(
Dz
z

)2

+F1,1 ·
(
Dz
z

)
+F2,0 = 0. (4.4)

Three distinct roots. n = 3, Ω = 4, Φ = 13. P(t) = (t−u)πu(t−v)πv (t−w)πw
has a resolvent of the form

(
F0,3+F1,3 ·α

)·D3y+(F0,2+F1,2 ·α+F2,2 ·α2)·D2y

+(F0,1+F1,1 ·α+F2,1 ·α2+F3,1 ·α3)·Dy
+(F1,0 ·α+F2,0 ·α2+F3,0 ·α3+F4,0 ·α4)·y = 0.

(4.5)

The set S given by Definition 1.2 for resolvent (4.5) is

{
(0,3),(1,3),(0,2),(1,2),(2,2),(0,1),(1,1),(2,1),(3,1),(1,0),(2,0),(3,0),(4,0)

}
.

(4.6)
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By [8, Theorem 1], the logarithmic derivative Dz/z satisfies the second-order inho-

mogeneous linear ordinary differential equation

F0,3 ·D2
(
Dz
z

)
+F0,2 ·D

(
Dz
z

)
+F0,1 ·

(
Dz
z

)
+F1,0 = 0 (4.7)

and the cubic polynomial

F1,3 ·
(
Dz
z

)3

+F2,2 ·
(
Dz
z

)2

+F3,1 ·
(
Dz
z

)
+F4,0 = 0. (4.8)

Four distinct roots. n= 4, Ω = 7, Φ = 29. P(t)= (t−u)πu(t−v)πv (t−w)πw (t−
x)πx has a resolvent of the form

(
F0,4+F1,4 ·α+F2,4 ·α2+F3,4 ·α3)·D4y

+(F0,3+F1,3 ·α+F2,3 ·α2+F3,3 ·α3+F4,3 ·α4)·D3y

+(F0,2+F1,2 ·α+F2,2 ·α2+F3,2 ·α3+F4,2 ·α4+F5,2 ·α5)·D2y

+(F0,1+F1,1 ·α+F2,1 ·α2+F3,1 ·α3+F4,1 ·α4+F5,1 ·α5+F6,1 ·α6)·Dy
+(F1,0 ·α+F2,0 ·α2+F3,0 ·α3+F4,0 ·α4+F5,0 ·α5+F6,0 ·α6+F7,0 ·α7)·y = 0.

(4.9)

By [8, Theorem 1], the logarithmic derivative Dz/z satisfies the third-order inhomo-

geneous linear ordinary differential equation

F0,4 ·D3
(
Dz
z

)
+F0,3 ·D2

(
Dz
z

)
+F0,2 ·D

(
Dz
z

)
+F0,1 ·

(
Dz
z

)
+F1,0 = 0 (4.10)

and the quartic polynomial

F3,4 ·
(
Dz
z

)4

+F4,3 ·
(
Dz
z

)3

+F5,2 ·
(
Dz
z

)2

+F6,1 ·
(
Dz
z

)
+F7,0 = 0. (4.11)

Basically, [8, Theorem 1] says that the logarithmic derivatives of the roots satisfy an

inhomogeneous (n−1)th-order linear ordinary differential equation whose terms F0,m

and F1,0 are the coefficients of the lowest degree in α in the α-resolvent of P . By a slight

extension of the definition of a differential resolvent to include inhomogeneous linear

ordinary differential equations, we may say that the powersum formula (3.1) also yields

a 1-resolvent for the logarithmic derivatives of the roots of P . Also [8, Theorem 1] says

that the logarithmic derivatives of the roots satisfy the nth-degree polynomial whose

coefficients are the terms FΩ−m,m, which are the coefficients of the highest degree in α
in the α-resolvent of P . Therefore, [8, Theorem 1] provides a way of partially factoring

all the terms of a minimal-order inhomogeneous 1-resolvent and of finding the minimal

polynomial of the logarithmic derivatives of the roots of P over Q{e}.

5. Partial differential resolvents

Definition 5.1. Define the partial derivation operator Θ on the partial differential

field Q〈e〉 to be Θ≡∑nk=1k·ek ·∂1,k.
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Then we have the Euler-homogeneity partial differential resolvent

Θy =α·y or Θpq = q ·pq. (5.1)

In the next theorem, we use the A-hypergeometric partial differential resolvents of

Mayr [5] and Gelfand et al. [1] and their differential consequences to demonstrate that

all compositions of the derivations D and Θ can be expressed as linear combinations

over Q{e} of a certain set, ∂�,w , of partial derivatives of distinct weights. Although

explicit formulae have been determined, for instance in [6, Theorem 59, page 109], for

the expression of the operator DmΘi as a linear combination of the partial derivatives,

∂�,w , the computation of these formulae is not enlightening and involves no original

ideas. So, these formulae have been omitted. Furthermore, on simple examples, it is

easier to work out the formulae for DmΘi by hand, as we will do in Section 9 for a

quadratic polynomial. On more complicated examples, such as for the cubic polynomial

in Section 12, it is easier to use computer algebra systems, such as Mathematica, to

computeDmΘi. Rather than programming the explicit formulae, which involve multiple

summations over many n-tuples, it is easier to use the partial and total differentiation

capabilities of the computer algebra system to recursively compute as many DmΘi as

needed.

By induction on i and m, it is possible for the reader to determine that there exist

ψi,m,λ ∈ Z{e}m such that DmΘi =∑λψv,m,λ ·∂λ with the sum over all distinct λ ∈ Nn0 .

It is easy to see that ψi,m,λ ≠ 0 for only finitely many λ. Specifically ψi,m,λ = 0 for all

λ � �(λ) > i+m. In Theorem 5.2 we will collect terms in this summation and express

DmΘi as a linear combination overQ{e} of partial derivatives ∂λ over λ∈Nn0 of distinct

length and weight.

Theorem 5.2 will use the particular system [6, Theorem 49, page 100] of partial dif-

ferential resolvents of P ,

∂1,jy =−
n∑
i=0

ei ·∂2,i+jy for each j ∈ [n], j > 1. (5.2)

For lack of a published reference for partial differential resolvent (5.2), the author

credits the referees at the Journal of Symbolic Computation for pointing out that these

partial differential resolvents are simply the statement that the partial derivative, ∂1,jy ,

of a function with standard homogeneity 0 has homogeneity −1. By repeated differen-

tiation of partial differential resolvent (5.2), one may determine as in [6, Theorem 56,

page 105] the following partial differential resolvents of P for any �,w,� ∈ N with

� ≥w > � of the form

∂�,w =
κ=�∑
κ=w

fκ ·∂κ,κ+
κ=n·(�−�)+w∑

κ=�+1

fκ ·∂�,κ, (5.3)

where fσ ∈ Q[e] depend upon �, w, and �. We will use partial differential resolvent

(5.3) later to perform a simple computation for a quadratic polynomial. Partial differ-

ential resolvent (5.3) expresses a partial derivative of a given length and weight as a

linear combination of partial derivatives of higher lengths and weights.
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Theorem 5.2. Let i,m,� ∈N0 and � ≥ i+m> 0. Then

DmΘi =
�∑
κ=1

τ(i,m)×κ ·∂κ,κ+
n·�∑
κ=�+1

τ(i,m)×κ ·∂�,κ for some τ(i,m)×κ ∈Q{e}. (5.4)

Proof. By partial differential resolvent (2.2), we may write ∂λ = ∂�,w , where w =
|λ| and � = �(λ) are given by Definitions 2.7 and 2.8, respectively. In the summa-

tion DmΘi = ∑
λψi,m,λ · ∂λ with ψi,m,λ ∈ Z{e}m we collect together those n-tuples

λ ∈ Nn0 with a given weight w = |λ| and a given length � = �(λ). Define �i,m,�,w ≡∑
λ��(λ)=�
|λ|=w

ψi,m,λ ∈ Z{e}m. Then DmΘi =∑n·(i+m)w=1

∑min(i+m,w)
�=1 �i,m,�,w ·∂�,w .

We first separate out in this sum those partials whose length equals their weight. We

then express all partials, ∂�,w , with � >w in terms of partials with lengths and weights

in the range {(1,1),(2,2), . . . ,(�,�),(�,�+1), . . . ,(�,n·�)} using partial differential

resolvent (5.3). ThusDmΘi=∑�κ=1(
∑κ
�=1�i,m,�,κ)·fκ ·∂κ,κ+

∑
�,w �i,m,�,w

∑n·(�−�)+w
κ=�+� fκ ·

∂�,κ , where the natural condition w ≤n·� guarantees that κ ≤n·�. Define τ(i,m)×κ ≡
fκ ·

∑κ
�=1�i,m,�,κ ∈Q{e} for 1≤ κ ≤� and τ(i,m)×κ ≡ fκ ·

∑κ−n·(�−�)
w=1

∑min(w,i+m)
�=1 �i,m,�,w

∈Q{e} for �+1 ≤ κ ≤ n·�. Then DmΘi =∑�κ=1τ(i,m)×κ ·∂κ,κ+
∑n·�
κ=�+1τ(i,m)×κ ·∂�,κ .

