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Some mixed-type reverse-order laws for the Moore-Penrose inverse of a matrix product are
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If A and B are a pair of invertible matrices of the same size, then the product AB
is nonsingular, too, and the inverse of the product AB satisfies the reverse-order law

(AB)−1 = B−1A−1. This law can be used to find the properties of (AB)−1, as well as

to simplify various matrix expressions that involve the inverse of a matrix product.

However, this formula cannot trivially be extended to the Moore-Penrose inverse of

matrix products. For a general m×n complex matrix A, the Moore-Penrose inverse A†

of A is the unique n×m matrix X that satisfies the following four Penrose equations:

(i) AXA=A,

(ii) XAX =X,

(iii) (AX)∗ =AX,

(iv) (XA)∗ =XA,

where (·)∗ denotes the conjugate transpose of a complex matrix. A matrix X is called a

{1}-inverse (inner inverse) ofA if it satisfies (i) and is denoted byA−. General properties

of the Moore-Penrose inverse can be found in [2, 4, 16].

LetA and B be a pair of matrices such thatAB exists. In many situations, one needs to

find the Moore-Penrose inverse of the product AB and its properties. Because A†A, BB†,
and BB†A†A are not necessarily identity matrices, the relationship between (AB)† and

B†A† is quite complicated and the reverse-order law (AB)† = B†A† does not necessarily

hold. Therefore, it is not easy to simplify matrix expressions that involve the Moore-

Penrose inverse of matrix products. Theoretically speaking, for any matrix product AB,

the Moore-Penrose inverse (AB)† can be written as

(AB)† = B†A† or (AB)† = B†A†+X, (1)

where X is a residue matrix. For these two situations, one can consider the following

two problems:

(I) necessary and sufficient conditions for (AB)† = B†A† to hold,
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(II) if (AB)† ≠ B†A†, find possible expressions of X in (AB)† = B†A† +X, and then

determine necessary and sufficient conditions for (AB)† = B†A†+X to hold.

The investigation of the Moore-Penrose inverse of the product AB was started in

1960s. For the standard situation (AB)† = B†A†, a well-known result due to Greville [9]

asserts that

(AB)† = B†A† ⇐⇒R(A∗AB)⊆R(B), R(BB∗A∗)⊆R(A∗), (2)

where R(·) denotes the range (column space) of a matrix. Many other equivalent con-

ditions for (AB)† = B†A† to hold can be found in [2, 4, 16, 26]. Generally speaking, the

two range inclusions in (2) are strict conditions for any pair of matrices A and B to

satisfy. Therefore, it is necessary to seek various weaker reverse-order laws for (AB)†

to satisfy. In addition to (2), (AB)† may satisfy some other mixed-type reverse-order

laws. For example,

(AB)† = (A†AB)†(ABB†)†,
(AB)† = B†(A†ABB†)†A†, (AB)† = B∗(A∗ABB∗)†A∗. (3)

These reverse-order laws were studied in [6, 8, 11, 26]. Although these matrix equalities

are more complicated than the law in (2), the conditions for these equalities to hold are

weaker than that for (2) to hold. In fact, mixed-type reverse-order laws also stem from

various reasonable operations for the Moore-Penrose inverse of matrix products (see

Remark 10). Although (AB)† can be written as (AB)† = B†A† +X in general, it is not

easy to give an explicit expression for the residue matrix X for the given matrices A
and B. Some discussion for the expression of X and its properties were given in [8].

In the investigation of (AB)†, we observe that a possible expression for (AB)† is

(AB)† = B†A†−B†[(In−BB†)(In−A†A)]†A†. (4)

A direct motivation for us to find out the residue matrix in (4) arises from two different

decompositions of the following block matrix:

M =
[
In B
A 0

]
(5)

and its generalized inverses. In fact, it is easy to verify that M can be decomposed as

the following two forms:

M =
[
In 0

A Im

][
In 0

0 −AB

][
In B
0 Ik

]
:= P1N1Q1,

M =
[
In

(
In−BB†

)
A†

0 Im

][
T B
A 0

][
In 0

B† Ik

]
:= P2N2Q2,

(6)
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where T = (In − BB†)(In −A†A). From these two decompositions, one can find two

{1}-inverses of M as follows:

M− =Q−1
1 N†1P

−1
1 =

[
In −B
0 Ik

][
In 0

0 −(AB)†
][

In 0

−A Im

]

=
[

In B(AB)†

(AB)†A −(AB)†
]
,

M− =Q−1
2 N†2P

−1
2 =

[
In 0

−B† Ik

][
T † A†

B† 0

][
In −(In−BB†)A†
0 Im

]

=
[

T † A†−T †A†
B†−B†T † B†T †A†−B†A†

]
.