Definition 5.3. For particular i,m, and�, a particular set A of partial derivatives

∂�,w represents the operator DmΘi if DmΘi can be expressed as a linear combination

over the differential ring Q{e} of the partials from A as in Theorem 5.2.

It is important to remember that the transition coefficients τ(i,m)×κ appearing in

Theorem 5.2 depend upon the choice of �. In Theorem 7.1, when we choose � = Ω,

we will use τ(i,m)×κ , and in Theorem 8.1, when we choose � = L, we will use τ̂(i,m)×κ .

6. Demonstration of Theorem 5.2

Example 6.1. Let P(t) = t3−e1 · t2+e2 · t−e3 be a cubic with three distinct roots.

Express D2y as a sum of terms in Q{e} times partial derivatives of y with respect to

e1, e2, and e3 of order up to � = 3 and with distinct weight up to n·� = 9.

Solution. We add no complications by considering the expansion of y = zα for

any indeterminate power α of any root z of P until the final computation to check

that both sides of the identity in Theorem 5.2 are equal. It is practically impossible to

write a formula for zα as a function of e1, e2, and e3 and then to explicitly compute

the partial derivatives of zα with respect to e1, e2, and e3. Instead, we test only the

final partial differential resolvent with a computer algebra system by applying the final

partial differential resolvent to at least nine powersums.

First apply

D = e′1
∂
∂e1

+e′2
∂
∂e2

+e′3
∂
∂e3

(6.1)

to y . Now apply D again, where this second derivative is given by

D = e′1
∂
∂e1

+e′2
∂
∂e2

+e′3
∂
∂e3

+e′′1
∂
∂e′1

+e′′2
∂
∂e′2

+e′′3
∂
∂e′3

(6.2)
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since e′1, e′2, and e′3 appear in Dy . By partial differential resolvent (2.2) we may equate

partial derivatives of equal order and weight. In this case, ∂2y/∂e1∂e3 = ∂2y/∂e2
2. For

a quadratic, there are no distinct partial derivatives of equal length (order) and weight,

since

∂u+v

∂eu1 ∂e
v
2
= ∂u′+v′

∂eu′1 ∂e
v′
2

⇐⇒ {u+v =u′ +v′, 1·u+2·v = 1·u′ +2·v′}
⇐⇒ {u=u′, v = v′}.

(6.3)

Thus, we chose a cubic to demonstrate distinct partials of equal length and weight.

We get

D2y = (e′1)2 ∂2y
∂e2

1

+2e′1e
′
2
∂2y
∂e1∂e2

+
(
2e′1e

′
3+

(
e′2
)2
) ∂2y
∂e1∂e3

+2e′2e
′
3
∂2y
∂e2∂e3

+(e′3)2 ∂2y
∂e2

3

+e′′1
∂y
∂e1

+e′′2
∂y
∂e2

+e′′3
∂y
∂e3
,

(6.4)

where we have ordered second-order and then first-order partial derivatives by in-

creasing weight. In the notation of Section 5, the coefficient of the partial derivative

∂λ1+λ2+λ3y/∂eλ1
1 ∂e

λ2
2 ∂e

λ3
3 is ψ0,2,λ.

Example 6.1 requests that we expand these partial derivatives of y as sums over the

ringQ{e1,e2,e3} of partial derivatives ofy of order up through� = 3. More specifically,

we wish to expand these partial derivatives of y as sums over the ring Q{e1,e2,e3} of

the n·� = 9 partial derivatives

{
∂1,1, . . . ,∂�,�,∂�,�+1, . . . ,∂�,n·�

}
= {∂1,1,∂2,2,∂3,3,∂3,4,∂3,5,∂3,6,∂3,7,∂3,8,∂3,9

}
=
{
∂y
∂e1
,
∂2y
∂e2

1

,
∂3y
∂e3

1

,
∂3y
∂e2

1∂e2
,
∂3y
∂e2

1∂e3
= ∂3y
∂e1∂e2

2

,

∂3y
∂e1∂e2∂e3

= ∂
3y
∂e3

2

,
∂3y
∂e1∂e2

3

= ∂3y
∂e2

2∂e3
,
∂3y
∂e2∂e2

3

,
∂3y
∂e3

3

}
.

(6.5)

To do this we apply partial differential resolvent (5.2) with j ∈ {2,3},

∂1,2y =−
3∑
i=0

ei ·∂2,i+2y, ∂1,3y =−
3∑
i=0

ei ·∂2,i+3y, (6.6)

and their differential consequences. In traditional notation,

∂y
∂e2

=−∂
2y
∂e2

1

−e1 · ∂2y
∂e1∂e2

−e2 · ∂
2y
∂e2

2

−e3 · ∂2y
∂e2∂e3

, (6.7)

∂y
∂e3

=− ∂2y
∂e1∂e2

−e1 · ∂
2y
∂e2

2

−e2 · ∂2y
∂e2∂e3

−e3 · ∂
2y
∂e2

3

. (6.8)

We may apply ∂/∂e1, ∂/∂e2, and ∂/∂e3 to (6.7) and (6.8) to get six higher-order differen-

tial consequences. One of the resulting six partial differential resolvents is redundant
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because ∂2y/(∂e1∂e3) = ∂2y/∂e2
2 and another is redundant because ∂2y/(∂e2∂e3) =

∂2y/(∂e3∂e2). Thus we get four distinct partial differential resolvents

∂2y
∂e1∂e2

=−∂
3y
∂e3

1

− ∂2y
∂e1∂e2

−e1 · ∂3y
∂e2

1∂e2
−e2 · ∂3y

∂e1∂e2
2

−e3 · ∂3y
∂e1∂e2∂e3

, (6.9)

∂2y
∂e2

2

=− ∂3y
∂e2

1∂e2
−e1 · ∂3y

∂e1∂e2
2

− ∂
2y
∂e2

2

−e2 · ∂
3y
∂e3

2

−e3 · ∂3y
∂e2

2∂e3
, (6.10)

∂2y
∂e2∂e3

=− ∂3y
∂e2

1∂e3
−e1 · ∂3y

∂e1∂e2∂e3
−e2 · ∂3y

∂e2
2∂e3

− ∂2y
∂e2∂e3

−e3 · ∂3y
∂e2∂e2

3

, (6.11)

∂2y
∂e2

3

=− ∂3y
∂e1∂e2∂e3

−e1 · ∂3y
∂e2

2∂e3
−e2 · ∂3y

∂e2∂e2
3

−e3 · ∂
3y
∂e3

3

− ∂
2y
∂e2

3

. (6.12)

Solving for the second-order partials, we get the following formulae. In the notation of

Theorem 5.2,

∂2,w = ∂�,w =
n·(�−�)∑
σ=0

fσ ·∂�,σ+w =
3∑
σ=0

fσ ·∂�,σ+w for w ∈ {3,4,5,6}, (6.13)

∂2y
∂e1∂e2

= 1
2

(
− ∂

3y
∂e3

1

−e1 · ∂3y
∂e2

1∂e2
−e2 · ∂3y

∂e1∂e2
2

−e3 · ∂3y
∂e1∂e2∂e3

)
, (6.14)

∂2y
∂e2

2

= 1
2

(
− ∂3y
∂e2

1∂e2
−e1 · ∂3y

∂e1∂e2
2

−e2 · ∂
3y
∂e3

2

−e3 · ∂3y
∂e2

2∂e3

)
, (6.15)

∂2y
∂e2∂e3

= 1
2

(
− ∂3y
∂e2

1∂e3
−e1 · ∂3y

∂e1∂e2∂e3
−e2 · ∂3y

∂e2
2∂e3

−e3 · ∂3y
∂e2∂e2

3

)
, (6.16)

∂2y
∂e2

3

= 1
2

(
− ∂3y
∂e1∂e2∂e3

−e1 · ∂3y
∂e2

2∂e3
−e2 · ∂3y

∂e2∂e2
3

−e3 · ∂
3y
∂e3

3

)
. (6.17)

If we substitute (6.14), (6.15), and (6.16) into (6.7) for the second-order partial deriva-

tives, we get

∂y
∂e2

=−∂
2y
∂e2

1

+ 1
2
e1
∂3y
∂e3

1

+ 1
2

(
e2

1+e2
) ∂3y
∂e2

1∂e2
+ 1

2

(
2e1e2+e3

) ∂3y
∂e1∂e2

2

+ 1
2

(
2e1e3+e2

2

)∂3y
∂e3

2

+e2e3 · ∂3y
∂e2

2∂e3
+e2

3
∂3y
∂e2∂e2

3

.
(6.18)

If we substitute (6.14), (6.15), (6.16), and (6.17) into (6.8) for the second-order partial

derivatives, we get

∂y
∂e3

= 1
2
∂3y
∂e3

1

+e1
∂3y
∂e2

1∂e2
+ 1

2

(
e2

1+2e2
) ∂3y
∂e1∂e2

2

+(e1e2+e3
)∂3y
∂e3

2

+1
2

(
2e1e3+e2

2

)· ∂3y
∂e2

2∂e3
+e2e3

∂3y
∂e2∂e2

3

+ 1
2
e2

3
∂3y
∂e3

3

.
(6.19)
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Now substitute (6.18) and (6.19) for the first-order partial derivatives and (6.14), (6.15),

(6.16), and (6.17) for the second-order partial derivatives into equation (6.4), and com-

bine terms to get

D2y = e′′1 ·
∂y
∂e1

+
((
e′1
)2−e′′2

)∂2y
∂e2

1

+
(
−e′1e′2+

1
2
e1e′′2 +

1
2
e′′3
)
∂3y
∂e3

1

+
(
−e1e′1e

′
2−e′1e′3−

1
2

(
e′2
)2+e1e′′3 +

1
2
e2

1e
′′
2 +

1
2
e2e′′2

)
∂3y
∂e2

1∂e2

+
(
−e2e′1e

′
2−e1e′1e

′
3−

1
2
e1
(
e′2
)2−e′2e′3+e1e2e′′2 +

1
2
e3e′′2 +

1
2
e2

1e
′′
3 +e2e′′3

)
∂3y
∂e1∂e2

2

+
(
−e3e′1e

′
2−e2e′1e

′
3−

1
2
e2
(
e′2
)2−e1e′2e

′
3−

1
2

(
e′3
)2

+e1e3e′′2 +
1
2
e2

2e
′′
2 +e1e2e′′3 +e3e′′3

)
∂3y
∂e3

2

+
(
−e3e′1e

′
3−

1
2
e3 ·

(
e′2
)2−e2e′2e

′
3−

1
2
e1
(
e′3
)2+e2e3e′′2 +e1e3e′′3 +

1
2
e2

2e
′′
3

)
∂3y
∂e2

2∂e3

+
(
−e3e′2e

′
3−

1
2
e2
(
e′3
)2+ 1

2
e2

3e
′′
2 +e2e3e′′3

)
∂3y
∂e2∂e2

3

+
(

1
2
e2

3e
′′
3 −

1
2
e3
(
e′3
)2
)
∂3y
∂e3

3

.

(6.20)

If we now specialize α to a positive integer q and sum over the three roots of P , we

may replace y with the qth powersum pq. With Mathematica one can easily recursively

compute the first twenty powersums as polynomials of e1, e2, and e3. One can then

easily verify that this partial differential resolvent holds for these powersums. In the

notation of Theorem 5.2, τ(0,2)×1 = e′′1 , τ(0,2)×2 = (e′1)2 − e′′2 , . . . ,τ(0,2)×9 = (1/2)e2
3e
′′
3 −

(1/2)e3(e′3)2.

7. Trivial factorization of the powersum formula. Now we return to the problem

of finding the Cohnian,
∑n
m=0

∑Ω−m
i=0 θi,m ·αiDmy = 0, of a polynomial P of degree n

whose roots are differentially independent over constants. By an easy extension of basic

algebra to differential algebra (see [6, Theorem 1, page 23]) the roots of P are differen-

tially independent over constants if and only if the coefficients e of P are differentially

independent over constants. So, we may refer interchangeably to either the roots or the

coefficients of P as being differentially independent over constants. Reformulating the

notation in Section 1, the set S of indices of the nonzero coefficients in the Cohnian

equals {(i,m) � i+m ∈ [Ω], m ∈ [n]0, i ≥ 0}, where Ω = n · (n− 1)/2+ 1. So, by

Definition 3.2 for Φ as the size of the set S and for Ψ as the dimension of the matrices

appearing in the powersum formula (3.1), we see that Ψ =n·Ω and Φ =n·Ω+1.

We wish to present first a “trivial” factorization theorem. We refer to it as trivial

because the determinant of the matrix that factors from the matrix Ai,m in (3.1) has

no weight if q is taken to span the set [Ψ]. In other words, this determinant is just an

integer.
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Theorem 7.1 (trivial factorization theorem). Fix a pair (i,m)∈ S. Then the matrix,

[Dm′qi′pq](i′,m′)×q, with columns indexed by q ∈ [Ψ] and rows indexed by (i′,m′)∈ S �
(i′,m′)≠ (i,m), factors over the differential ring, Q{e}, as

[
Dm

′
qi

′
pq
]
(i′,m′)×q

= [τ(i′,m′)×κ
]·[∂1,1pq ··· ∂Ω,Ωpq ∂Ω,Ω+1pq ··· ∂Ω,Ψpq

]
q∈[Ψ] .

(7.1)

The factor
[
∂1,1pq ··· ∂Ω,Ωpq ∂Ω,Ω+1pq ··· ∂Ω,Ψpq

]
q∈[Ψ] is a Ψ × Ψ upper-

triangular matrix with entries in Z{e}. The factor [τ(i,m)×κ] is a Ψ×Ψ matrix with entries

in Q{e}n.

Proof. By Theorem 5.2, we haveDmΘipq =
∑�
κ=1τ(i,m)×κ ·∂κ,κpq+

∑n·�
κ=�+1τ(i,m)×κ ·

∂�,κpq with τ(i,m)×κ ∈Q{e}n. Setting� =Ω gives us DmΘipq =
∑Ω
κ=1τ(i,m)×κ ·∂κ,κpq+∑Ψ

κ=Ω+1τ(i,m)×κ ·∂Ω,κpq. So

[
DmΘipq

]
(i,m)×q =

[
τ(i,m)×κ

]·[∂1,1pq ··· ∂Ω,Ωpq ∂Ω,Ω+1pq ··· ∂Ω,Ψpq
]
q∈[Ψ] .

(7.2)

It is obvious that the entries ∂�,wpq lie in Z[e].

In Theorem 8.1 we will be interested in an important variation of Theorem 7.1, in

which we choose � = Ω−1 instead of � = Ω, and ignore the powersums. Define the

1×Ψ row vector,
⇀
p ≡ [pq]q∈[Ψ], of powersums. In Theorem 8.1 we will define the Ψ×1

column vector of partial derivatives AΩ ≡ {∂�,w � � =w ∈ [Ω]}⋃{∂Ω,w � Ω+1 ≤w ≤
Ψ}.

Definition 7.2. If Mleft is a matrix whose (i,j) entry is
∑
�,w h

i,j
�,w ·∂�,w with hi,j�,w ∈

Q{e} and Mright is a matrix whose (j,k) entry is gj,k ∈ Z[e], then the operator ∗ is

defined such that Mleft∗Mright is the matrix whose (i,k) entry is
∑
j
∑
�,w h

i,j
�,w ·∂�,wgj,k.

Similarly, ifMleft is a matrix whose (i,j) entry is
∑
u,v h

i,j
u,v ·DuΘv with hi,ju,v ∈Q{e} and

Mright is a matrix whose (j,k) entry is gj,k ∈ Z[e], then the operator ∗ is defined such

that Mleft∗Mright is the matrix whose (i,k) entry is
∑
j
∑
u,v h

i,j
u,v ·DuΘvgj,k.

Then we may write the right factor Ψ×Ψ matrix in (7.1)
[
∂1,1pq ··· ∂Ω,Ωpq ∂Ω,Ω+1pq ··· ∂Ω,Ψpq

]
q∈[Ψ] (7.3)

as the product of a Ψ×1 with a 1×Ψ matrix AΩ∗⇀p. We will use this shorter notation as

much as possible from now on. By Theorem 7.1, the term det(AΩ∗⇀p)∈ Z[e] factors out

of det[DmΘipq](i,m)×q, leaving ±det([τ(i,m)×κ]) ∈ Q{e} as the quotient. The isobaric

weight of the entry ∂�,wpq in AΩ∗⇀p is q−w if q ≥w and ∂�,wpq = 0 if q <w. When q =
w, it is well known that ∂�,wpq =w!∈N. Since AΩ∗⇀p is upper-triangular, det(AΩ∗⇀p)
is just the product of the entries down its main diagonal

∏Ψ
w=1w!.