(7)

These two {1}-inverses of M are not necessarily equal. Therefore, it is natural to con-

sider under what conditions the two {1}-inverses of M in (7) are equal; or some blocks

of them are equal. The mixed-type reverse-order law (4) is noticed by comparing the

lower right blocks of (7).

Because the right-hand side of (4) involves complicated matrix operations, it is not

easy to establish necessary and sufficient conditions for (4) to hold by definitions, as

well as various matrix decompositions associated withA, B, andAB. In the investigation

of various problems on generalized inverses of matrices, the present author notices that

the rank of matrix is a simple and powerful method for dealing with the relationship

between any two matrix expressions involving generalized inverses. In fact, any two

matrices A and B of the same size are equal if and only if r(A−B) = 0, where r(·)
denotes the rank of a matrix. If one can find some nontrivial formulas for the rank

of A− B, then necessary and sufficient conditions for A = B to hold can be derived

from these rank formulas. This method can be used for investigating the relations

between any two matrix expressions that involve generalized inverses. Several simple

rank formulas for the differences of matrices found by the present author are given

below:

r
(
AkA†−A†Ak)= r

[
Ak

A∗

]
+r[Ak,A∗]−2r(A),

r
(
A∗A†−A†A∗)= r(AA∗A2−A2A∗A

)
,

r
(
AB−ABB†A†AB)= r[A∗,B]+r(AB)−r(A)−r(B),

r
(
[A,B]†−

[
A†

B†

])
= r[AA∗B,BB∗A],

r
(
[A,B]†[A,B]−

[
A†A 0

0 B†B

])
= r(A)+r(B)−r[A,B],

min
A−,B−

r
(
A−−B−)= r(A−B)−r

[
A
B

]
−r[A,B]+r(A)+r(B),

(8)
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where [A,B] denotes a row block matrix; see Tian [20, 23, 25, 26]. The significance of

these simple rank formulas is: they connect different matrix expressions through the

rank of these matrices. From these rank equalities, one can derive some basic properties

for the matrices on the left-hand sides. For instance, let the right-hand sides of the above

rank equalities be zero and simplify by some elementary methods, one can immediately

obtain necessary and sufficient conditions for the matrices on the left-hand sides to be

zero.

In this paper, we establish a rank formula associated with (4) and then derive from

the rank formula a necessary and sufficient condition for (4) to hold.

The following rank formulas are well known:

r[A,B]= r(A)+r(B−AA†B)= r(B)+r(A−BB†A), (9)

r
[
A B
C 0

]
= r(B)+r(C)+r[(I−BB†)A(I−C†C)]; (10)

if R(B)⊆R(A) and R(C∗)⊆R(A∗), then

r
[
A B
C D

]
= r(A)+r(D−CA†B), (11)

see Marsaglia and Styan [12].

Recall the equality A∗(A∗AA∗)†A∗ = A† (see Zlobec [28]) and notice that R(A) =
R(AA∗A) and R(A∗) = R(A∗AA∗). By appealing to (11), the rank of the Schur com-

plement D−CA†B is

r
(
D−CA†B)= r

[
A∗AA∗ A∗B
CA∗ D

]
−r(A). (12)

This rank equality is quite useful in dealing with various matrix expressions involving

the Moore-Penrose inverse. Rank formulas for the Schur complement D−CA−B, where

A− is a {1}-inverse of A, can be found in [23].

The main result of this paper is given below.