The matrix, [τ(i′,m′)×κ](i′,m′)≠(i,m), in Theorem 7.1 is the transition matrix expressing

the operators, DmΘi, that appear in the powersum formula (3.1) in terms of the basis

of Ψ distinct partial derivatives A.
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The reader might consider it unnecessary to use the powersums of the roots, and

hence the powersum formula (3.1), to find the terms of a resolvent since the problem has

been reduced to finding a linear combination of the operators, DmΘi, over Z{e}. This is

true in the case under consideration, when the roots are differentially independent over

constants. However, the powersum formula (3.1) is indeed useful for finding resolvents

of polynomials whose roots may bear unknown relations. Furthermore, even in the case

when the roots are differentially independent over constants, it turns out that it is much

easier and faster on a computer algebra system to compute total derivatives and partial

derivatives of the powersums with respect to the polynomial coefficients, e, than to

compute such derivatives of a transcendental element like y . As a demonstration, the

author will use these powersums to compute the terms in a resolvent of a particular

cubic polynomial in Section 12.

8. The main factorization theorem. We now wish to expand these ordinary deriv-

ative operators DmΘi as sums of the partial derivative operators ∂�,w with respect to

the coefficients e of the polynomial P given by Definition 1.1. First, we must count the

number of distinct partial derivative operators ∂�,w needed to represent a particular

ordinary derivative operator DmΘi appearing effectively in the Cohnian.

Theorem 8.1. For any � ∈ [Ω], define ℵ� ≡ {DmΘi � (i,m) ∈ S, i+m ∈ [�]}
to be the subset of ordinary derivative operators DmΘi corresponding to the derivative

operators αiDm appearing effectively in the α-resolvent
∑n
m=0

∑Ω−m
i=0 Fi,m ·αiDmy = 0

of P , constrained by i+m≤�. For this same �, define A� ≡ {∂�,�}�=��=1

⋃{∂�,w}w=n·�w=�+1

to be the set of partial derivative operators needed to represent the derivative operators

in ℵ� . Let L denote the unique minimal positive integer such that |ℵL| = |AL|. Then

L=n·(n−1)/2.

Proof. By Theorem 5.2, for any � ≥ i+m, the operator DmΘi can be expressed

as a linear combination over Q{e} of the partial derivatives {∂�,�}�=��=1

⋃{∂�,w}w=n·�w=�+1, a

total of n·� partial derivatives. Thus |A�| =n·�. By directly counting the number of

indices (i,m) in the set ℵ� ≡ {DmΘi � (i,m)∈ S, i+m∈ [�]} we find that

∣∣ℵ�∣∣=−1+
n∑
m=0

(�−m+1)=n·�+�− n·(n−1)
2

, (8.1)

where the initial −1 accounts for the fact that (0,0) �∈ S. Hence, |ℵ�| = |A�| if and only

if n·� = n·�+�−n·(n−1)/2 if and only if � = n·(n−1)/2. So L = n·(n−1)/2.

Now give the elements of the sets ℵ� and A� defined in the proof of Theorem 8.1

an ordering. Using these definitions of ℵ� and A� , we will consider the following three

vectors in Theorem 8.2: the (n·L)×1 vector

ℵL =
{
DmΘi � (i,m)∈ S, i+m∈ [L]}, (8.2)

the (n·L)×1 vector

AL =
{
∂�,w �w = � ∈ [L]}⋃{

∂�,w � � = L, w ∈ [n·L]�w >L}, (8.3)
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and the Ψ×1 vector

AΩ =
{
∂�,w �w = � ∈ [Ω]}⋃{

∂�,w � � =Ω, w ∈ [n·Ω]�w >Ω}. (8.4)

We remind the reader that S = {(i,m) � i+m ∈ [Ω], m ∈ [n]0, i ≥ 0}. Let SL ⊂ S
denote the subset of S, SL ≡ {(i,m)� i+m∈ [L], m∈ [n]0, i≥ 0}.

Setting � = L in Theorem 5.2 gives us DmΘi = ∑L
κ=1 τ̂(i,m)×κ · ∂κ,κ +

∑n·L
κ=Ω τ̂(i,m)×κ ·

∂L,κ for some τ̂(i,m)×κ ∈ Q{e}. Define the n ·L×n ·L transition matrix with entries in

Z{e}

M≡ [τ̂(i′,m′)×κ
]
(i′,m′)∈S�i′+m′∈[L],κ∈[n·L]. (8.5)

Then M is the transition matrix, M : AL → ℵL, from the vector of partial derivatives

AL given by (8.3) to the vector of ordinary derivatives ℵL given by (8.2). So we may

write ℵL = M ·AL. For future reference, we note that ℵΩ is simply the complete set of

Φ operators, DmΘi, appearing in the resolvent. Theorem 8.1 guarantees that M is a

square matrix, and therefore detM is defined.

Theorem 8.2 (main factorization theorem). Let P(t) ≡ ∑n
i=0(−1)n−ien−i · ti be a

monic polynomial whose coefficients {ei}ni=1 are differentially independent over Z with

respect to the derivation D. Let
∑n
m=0

∑Ω−m
i=0 Fi,m ·αiDmy = 0, F0,0 = 0, be the differential

resolvent of P given by the powersum formula (3.1). Let M be defined by (8.5). Let S∼ ⊂ S
denote the subset of 2n+2 terms in the resolvent, {(0,m)}nm=1

⋃{(1,0)}⋃{(i,m) � i+
m=Ω}nm=0. Then a common factor of Fi,m, for each (i,m)∈ S∼, is the determinant of M.

In other words, for each (i,m)∈ S∼, detM divides Fi,m in the ring Q{e}.

Proof. Fix (i,m)∈ S∼. Let
⇀
p ≡ (p1, . . . ,pΨ ) denote the 1×Ψ row vector of the first Ψ

powersums.

By partial differential resolvent (5.3) with � = L, we may express any ∂�,w with w ≤
Ψ as a linear combination over Q[e] of ∂�′,w′ ∈ AΩ. In other words, there exists an

n·L×Ψ transition matrix, N : AΩ → AL, with entries inQ[e], such that AL =N∗AΩ. Then

M∗N : AΩ → ℵL, so ℵL = (M∗N)∗AΩ. Let Λi,m denote the Ψ ×1 vector of operators,

{Dm′Θi′ � (i′,m′)∈ S, (i′,m′)≠ (i,m)}, appearing in the powersum formula (3.1).

Case 1. (i,m)∈ S∼ � i+m=Ω.
In this case Λi,m =

[ ℵL
Ri,m

]
, where Ri,m = {Dm′ΘΩ−m′ , m′ ∈ [n]0, m′ ≠ m} is the

column of n operators obtained from Λi,m by removing ℵL. Let Ti,m be the n×Ψ tran-

sition matrix consisting of entries in Z{e} from AΩ to the set of n operators Ri,m. So

Ri,m = Ti,m ∗AΩ. Then Λi,m =
[

M∗N∗AΩ
Ti,m∗AΩ

]
=
[

M∗N
Ti,m

]
∗AΩ =

[
M 0
0 In

]
∗
[

N
Ti,m

]
∗AΩ. So by

(3.1) Ai,m = Λi,m∗ ⇀
p and Fi,m = detAi,m = det

([
M 0
0 In

]
∗
[

N
Ti,m

]
∗ (AΩ ∗ ⇀

p)) = det(M) ·
det

[
N

Ti,m

])
·det(AΩ∗⇀p) after a suitable ordering of the rows of Ti,m.

Case 2. (i,m)∈ S∼ � i= 0.

Define ℵLΘ ≡ {Dm′Θi′Θ � Dm′Θi′ ∈ ℵL} = {Dm′Θi′+1 � (i′,m′) ∈ S, i′ +m′ ∈ [L]}.
Then Λi,m =

[ ℵLΘ
Ri,m

]
, where Ri,m is the column of n operators with entries taken from
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the vector {Dm′ , m′ ∈ [n], m′ ≠m}⋃{Θ} which were obtained from Λi,m by removing

ℵLΘ. We have ℵLΘ = M∗ALΘ, where ALΘ ≡ {∂�,wΘ � ∂�,w ∈ P} is an n ·L×1 column

vector of partial derivative operators. Since the order of the derivative operators in ALΘ
is less than or equal to L+1 = Ω, we know there exists an n ·L×Ψ transition matrix

Ñ : AΩ → ALΘ with entries in Q[e], such that ALΘ = Ñ∗AΩ. So ℵLΘ = (M∗ Ñ)∗AΩ. Let

Ti,m be the n×Ψ transition matrix consisting of entries in Z{e} from AΩ to the set of

n operators Ri,m. So Ri,m = Ti,m∗AΩ. Then

Λi,m =
[

M∗Ñ

Ti,m

]
∗AΩ. (8.6)

So Fi,m = detAi,m = det
([

M 0
0 In

]
∗
[

Ñ
Ti,m

]
∗ (AΩ∗ ⇀

p)
)
= det(M) ·det

[
Ñ

Ti,m

]
·det(AΩ∗ ⇀

p)
after a suitable ordering of the rows of Ti,m.

Case 3. (i,m)= (1,0)∈ S∼.

We have Λi,m =
[ℵLΘ
Ri,m

]
, where Ri,m = (Dm′)nm′=1. The matrix algebra is the same as

in Case 2. So detM divides Fi,m in Q{e} for all (i,m)∈ S∼.

Remarks 8.3. Theorem 8.2 is [6, Theorem 62, page 114]. Observe that the determi-

nant of the matrix M has weight
∑n·L
κ=1κ = n ·L(n ·L+1)/2. Therefore, the weight of

Fi,m÷detM equals

Ψ(Ψ+1)
2

− n·L(n·L+1)
2

=n· n
3−n2+n+1

2
. (8.7)

Therefore, Theorem 8.2 has reduced the weight for those terms of the resolvent indexed

by (i,m)∈ S∼ from sextic in n to quartic in n.

9. Quadratic resolvent by the powersum formula

Example 9.1. Let P(t)≡ t2−e1 ·t+e2 be a quadratic polynomial whose coefficients

e1 and e2 are differentially independent over Q. So n = 2, L = n · (n−1)/2 = 1, Ω =
L+1= 2, Ψ =n·Ω= 4, and Φ = 1+Ψ = 5. The discriminant of P is ∆= e2

1−4e2. Later we

will let the prime ′ denote differentiation by D. The first four powersums are given in

terms of the elementary symmetric functions by p1 = e1, p2 = e2
1−2e2, p3 = e3

1−3e1e2,

and p4 = e4
1−4e2

1e2+2e2
2. Define

⇀
p ≡

[
p1 p2 p3 p4

]
. (9.1)

Theorem 8.2 allows us to factor those terms of the resolvent indexed by S∼ = {(0,1),
(0,2),(1,0),(1,1),(2,0)}. Thus, for the quadratic, S∼ = S, so all the terms factor by

Theorem 8.2. The form of the Cohnian is given by (4.1) as

θ0,2 ·D2y+(θ0,1+θ1,1 ·α
)·Dy+(θ1,0 ·α+θ2,0 ·α2)·y = 0. (9.2)

First we will show how the powersum formula (3.1) works. Then we will factor it with

the help of Theorem 8.2.
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Specializing α to the integers [Ψ]= {1,2,3,4} in this resolvent and summing each of

the resulting four equations over the two roots yields the system of four equations

θ0,2 ·D2p1+
(
θ0,1+θ1,1 ·1

)·Dp1+
(
θ1,0 ·1+θ2,0 ·12)·p1 = 0,

θ0,2 ·D2p2+
(
θ0,1+θ1,1 ·2

)·Dp2+
(
θ1,0 ·2+θ2,0 ·22)·p2 = 0,

θ0,2 ·D2p3+
(
θ0,1+θ1,1 ·3

)·Dp3+
(
θ1,0 ·3+θ2,0 ·32)·p3 = 0,

θ0,2 ·D2p4+
(
θ0,1+θ1,1 ·4

)·Dp4+
(
θ1,0 ·4+θ2,0 ·42)·p4 = 0.

(9.3)

This is a system of four homogeneous linear equations in the five variables, θi,m. We

may now solve for the terms θi,m. First set Fi,m to be the appropriate cofactor of the

4×5 matrix [Dm′qi′pq](i′,m′)∈S
q∈[4]

. This yields the powersum formula (3.1) for Fi,m. Then

factor each Fi,m over Z{e} to get θi,m such that the only factor common to all five θi,m
is ±1. By (3.1),

A0,2 ≡



Dp1 1·Dp1 1p1 12p1

Dp2 2·Dp2 2p2 22p2

Dp3 3·Dp3 3p3 32p3

Dp4 4·Dp4 4p4 42p4


 ,

A0,1 ≡



D2p1 1·Dp1 1p1 12p1

D2p2 2·Dp2 2p2 22p2

D2p3 3·Dp3 3p3 32p3

D2p4 4·Dp4 4p4 42p4


 , A1,1 ≡



D2p1 Dp1 1p1 12p1

D2p2 Dp2 2p2 22p2

D2p3 Dp3 3p3 32p3

D2p4 Dp4 4p4 42p4


 ,

A1,0 ≡



D2p1 Dp1 1·Dp1 12p1

D2p2 Dp2 2·Dp2 22p2

D2p3 Dp3 3·Dp3 32p3

D2p4 Dp4 4·Dp4 42p4


 , A2,0 ≡



D2p1 Dp1 1·Dp1 1p1

D2p2 Dp2 2·Dp2 2p2

D2p3 Dp3 3·Dp3 3p3

D2p4 Dp4 4·Dp4 4p4


 .

(9.4)

Then the powersum formula (3.1) gives F0,2 = detA0,2, F0,1 = −detA0,1, F1,1 = detA1,1,

F1,0 =−detA1,0, and F2,0 = detA2,0. We have kept the columns of the matricesAi,m in the

same order as the corresponding terms in the Cohnian, namely,D2 �D �αD �α�α2.

We have also indexed the rows of Ai,m by q, where q is the weight of the powersum pq,
in order for the reader to see more clearly how the powersum formula works. However,

for reasons that will become apparent later, we will prefer to work with a new matrix

Ai,m, rather than with Ai,m, where Ai,m is the transpose of Ai,m after the columns of

Ai,m have been permuted a certain way.

By Theorem 8.2, AL is the n ·L×1 = 2×1 vector of partial derivatives
[∂1,1
∂1,2

]
, where

∂1,1 = ∂/∂e1 and ∂1,2 = ∂/∂e2, ℵL is the n ·L×1 = 2×1 vector
[
D
Θ

]
, and M is the 2×2



3092 JOHN MICHAEL NAHAY

transition matrix from AL to ℵL. AΩ is the Ψ×1= 4×1 vector of partial derivatives



∂1,1

∂2,2

∂2,3

∂2,4


 , where ∂2,2 = ∂2

∂e2
1

, ∂2,3 = ∂2

∂e1∂e2
, ∂2,4 = ∂2

∂e2
2

. (9.5)

By Definition 5.1 we have Θ = 1·e1 ·(∂/∂e1)+2·e2 ·(∂/∂e2) = e1 ·∂1,1+2·e2 ·∂1,2 and

D = e′1(∂/∂e1)+e′2(∂/∂e2)= e′1∂1,1+e′2∂1,2 when acting onQ(e1,e2). Thus M=
[
e′1 e′2

1·e1 2·e2

]
since M∗AL =

[
e′1 e′2

1·e1 2·e2

]
∗
[∂1,1
∂1,2

]
=
[
D
Θ

]
= ℵL.

10. Expansion of the partial derivatives for the quadratic. In order to compute

the various compositions of D and Θ, we note that ∂i,j∂k,l = ∂i+k,j+l, so ∂1,1∂1,1 = ∂2,2,

∂1,1∂1,2 = ∂2,3, and ∂1,2∂1,2 = ∂2,4. We need to express the partial derivatives comprising

AL in terms of the partial derivatives comprising AΩ. The only partial derivative not in

common between AL and AΩ is ∂1,2, so this is the only partial derivative that needs to be

expressed in terms of the others. Choosing j = 2 in partial differential resolvent (5.2),

which corresponds to � = 1, w = 2, and � = 2 in (5.3), we get

∂1,2 =−
(
∂2,2+e1 ·∂2,3+e2 ·∂2,4

)
. (10.1)

We may now compute the n·L×Ψ = 2×4 transition matrix N from AΩ to AL such that

AL =N∗AΩ. We find that

[
∂1,1

∂1,2

]
=
[

1 0 0 0

0 −1 −e1 −e2

]
∗



∂1,1

∂2,2

∂2,3

∂2,4


 (10.2)

so

N=
[

1 0 0 0

0 −1 −e1 −e2

]
. (10.3)

We may also compute the n·L×Ψ = 2×4 transition matrix Ñ from AΩ to ALΘ such that

ALΘ= Ñ∗AΩ. We have

ALΘ=
[
∂1,1Θ
∂1,2Θ

]
=
[
∂1,1

(
e1∂1,1+2e2∂1,2

)
∂1,2(e1∂1,1+2e2∂1,2)

]
=
[
∂1,1+e1∂2,2+2e2∂2,3

e1∂2,3+2∂1,2+2e2∂2,4

]
. (10.4)

So

ALΘ=
[

∂1,1+e1∂2,2+2e2∂2,3

e1∂2,3−2
(
∂2,2+e1 ·∂2,3+e2 ·∂2,4

)+2e2∂2,4

]
=
[
∂1,1+e1 ·∂2,2+2e2 ·∂2,3

−2·∂2,2−e1 ·∂2,3

]
.