Theorem 1. Let A∈ Cm×n and B ∈Cn×p , and let T = (In−BB†)(In−A†A). Then,

r
[
(AB)†−B†A†+B†T †A†]= r

[
AB

ABB∗B

]
+r[AB,AA∗AB]−2r(AB). (13)

Hence, the reverse-order law (4) holds if and only if A and B satisfy the following two

range equalities:

R(AA∗AB)=R(AB), R
[(
ABB∗B

)∗]=R[(AB)∗]. (14)

Proof. From (12), we first obtain

r
[
(AB)†−B†A†+B†T †A†]= r

[
T∗TT∗ T∗A†

B†T∗ B†A†−(AB)†
]
−r(T). (15)
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Applying (10) to T yields

r(T)= r
[
In B
A 0

]
−r(A)−r(B)=n+r(AB)−r(A)−r(B). (16)

It is easy to verify that T∗TT∗ = (In−A†A)T(In−BB†). Recall that elementary matrix

operations and block elementary matrix operations do not change the rank of matrix.

Thus, we can find by (10) and block elementary matrix operations that

r
[
T∗TT∗ T∗A†

B†T∗ B†A†−(AB)†
]

= r
[ (
In−A†A

)
T
(
In−BB†

) (
In−A†A

)(
In−BB†

)
A†

B†
(
In−A†A

)(
In−BB†

)
B†A†−(AB)†

]

= r




T
(
In−BB†

)
A† A†

B†
(
In−A†A

)
B†A†−(AB)† 0

B† 0 0


−r(A)−r(B)

= r



In+BB†A†A −BB†A† A†

−B†A†A B†A†−(AB)† 0

B† 0 0


−r(A)−r(B)

= r




In −BB†A† A†

−(AB)†A B†A†−(AB)† 0

B† 0 0


−r(A)−r(B)

= r



In 0 0

0 B†A†−(AB)†−(AB)†ABB†A† (AB)†

0 B†A† −B†A†


−r(A)−r(B)

=n+r
[
B†A†−(AB)†ABB†A† (AB)†

0 −B†A†
]
−r(A)−r(B).

(17)

Also note that R{[In−(AB)†AB]B†A†}∩R[(AB)†]= {0}. It follows that

R
[
B†A†−(AB)†ABB†A†

0

]
∩R

[
(AB)†

−B†A†
]
= {0}. (18)

Thus,

r
[
B†A†−(AB)†ABB†A† (AB)†

0 −B†A†
]

= r
[
B†A†−(AB)†ABB†A†

0

]
+r

[
(AB)†

−B†A†
]

= r[B†A†−(AB)†ABB†A†]+r
[
(AB)†

B†A†

]
.

(19)
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Applying (9) gives

r
[
B†A†−(AB)†(AB)B†A†]= r[(AB)†,B†A†]−r[(AB)†]

= r[(AB)∗,B†A∗]−r(AB)
= r[BB∗(AB)∗,B∗A∗]−r(AB)
= r

[
ABB∗B
AB

]
−r(AB),

r
[
(AB)†

B†A†

]
= r

[
(AB)∗

B∗A†

]
= r

[
(AB)∗AA∗

B∗A∗

]
= r[AA∗AB,AB].

(20)

Substituting (20) into (19), and (19) into (17), and then (16) and (17) into (15) gives us

(13). Let the right-hand side of (13) be zero and note that

r(AB)= r(AA∗AB)= r(ABB∗B). (21)

Then the equivalence of (4) and (14) follows.

The establishment of (13) is not easy, because the matrix expression on the left-hand

side of (13) involves three terms consisting of the Moore-Penrose inverse and the right-

hand side of (13) involve ranks of block matrices with the products AB, AA∗AB, and

ABB∗B. However, the two block matrices on the right-hand side of (13) and the two

range equalities in (14) are easy to simplify when A and B satisfy some conditions. For

example, if both A and B are partial isometries, that is, A† =A∗ and B† = B∗, then (14)

is satisfied. In this case, (4) becomes

(AB)† = (AB)∗−B∗[(In−BB∗)(In−A∗A)]†A∗. (22)

The most valuable consequence of (4) is concerned with the Moore-Penrose inverse

of the product of two orthogonal projectors.

Corollary 2. Let P and Q be a pair of orthogonal projectors of order n. Then, the

product PQ satisfies the following two identities:

(PQ)† =QP−Q(Q⊥P⊥
)†P, (23)

(PQ)2 = PQ+PQ(Q⊥P⊥
)†PQ, (24)

where P⊥ = In−P and Q⊥ = In−Q. In particular,

(PQ)† =QP ⇐⇒Q(Q⊥P⊥
)†P = 0,

(PQ)2 = PQ⇐⇒ PQ(Q⊥P⊥
)†PQ= 0.