(10.5)
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So

[
∂1,1Θ
∂1,2Θ

]
=
[

1 e1 2e2 0

0 −2 −e1 0

]


∂1,1

∂2,2

∂2,3

∂2,4


 . (10.6)

So

Ñ=
[

1 e1 2e2 0

0 −2 −e1 0

]
. (10.7)

We may now express each of the DmΘi in terms of the partials comprising AΩ. We

will express all monomials in the order e1 ≺ e2 ≺ e′1 ≺ e′2 ≺ e′′1 ≺ e′′2 :

Θ= e1 ·∂1,1−2e2 ·∂2,2−2e1e2 ·∂2,3−2e2
2 ·∂2,4, (10.8)

D = e′1 ·∂1,1−e′2 ·∂2,2−e′2e1 ·∂2,3−e′2e2 ·∂2,4, (10.9)

D2 =
(
e′′1

∂
∂e′1

+e′′2
∂
∂e′2

+e′1
∂
∂e1

+e′2
∂
∂e2

)(
e′1
∂
∂e1

+e′2
∂
∂e2

)
, (10.10)

which implies

D2 = e′′1
∂
∂e1

+e′′2
∂
∂e2

+(e′1)2 ∂2

∂e2
1

+2
(
e′1e

′
2

) ∂2

∂e1∂e2
+(e′2)2 ∂2

∂e2
2

(10.11)

or

D2 = e′′1 ∂1,1+e′′2 ∂1,2+
(
e′1
)2∂2,2+2

(
e′1e

′
2

)
∂2,3+

(
e′2
)2∂2,4. (10.12)

So

D2 = e′′1 ∂1,1−e′′2
(
∂2,2+e1∂2,3+e2∂2,4

)+(e′1)2∂2,2+2
(
e′1e

′
2

)
∂2,3+

(
e′2
)2∂2,4 (10.13)

or

D2 = e′′1 ∂1,1+
((
e′1
)2−e′′2

)
·∂2,2+

(
2e′1e

′
2−e1e′′2

)·∂2,3+
((
e′2
)2−e2e′′2

)·∂2,4. (10.14)

DΘ= (e′1(∂/∂e1)+e′2(∂/∂e2))(e1(∂/∂e1)+2e2(∂/∂e2)), which implies

DΘ= e′1
∂
∂e1

+2e′2
∂
∂e2

+e1e′1
∂2

∂e2
1

+(2e2e′1+e1e′2
) ∂2

∂e1∂e2
+2e2e′2

∂2

∂e2
2

(10.15)

or

DΘ= e′1∂1,1+2e′2∂1,2+e1e′1∂2,2+
(
2e2e′1+e1e′2

)·∂2,3+2e2e′2∂2,4, (10.16)

or, after using (10.2) to replace ∂1,2,

DΘ= e′1∂1,1−2e′2
(
∂2,2+e1∂2,3+e2∂2,4

)+e1e′1∂2,2+
(
2e2e′1+e1e′2

)·∂2,3+2e2e′2∂2,4

(10.17)
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or

DΘ= e′1∂1,1+
(
e1e′1−2e′2

)·∂2,2+
(
2e2e′1−e1e′2

)·∂2,3+0·∂2,4. (10.18)

Θ2 = (e1 ·∂1,1+2e2 ·∂1,2)(e1 ·∂1,1+2e2 ·∂1,2), which implies

Θ2 = e1 ·∂1,1+4e2 ·∂1,2+e2
1 ·∂2,2+4e1e2 ·∂2,3+4e2

2 ·∂2,4. (10.19)

So

Θ2 = e1 ·∂1,1−4e2 ·
(
∂2,2+e1∂2,3+e2∂2,4

)+e2
1 ·∂2,2+4e1e2 ·∂2,3+4e2

2 ·∂2,4 (10.20)

or

Θ2 = e1 ·∂1,1+
(
e2

1−4e2
)·∂2,2+0·∂2,3+0·∂2,4. (10.21)

We may summarize these partial derivative relations by

ℵΩ ≡




D2

D
DΘ
Θ
Θ2



=




e′′1
(
e′1
)2−e′′2 2e′1e

′
2−e1e′′2

(
e′2
)2−e2e′′2

e′1 −e′2 −e1e′2 −e2e′2
e′1 e1e′1−2e′2 2e2e′1−e1e′2 0

e1 −2e2 −2e1e2 −2e2
2

e1 e2
1−4e2 0 0



·



∂1,1

∂2,2

∂2,3

∂2,4


= Σ·AΩ,

(10.22)

where Σ is defined as the Φ×Ψ = 5×4 transition matrix [τ(i,m)×κ](i,m)∈S
κ∈[Ψ]

from the vector

of partial derivatives AΩ to the vector of total derivatives ℵΩ as defined in Theorem 8.1.

(We defined Σ here in the application to a quadratic since we do not really need it

elsewhere.)

11. Factoring the quadratic resolvent by Theorem 8.2. If a matrix A is an odd per-

mutation of the rows of a matrix B, then write A≈−B. If a matrix A is an even permu-

tation of the rows of a matrix B, then write A≈ B. If A≈−B, then det(A)=−det(B). If

A≈ B, then det(A)= det(B). Then we have A†0,2 ≈−A0,2 =−Λ0,2∗⇀p, where

Λ0,2 =




DΘ

Θ2

D

Θ



=




[
D
Θ

]
Θ[

D
Θ

]

=


ℵLΘ
ℵL


=


M·(ALΘ)

M·AL




=

M·(Ñ∗AΩ

)
M·(N∗AΩ

)

=


M 0

0 M


∗


Ñ

N


∗AΩ.

(11.1)
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We have just shown that detM factors out of detA0,2 twice. A†0,1 ≈Λ0,1∗⇀p, where

Λ0,1 =




DΘ

Θ2

Θ

D2








D
Θ


Θ
Θ

D2


=


ℵLΘ
R0,1


=


M∗(ALΘ)

R0,1


=


M 0

0 I2


∗


 Ñ

T0,1


∗AΩ. (11.2)

A†1,1 ≈−Λ1,1∗⇀p, where

Λ1,1 =



D
Θ
Θ2

D2


=

[ ℵL
R1,1

]
=
[

M∗AL
R1,1

]
=
[

M 0

0 I2

]
∗
[

N

T1,1

]
∗AΩ. (11.3)

A†1,0 ≈Λ1,0∗⇀p, where

Λ1,0 =



DΘ
Θ2

D2

D







[
D
Θ

]
Θ

D2

D


=

[ℵLΘ
R1,0

]
=
[

M∗(ALΘ)
R1,0

]
=
[

M 0

0 I2

]
∗
[

Ñ

T1,0

]
∗AΩ. (11.4)

A†2,0 ≈−Λ2,0∗⇀p, where

Λ2,0 =



D
Θ
D2

DΘ


=

[ ℵL
R2,0

]
=
[

M∗AL
R2,0

]
=
[

M 0

0 I2

]
∗
[

N

T2,0

]
∗AΩ. (11.5)

We remark that T0,1 is the 4th and 1st rows of Σ, T1,1 is the 5th and 1st rows of Σ, T1,0

is the 1st and 2nd rows of Σ, and T2,0 is the 1st and 3rd rows of Σ. Thus

F0,2 =−det
(
Λ0,2∗⇀p

)=−(detM)2 ·det

[
Ñ

N

]
·det

(
AΩ∗⇀p

)
, (11.6)

F0,1 =−det
(
Λ0,1∗⇀p

)=−(detM)·det

[
Ñ

T0,1

]
·det

(
AΩ∗⇀p

)
, (11.7)

F1,1 =−det
(
Λ1,1∗⇀p

)=−(detM)·det

[
N

T1,1

]
·det

(
AΩ∗⇀p

)
, (11.8)

F1,0 =−det
(
Λ1,0∗⇀p

)=−(detM)·det

[
Ñ

T1,0

]
·det

(
AΩ∗⇀p

)
, (11.9)

F2,0 =−det
(
Λ2,0∗⇀p

)=−(detM)·det

[
N

T2,0

]
·det

(
AΩ∗⇀p

)
. (11.10)

Division of each coefficient function Fi,m by det(M)·det(AΩ∗⇀p) yields θi,m, the coef-

ficient functions of the Cohnian of P . We note that AΩ∗⇀p is a 4×4 upper-triangular ma-

trix whose main diagonal equals
[
∂1,1p1 ∂2,2p2 ∂2,3p3 ∂2,4p4

] = [
1 2 −3 4

]
.
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Therefore det(AΩ∗⇀p)=−24.

θ0,2 =−(detM)·det

[
Ñ

N

]
=−

∣∣∣∣∣ e
′
1 e′2

1·e1 2·e2

∣∣∣∣∣·
∣∣∣∣∣∣∣∣∣∣

1 0 0 0

0 −1 −e1 −e2

1 e1 2e2 0

0 −2 −e1 0

∣∣∣∣∣∣∣∣∣∣
=
∣∣∣∣∣1·e1 2·e2

e′1 e′2

∣∣∣∣∣·e2 ·∆,

(11.11)

θ0,1 =−det

[
Ñ

T0,1

]
=−

∣∣∣∣∣∣∣∣∣∣

1 e1 2e2 0

0 −2 −e1 0

e1 −2e2 −2e1e2 −2e2
2

e′′1
(
e′1
)2−e′′2 2e′1e

′
2−e1e′′2

(
e′2
)2−e2e′′2

∣∣∣∣∣∣∣∣∣∣
, (11.12)

θ1,1 =−det

[
N

T1,1

]
=−

∣∣∣∣∣∣∣∣∣∣

1 0 0 0

0 −1 −e1 −e2

e1 e2
1−4e2 0 0

e′′1
(
e′1
)2−e′′2 2e′1e

′
2−e1e′′2

(
e′2
)2−e2e′′2

∣∣∣∣∣∣∣∣∣∣
, (11.13)

θ1,0 =−det

[
Ñ

T1,0

]
=−

∣∣∣∣∣∣∣∣∣∣

1 e1 2e2 0

0 −2 −e1 0

e′′1
(
e′1
)2−e′′2 2e′1e

′
2−e1e′′2

(
e′2
)2−e2e′′2

e′1 −e′2 −e1e′2 −e2e′2

∣∣∣∣∣∣∣∣∣∣
, (11.14)

θ2,0 =−det

[
N

T2,0

]
=−

∣∣∣∣∣∣∣∣∣∣

1 0 0 0

0 −1 −e1 −e2

e′′1
(
e′1
)2−e′′2 2e′1e

′
2−e1e′′2

(
e′2
)2−e2e′′2

e′1 e1e′1−2e′2 2e′1e2−e1e′2 0

∣∣∣∣∣∣∣∣∣∣
. (11.15)

The weight of each Fi,m is Ψ ·(Ψ+1)/2= 10. We factored out 24·detM to obtain θi,m
which has weight 7. One can divide the Cohnian by the leading term to get a nonintegral

monic resolvent, D2y+(g0,1+g1,1 ·α)·Dy+(g1,0 ·α+g2,0 ·α2)·y = 0. One can show

that

g0,1 =−DWW + 1
2
D∆
∆
+De2

e2
, (11.16)

g1,1 =−De2

e2
, (11.17)

g1,0 = 1
2

(
De2

e2
·
(
DW
W

− 1
2
D∆
∆

)
−D

2e2

e2

)
, (11.18)

g2,0 = 1
2

(
DW
W

·D∆
∆
−D

2∆
∆

)
−g1,0, (11.19)

where W ≡
∣∣∣1·e1 2·e2
e′1 e′2

∣∣∣=−detM is
√
∆/α·eα−1

2 times the Wronskian.

12. Factoring a cubic by Mathematica. We will now present an example which re-

quires the use of a computer algebra system to test the conjecture that the determinant

of the matrix M given by (8.5) in Section 8 divides every term of the resolvent obtained
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by the powersum formula (3.1). Consider the cubic (3.1) in z

z3−x ·z2+x2 ·z−(3x3+2x2−11x−10
)= 0 (12.1)

with Dx = 1. The form of the third-order α-resolvent of a general cubic was given by

(4.5) where n = 3, Ω = 4 by (1.1), and L = 3. Let g(x) denote the greatest common

divisor in the ring Z[x] of all thirteen Fi,m in this resolvent.

Let M denote the 9×9 transition matrix from the 9×1 column vector of partial dif-

ferential operators AL ≡ [∂1,1,∂2,2,∂3,3,∂3,4,∂3,5,∂3,6,∂3,7,∂3,8,∂3,9]† to the 9×1 column

vector of operators ℵL ≡ [D,Θ,D2,DΘ,Θ2,D3,D2Θ,DΘ2,Θ3]†. One first computes the

entries of M as elements of Q{e1,e2,e3} and then specializes e1 → x, e2 → x2, e3 →
(3x3 + 2x2 − 11x− 10), e′1 → 1, and so forth. Since ℵL = M∗AL, we may apply this

9× 1 vector to the 1× 9 row vector of the first nine powersums
⇀
p to get the 9× 9

matrix M ≡ ℵL⇀p = M ∗ (AL⇀p). Since AL
⇀
p is a 9 × 9 upper-triangular matrix whose

main diagonal is [1,2,6,−8,10,−12,14,−16,18] we have that det(M) = −46448640 ·
det(M) = 214 · 34 · 51 · 71 ·det(M). The computer directly computes M, not M, since

M= [Dm′qi′pq](i′,m′)×q,1≤q≤9

Dm
′
qi
′∈ℵ3

is very easy to compute.

The author used Mathematica 4.0 for Students on a Dell Dimension XPS R400 com-

puter, Windows 98. The computation time was about 5 minutes. The computer found

that

g(x)= 231 ·39 ·52 ·71 ·111 ·(−2+x)·x2 ·(1+x)·(5+3x) (12.2)

·(−15−11x+x2)11 ·ψ(x)·φ(x), (12.3)

where

φ(x)≡ (2700+5940x+2187x2−2688x3−1520x4+296x5+204x6), (12.4)

ψ(x)≡ (−10−11x+2x2+6x3
)
, and det(M)= 222 ·35 ·51 ·71 ·x2(−15−11x+x2)10 ·

ψ(x). So degx g(x)= 36. One sees that det(M), and hence det(M), divides g in the ring

Q[x]. Therefore, the conjecture has been verified for P(t) ≡ t3−x ·t2+x2 ·t−(3x3+
2x2−11x−10).

We also note from the output of this program that the leading term in the resolvent

F0,3+α·F1,3 equals

(−2+x)·(1+x)·(5+3x)·(−15−11x+x2)2

·φ(x)·(ψ(x)+α(50+55x−10x2−18x3)). (12.5)

At x ∈ {2,−1,−5/3} and the roots of −15−11x+x2 and φ(x), the powersum formula

fails, since the formula yields an identically zero differential equation. However, for

all powers, α ≠ 1/5, there exist roots of (ψ(x)+α · (50+55x−10x2−18x3)) which

are not roots of g(x). These yield the apparent singularities of the resolvent. At α =
1/5, F0,3+α·F1,3 reduces to (12/5)x3 whose only root is x = 0, which satisfies g(0)= 0.
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Appendix. We now state two theorems regarding the existence and form of resol-

vents for any polynomial with differentiable coefficients. We will prove in a nonrigorous

manner the main result of the second theorem asserting the maximal degree of α.

Theorem A.1. Let P(t) ≡∑Ni=0(−1)N−ieN−i ·ti be an Nth-degree polynomial over a

d-field, F, with n distinct roots {zj}nj=1. Let α be either a transcendental indeterminate

over F with Dα = 0 or an integer. For each j ∈ [n], let yj be a nonzero solution to

the ordinary differential equation, zj ·Dyj = α ·yj ·Dzj . Define o to be the maximal

number of the y ≡ {yj}nj=1 which are linearly independent over constants. Then there

exists a nonzero oth-order α-resolvent, R, of P with terms in Z{e}o[α]. Furthermore, no

α-resolvent of P has order less than o.

Remarks A.2. This is [6, Theorem 16, page 39]. Theorem A.1 asserts a little more

than the well-known result that there exists a linear ordinary differential equation of

order o which is satisfied by any set of o functions which are linearly independent over

constants. One has to work through the details that the terms of this linear ordinary

differential equation lie in the desired differential ring.

Theorem A.3. Let P(t)≡∑Ni=0(−1)n−ieN−i ·ti ∈ F[t] be a polynomial of degree N in

t over a d-field, F, with n distinct roots {zi}ni=1. Then there exists an oth-order differential

resolvent, ℘y ≡∑om=0

∑Ω−m
i=0 Ri,m ·αiDmy = 0, with Ri,m ∈ Z{e}o and R0,0 = 0 for some

o ∈ [n] where Ω is defined to be o(o−1)/2+1. Furthermore, o may be chosen to equal

the number of {yj}nj=1 linearly independent over constants.

Proof. If P(t) ≡ tv · P(t), where P(t) has no zero roots, then P and P have the

same differential coefficient field Q〈e〉 and the same nonzero roots. The zero roots

of P satisfy the resolvent of P , since a resolvent is a homogeneous linear ordinary

differential equation. So P and P have the same resolvent. So, henceforth, assume v = 0.

Write P(t)=∏n
i=1(t−zi)πt .