(25)

Proof. Note that P2 = P = P∗ = P†, Q2 =Q =Q∗ =Q† for any pair of orthogonal

projectors P andQ. Thus, P andQ satisfy (14), and (4) is reduced to (23). Premultiplying

and postmultiplying both sides of (23) by PQ yield (24).
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Recall that for any pair of orthogonal projectors P and Q,

(PQ)† =QP ⇐⇒ (PQ)2 = PQ⇐⇒ PQ=QP, (26)

see, for example, [1]. Thus, (25) could be regarded as two new equivalent statements

for the commutativity of two orthogonal projectors. There are many results in the

literature on products of orthogonal projectors and related topics; see, for example, [1,

13]. The two identities (23) and (24) are two fundamental results for the product of two

orthogonal projectors. They can be used for dealing with various matrix expressions

that involve products of two orthogonal projectors. For example, the product PQP
satisfies the following identity:

(PQP)† = [(PQ)(PQ)∗]† = (QP)†(PQ)†
= P

[
In−

(
P⊥Q⊥)†]Q[In−(Q⊥P⊥

)†]P. (27)

Moreover, it is easy to verify that

[
(PQ)2

]† = (PQ)†(QP)†(PQ)†, (PQ)# = (QP)†(PQ)†(QP)†, (28)

where (PQ)# is the group inverse of PQ. Hence, one can also derive from (23) two iden-

tities for [(PQ)2]† and (PQ)#. From (23), one can also derive some valuable expressions

for (P±Q)† and (PQ±QP)†; see [5].

Let ‖A‖ denote the spectral norm of a matrixA, that is, the maximal singular value of

A. For a nonnull orthogonal projector P , ‖P‖ = 1. For any pair of orthogonal projectors

P and Q with PQ≠ 0, it can be derived from (23) the following norm equality:

∥∥(PQ)†∥∥≤ ∥∥∥In−(Q⊥P⊥
)†∥∥∥. (29)

It was shown in [3, 15] that if P is idempotent with P ≠ 0 and P ≠ I, then ‖I−P‖ = ‖P‖.
If P andQ are two orthogonal projectors, then (PQ)† is idempotent; see [14]. Note that

In−P and In−Q are orthogonal projectors. Hence, [(In−Q)(In−P)]† is idempotent.

Thus, if (In−Q)(In−P)≠ 0, then∥∥∥In−(Q⊥P⊥
)†∥∥∥= ∥∥∥(Q⊥P⊥

)†∥∥∥. (30)

Applying this equality to (29), we see that if PQ≠ 0 and Q⊥P⊥ ≠ 0, then

∥∥(PQ)†∥∥≤ ∥∥∥(Q⊥P⊥
)†∥∥∥. (31)

Replacing P with In−Q and Q with In−P in (31) also gives∥∥∥(Q⊥P⊥
)†∥∥∥≤ ∥∥(PQ)†∥∥. (32)

Hence, we have the following result.

Theorem 3. Let P and Q be a pair of orthogonal projectors with both PQ ≠ 0 and

Q⊥P⊥ ≠ 0. Then,

∥∥(PQ)†∥∥= ∥∥∥(Q⊥P⊥
)†∥∥∥. (33)
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Identity (23) can be used to establish some identities for the Moore-Penrose inverse

of ABC , where A, B, and C are three orthogonal projectors.

Theorem 4. Let A, B, and C be a triple of orthogonal projectors of order n. Then,

(ABC)† = (P(AB)∗C)†(APBC)†, (34)

(ABC)† = C
[
In−

(
C⊥P⊥(AB)∗

)†](AB)†B(BC)†[In−(P⊥BCA⊥)†]A, (35)

where P(AB)∗ = (AB)†AB and PBC = BC(BC)†.
Proof. Recall a simple result in [7] that any matrix product UV satisfies

(UV)† = (U†UV)†(UVV†)†. (36)

Applying this formula to ABC = (AB)(BC) gives (34). Applying (23) to (P(AB)∗C)† and

(APBC)† also gives

(
P(AB)∗C

)† = CP(AB)∗ −C(C⊥P⊥(AB)∗)†P(AB)∗ ,(
APBC

)† = PBCA−PBC(P⊥BCA⊥)†A. (37)

Substituting these two results into (34) yields (35).

Although reverse-order laws for the Moore-Penrose inverse of matrix products have

many different expressions, some of these reverse-order laws may be equivalent. A

simple example is

(AB)† = B†A† ⇐⇒
[(
A†
)∗B]† = B†A∗ ⇐⇒ [

A
(
B†
)∗]† = B∗A†; (38)

see [21]. When investigating (4), we also find that (4) is equivalent to the following two

mixed-type reverse-order laws:

(AB)† = B†(A†ABB†)†A†, (39)

(AB)† = B∗(A∗ABB∗)†A∗. (40)

The reverse-order law (39) was first studied by Galperin and Waksman [8], and then by

Izumino [11] for a product of two linear operators. They showed that (39) holds if and

only if

R
[(
A∗
)†B]=R(AB), R(B†A∗)=R[(AB)∗]. (41)

This result is also true for a complex matrix product. Because the Moore-Penrose in-

verses of A and B are contained in the condition (41), it cannot be regarded as a satis-

factory necessary and sufficient condition for (39) to hold. In fact, (41) is equivalent to

(14) by noticing

r
[
AB,

(
A∗
)†B]= r[AA∗AB,AA∗(A∗)†B]= r[AA∗AB,AB],

r
[

AB
A
(
B∗
)†
]
= r

[
ABB∗B

A
(
B∗
)†B∗B

]
= r

[
ABB∗B
AB

]
.

(42)
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Without much effort, one can show that

r
[
(AB)†−B†(A†ABB†)†A†]= r

[
AB

ABB∗B

]
+r[AB,AA∗AB]−2r(AB); (43)

see [26]. Equality (43) is derived from the following result.

Lemma 5 [22]. LetX1 andX2 be a pair of outer inverses of a matrixA, that is,X1AX1 =
X1 and X2AX2 =X2. Then,

r
(
X1−X2

)= r
[
X1

X2

]
+r[X1,X2

]−r(X1
)−r(X2

)
. (44)

Hence,

X1 =X2 ⇐⇒R
(
X1
)=R(X2

)
, R(X∗1 )=R(X∗2 ). (45)

Obviously, the matrix (AB)† is an outer inverse of AB by the definition of the Moore-

Penrose inverse. It is also easy to verify that B†(A†ABB†)†A† is an outer inverse of AB.

Thus, it follows by (44) that

r
[
(AB)†−B†(A†ABB†)†A†]

= r
[

(AB)†

B†
(
A†ABB†

)†A†
]
+r

[
(AB)†,B†

(
A†ABB†

)†A†]

−r[(AB)†]−r[B†(A†ABB†)†A†].
(46)

Hence, one can derive from (44) that (39) holds if and only if

R[(AB)†]=R[B†(A†ABB†)†A†], R
{[
(AB)†

]∗}=R{[B†(A†ABB†)†A†]∗}.
(47)

It is also easy to verify that

r
[

(AB)†

B†
(
A†ABB†

)†A†
]
= r[AB,AA∗AB],

r
[
(AB)†,B†

(
A†ABB†

)†A†]= r
[

AB
ABB∗B

]
,

r
[
(AB)†

]= r[B†(A†ABB†)†A†]= r(AB).
(48)

Then, (43) follows. Another rank equality related to (39) is

r
[
(AB)†−B†(A†ABB†)†A†]= r[(AB)†−(A†AB)†A†]+r[(AB)†−B†(ABB†)†],

(49)

which is shown in [26]. Two rank formulas associated with (40) are given below.
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Theorem 6. Let A∈ Cm×n and B ∈Cn×p . Then,

r
[
(AB)†−B∗(A∗ABB∗)†A∗]= r

[
(AB)†

B∗
(
A∗ABB∗

)†A∗
]

+r
[
(AB)†,B∗

(
A∗ABB∗

)†A∗]
−r[(AB)†]−r[B∗(A∗ABB∗)†A∗],

(50)

r
[
(AB)†−B∗(A∗ABB∗)†A∗]= r

[
AB

ABB∗B

]
+r[AB,AA∗AB]−2r(AB). (51)

Hence, the following statements are equivalent:

(a) (40) holds,

(b) R[(AB)†]=R[B∗(A∗ABB∗)†A∗], R{[(AB)†]∗} =R{[B∗(A∗ABB∗)†A∗]∗},
(c) (14) holds.