Define

bk ≡
(−1

)m
∣∣∣Dpm/m pm+i

∣∣∣m×i,1≤m≤n
i≠k,0≤i≤n−1∣∣pm+i∣∣m×i,1≤m≤n

0≤i≤n−1

= (−1
)m

∣∣∣∑nj=1πj ·zm−1
j Dzj

∑n
j=1πj ·zm+ij

∣∣∣m×i,1≤m≤n
i≠k,0≤i≤n−1∣∣∣∑nj=1πj ·zm+ij

∣∣∣m×i,1≤m≤n
0≤i≤n−1

.

(A.1)

By definition, bk ∈Q〈e〉. Factoring the denominator and numerator yields

bk = (−1)m

∣∣∣πj ·zmj
∣∣∣
m×j ·

∣∣∣z−1
j ·Dzj zij

∣∣∣
j×i,i≠k,0≤i≤n−1∣∣πj ·zmj ∣∣m×j ·∣∣zij∣∣j×i,0≤i≤n−1

= (−1)m

∣∣∣z−1
j ·Dzj zij

∣∣∣
i×j,i≠k,0≤i≤n−1∣∣zij∣∣i×j,0≤i≤n−1

.

(A.2)
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Thus bk is simply the Cramer’s rule solution of the system of n linear equations

Dzj/zj =
∑n−1
k=0 bk ·zkj for each j ∈ [n].

For any root z, define B11(z) ≡
∑n−1
k=0 bk ·zk. Then Dzα = α ·zα · (Dz/z) = α ·zα ·

B11(z). So the hypothesis that Dmzα/zα is a polynomial in α over Q〈e〉[z] of de-

gree at most m is true for m = 1. Assume that Dmzα = zα ·∑ml=1αl ·Bl,m(z), where

Bl,m(z)∈Q〈e〉[z]. ThenDm+1zα = (Dzα)·∑ml=1αl·Bl,m(z)+zα·
∑m
l=1αl·DBl,m(z)=α·

zαB1,1(z)·
∑m
l=1αl ·Bl,m(z)+zα ·

∑m
l=1αl ·DBl,m(z)= zα ·

∑m+1
l=1 αl ·(B1,1(z)·Bl−1,m(z)+

DBl,m(z)), where B0,m(z)≡ 0 form∈ [n] and Bm+1,m(z)≡ 0. So the hypothesis is true

for all m.

Define B0,0(z)≡ 1. Let o denote the maximal number of {yi}ni=1 = {zαi }ni=1 which are

linearly independent over constants. Let {yi}oi=1 = {zαi }oi=1 be linearly independent over

constants. Each of the {zαi }oi=1 clearly satisfies the linear ordinary differential equation

�y ≡
∣∣∣Dmzαi Dmy

∣∣∣i×m,1≤i≤o
0≤m≤o

(A.3)

=
( o∏
i=1

zαi

)
·
o∑

m=0

∣∣∣∣∣
m′∑
l=0

αl ·Bl,m′
(
zi
)∣∣∣∣∣ i×m′
m′≠m,0≤m′≤o

·Dmy = 0. (A.4)

The remaining {zαi }ni=o+1 also satisfy this linear ordinary differential equation because

they are linear combinations of {zαi }oi=1 over constants. The leading term of � is

W ≡ ∣∣Dmzαi ∣∣i×m,1≤i≤o
0≤m≤o−1

(A.5)

=
( o∏
i=1

zαi

)
·
∣∣∣∣∣
o−1∑
l=0

αl ·Bl,m′
(
zi
)∣∣∣∣∣i×m′,1≤i≤0

0≤m′≤o−1

, (A.6)

the Wronskian of �. Since the {zαi }oi=1 are linearly independent over constants, W ≠ 0.

Let

Rm ≡

∣∣∣∑m′
l=0αl ·Bl,m′

(
zi
)∣∣∣ i×m′
m′≠m,0≤m′≤o∣∣∣∑o−1

l=0 αl ·Bl,m′
(
zi
)∣∣∣i×m′,1≤i≤o

0≤m′≤o−1

. (A.7)

Then �y/W =Doy+∑o−1
m=0Rm ·Dmy and Rm ∈Q〈e〉(z1, . . . ,zo,α). Since Rm no longer

involves the αth power of z, we may apply each automorphism σ in the Galois group

G of P to this equation and sum the resulting equations to get R̂y ≡∑σ∈Gσ(�/W)y =
|G| ·Doy +∑o−1

m=0 Rm ·Dmy , where the terms Rm of R̂ now lie in Q〈e〉(α) since they

are now fixed under the action of any element in G. Since |G| ≠ 0, R̂ is not identically

zero. So R̂ is a resolvent of P . Clearing denominators of R̂ yields an integral resolvent

R whose terms lie in Z{e}o. This proves Theorem A.1.

The resolvent R̂ is a rational function ofα. Because we have summed over all elements

in the Galois group to get R̂, when we clear denominators to get R we will get a resolvent

which will be a polynomial in α of degree much greater than the result desired in

Theorem A.3. Therefore, we must try a different approach which is quite similar to the

standard proof of the existence of a resolvent for an irreducible polynomial which uses

the existence of a basis for any vector space over Q〈e〉(α).
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Write
∑m
l=0αl ·Bl,m(z) =

∑n−1
k=0 zk ·Em,k, where Em,k ∈ Q〈e〉[α], E0,k = 1, for all k ∈

[n−1]0. Let the first r rows of the n×(n+1)matrix [Em,k] m×k
0≤m≤n

0≤k≤n−1

be linearly indepen-

dent over Q〈e〉(α) and let the first r +1 rows be dependent. Note that the condition

that E0,k = 1, for all k∈ [n−1]0, guarantees that r > 0. So the (r+1)×(n+1) submatrix

[Em,k] m×k
0≤m≤r

0≤k≤n−1

has rank r . Then this submatrix has an r ×r submatrix E= [Em,k]0≤m≤r
k∈K

for some subset K ⊂ [n−1]0 such that detE≠ 0. Hence,

�y ≡
r∑

m=0

∣∣Em′,k′
∣∣

0≤m′≤r ,m′≠m
k′∈K

·(−1)m ·Dmy

=
r∑

m=0

n−1∑
k=0

zk
∣∣Em′,k′

∣∣
0≤m′≤r ,m′≠m

k′∈K
·(−1)m ·Em,k

=
n−1∑
k=0

zk ·
r∑

m=0

∣∣Em′,k′
∣∣

0≤m′≤r ,m′≠m
k′∈K

·(−1)m ·Em,k =
n−1∑
k=0

zk ·∣∣Em,k′∣∣ m×k′
0≤m≤r
k′∈K⋃{k}

.

(A.8)

But the (r +1)× (r +1) determinant |Em,k′ |m×k′,0≤m≤r
k′∈K⋃{k}

= 0 since [Em,k]m×k,0≤m≤r
0≤k≤n−1

has

rank r . So�y=0. Since the leading term of� is detE≠ 0, and since |Em′,k′ |0≤m′≤r ,m′≠m
k′∈K

∈
Q〈e〉[α], � is a resolvent.

Since degαEm,k ≤m, it follows that degα |Em′,k′ |0≤m′≤r ,m′≠m
k′∈K

≤∑ri=0 i−m = r · (r +
1)/2−m. Since B0,m′(z)≡ 0 for each m′ ∈ [n], α divides Em′,k′ for each m′ ∈ [n] and

each k′ ∈K. So, for eachm∈ [r], we can factor α out of them′th row of |Em′,k′ |0≤m′≤r
m′≠m
k′∈K

for each m′ ∈ [r], m′ ≠m. Thus we can factor αr−1 out of |Em′,k′ |0≤m′≤r ,m′≠m
k′∈K

. By a

similar reasoning, we can factor αr out of |Em′,k′ |m′∈[r]
k′∈K

, the coefficient of y in �y . Thus

the resolvent ℘≡α−(r−1) ·� has the form

℘y =
r∑

m=0

Ω−m∑
i=0

Ri,m ·αiDmy, (A.9)

where Ω ≡ r ·(r +1)/2−(r −1)= r ·(r −1)/2+1. This proves Theorem A.3.

Remarks A.4. Theorem A.3 is [6, Theorem 37, page 67]. We used the letter B to

suggest base field. Referees at several other journals suggested using the left greatest

common divisors of the differential resolvents of the irreducible factors of P to prove

Theorem A.3. However, even for an irreducible polynomial, one would still have to go

through the steps in this proof to get the bounds on the degree in α. A greater com-

plication is proving that the resulting linear ordinary differential equation is in fact a

resolvent of P . The resolvents of the irreducible factors of P lie in the differential co-

efficient fields of the individual factors. But it is very difficult to prove that the terms

of some combination of these resolvents lie in the differential coefficient field of the

original polynomial P .
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