Proof. Note that B∗(A∗ABB∗)†A∗(AB)B∗(A∗ABB∗)†A∗ = B∗(A∗ABB∗)†A∗, that

is, B∗(A∗ABB∗)†A∗ is an outer inverse of AB. Thus, (50) is derived from (44), and (51)

is a simplification of (50).

Applying (13), (43), and (51) to the two products A†AB and ABB† gives us the follow-

ing result.

Theorem 7. Let A∈ Cm×n and B ∈Cn×p , and let T = (In−BB†)(In−A†A). Then,

r
[(
A†AB

)†−B†A†A+B†T †A†A]= r
[

AB
ABB∗B

]
−r(AB),

r
[(
ABB†

)†−BB†A†+BB†T †A†]= r[AB,AA∗AB]−r(AB),
r
[(
A†AB

)†−B†(A†ABB†)†A†A]= r
[

AB
ABB∗B

]
−r(AB),

r
[(
ABB†

)†−BB†(A†ABB†)†A†]= r[AB,AA∗AB]−r(AB),
r
[(
A†AB

)†−B∗(A†ABB∗)†A†A]= r
[

AB
ABB∗B

]
−r(AB),

r
[(
ABB†

)†−BB†(A∗ABB†)†A∗]= r[AB,AA∗AB]−r(AB).

(52)

Hence,

(a) the following statements are equivalent:

(i) (A†AB)† = B†A†A−B†T †A†A,

(ii) (A†AB)† = B†(A†ABB†)†,
(iii) (A†AB)† = B∗(A†ABB∗)†,
(iv) R[(ABB∗B)∗]=R[(AB)∗],

(b) the following statements are equivalent:

(i) (ABB†)† = BB†A†−BB†T †A†,
(ii) (ABB†)† = (A†ABB†)†A†,

(iii) (ABB†)† = (A∗ABB†)†A∗,

(iv) R(AA∗AB)=R(AB).
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The combination of (4), (14), (39), (40), (41), (47) and Theorems 6 and 7 gives us the

following result.

Theorem 8. Let A∈ Cm×n and B ∈ Cn×p , and let T = (In−BB†)(In−A†A). Then, the

following statements are equivalent:

(a) (AB)† = B†(A†ABB†)†A†,
(b) (A†ABB†)† = B†(AB)†A†,
(c) (AB)† = (A†AB)†A† = B†(ABB†)†,
(d) (A†AB)† = (AB)†A and (ABB†)† = B(AB)†,
(e) (A†AB)† = B†(A†ABB†)† and (ABB†)† = (A†ABB†)†A†,
(f) (A†AB)† = B∗(A†ABB∗)† and (ABB†)† = (A∗ABB†)†A∗,

(g) (AB)† = B∗(A∗ABB∗)†A∗,

(h) (A∗ABB∗)† = (B∗)†(AB)†(A∗)†,
(i) (AB)† = B†A†−B†T †A†,
(j) (A†AB)† = B†A†A−B†T †A†A and (ABB†)† = BB†A†−BB†T †A†,
(k) R[(AB)†] = R(B†T †1A†) and R{[(AB)†]∗} = R[(B†T †1A†)∗], where T1 =

A†ABB†,
(l) R[(AB)†] = R(B∗T †2A∗) and R{[(AB)†]∗} = R[(B∗T †2A∗)∗], where T2 =
A∗ABB∗,

(m) R[(A∗)†B]=R(AB) and R(B†A∗)=R[(AB)∗],
(n) R(AA∗AB)=R(AB) and R[(ABB∗B)∗]=R[(AB)∗].
The results given above can be extended to the weighted Moore-Penrose inverse of a

matrix product. The weighted Moore-Penrose inverse of a matrixA∈ Cm×n with respect

to a pair of Hermitian positive definite matrices M ∈ Cm×m and N ∈Cn×n is defined to

be the unique n×m matrix that satisfies the following four matrix equations:

(i) AXA=A,

(ii) XAX =X,

(iii) (MAX)∗ =MAX,

(iv) (NXA)∗ =NXA,

and this X is denoted as X =A†M,N . In particular, when M = Im and N = In, A†Im,In is the

standard Moore-Penrose inverse A† of A. Reverse-order laws for the weighted Moore-

Penrose inverse of matrix products have been studied; see [17, 24, 27]. As is well known

(see, e.g., [2]), the weighted Moore-Penrose inverse A†M,N of A can be rewritten as

A†M,N =N−1/2(M1/2AN−1/2)†M1/2, (53)

whereM1/2 and N1/2 are the positive definite square roots ofM and N, respectively. By

appealing to (12), one can obtain the following basic rank formula:

r
(
D−CA†M,NB

)
= r

[
A∗MAN−1A∗ A∗MB
CN−1A∗ D

]
−r(A); (54)

see also [26]. Applying Theorem 8 to (M1/2ABN−1/2)† in

(AB)†M,N =N−1/2(M1/2ABN−1/2)†M1/2, (55)
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and noting that

A†M,I =
(
M1/2A

)†M1/2, B†I,N =N−1/2(BN−1/2)† (56)

yields the following result.

Theorem 9. Let A∈ Cm×n and B ∈ Cn×p , and let M ∈ Cm×m and N ∈ Cp×p be a pair

of Hermitian positive definite matrices. Then, the following statements are equivalent:

(a) (AB)†M,N = B†I,N(A†M,IABB†I,N)†A†M,I ,
(b) (AB)†M,N = (A†M,PAB)†P,NA†M,P = B†P,N(ABB†P,N)†M,P ,

(c) (AB)†M,N =N−1B∗(A∗MABN−1B∗)†A∗M ,

(d) (AB)†M,N = B†I,NA†M,I−B†I,N[(In−BB†I,N)(In−A†M,IA)]†A†M,I ,
(e) R(AA∗MAB)=R(AB) and R[(ABN−1B∗B)∗]=R[(AB)∗].

Remark 10. Reverse-order laws can be established from any reasonable operations

for the Moore-Penrose inverse of matrix products. For example, write

AB =AA†ABB†B =AA∗(A†)∗(B†)∗B∗B =AA∗[(A†)∗(B†)∗]B∗B := PNQ. (57)

The reverse-order law (PNQ)† =Q†N†P† is equivalent to

(AB)† = (B∗B)†[(B†A†)†]∗(AA∗)†. (58)

The law (AB)† = B∗(A∗ABB∗)†A∗ is obtained from writing

AB = (A∗)†(A∗ABB∗)(B∗)† := PNQ (59)

and (PNQ)† =Q†N†P†. On the other hand, mixed-type reverse-order laws can be intro-

duced by comparing different decompositions of a block matrix and their generalized

inverses. The introduction of (4) is such an example. In addition, one can consider

some variations of (4). For instance, replacing the Moore-Penrose inverses in (4) with

{1}-inverses yields the following reverse-order law for (AB)−:

(AB)− = B−A−−B−FA
(
EBFA

)−EBA−, (60)

where FA = In−A−A and EB = In−BB−. One can also establish some rank equalities as-

sociated with this reverse-order law and then derive necessary and sufficient conditions

for this law to hold.

For a triple matrix product ABC , the Moore-Penrose inverse (ABC)† can be written

as either (ABC)† = C†B†A† or (ABC)† = C†B†A† +X. The law (ABC)† = C†B†A† was

studied in [10, 19]. Necessary and sufficient conditions for this law to hold are quite

strict and complicated. Two reasonable extensions of (4) to (ABC)† are

(ABC)† = (BC)†B(AB)†−(BC)†[P⊥BCBP⊥(AB)∗]†(AB)†,
(ABC)† = C†

[
Ip−

(
P⊥C P

⊥
B∗
)†]B†[In−(P⊥B P⊥A∗)†

]
A†.

(61)
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Some reasonable extensions of (39) and (40) to (ABC)† are

(ABC)† = C†(A†ABCC†)†A†,
(ABC)† = C∗(A∗ABCC∗)†A∗,

(ABC)† = (BC)†[(AB)†ABC(BC)†]†(AB)†.
(62)

Various rank formulas associated with these reverse-order laws can be established. For

more details, see [18].
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