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We define and study Dunkl wavelets and the corresponding Dunkl wavelets transforms, and
we prove for these transforms Plancherel and reconstruction formulas. We give as applica-
tion the inversion of the Dunkl intertwining operator and its dual.
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1. Introduction. We consider the differential-difference operator A, on R introduced
by Dunkl [1] and called in the literature Dunkl operator on R of index (x+ 1/2) associ-
ated with the reflection group 7Z», given by

du(x) o+1/2
+
dx

[u(x)—u(-x)], o<>—l. (1.1)

Aqu(x) = >

These operators are very important in mathematics and physics. They allow the devel-
opment of generalized wavelets from generalized continuous classical wavelet analysis.
Moreover, we have proved in [2] that the generalized two-scale equation associated with
the Dunkl operator has a solution and then we can define continuous multiresolution
analysis.

Dunkl has proved in [1] that there exists a unique isomorphism V, called the Dunkl
intertwining operator, from the space of polynomials on R of degree n onto itself,
satisfying the transmutation relation

d
AaV(x = V(XE! (1.2)
V(1) = 1. (1.3)

Rosler has proved in [3] that for each x € R there exists a probability measure i, on
R with support in the interval [—x,x], such that for all polynomials p on R, we have

Va(p) (x) = va(y)dux(y). (1.4)

Next, Triméche in [5] has extended the operator V4 to an isomorphism from €¢(R),
the space of C*-functions on R, onto itself satisfying the relations (1.1) and (1.2), and
has shown that for each x € R, there exists a unique distribution n, in ¢’ (R), the space
of distributions of compact support on R, with support in the interval [—x,x] such
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that
(Vo) " (H) ) = (N, ), f EE). (1.5)

He has shown also in [5] that the transposed operator !V, of the operator V, has the
integral representation

vy eR, tVa(f)(y):J[Rf(x)dvy(x), feapR), (1.6)

where v,, is a positive measure on R with support in the set {x € R: x| = ||} and f in
%(R), the space of C*-functions on R with compact support, and {V, is an isomorphism
from %(R) onto itself, satisfying the relations

VyeR, WalAaf)() = %%(f)(y), (1.7)

and for each y € R, there exists a unique distribution Z, in ¥’ (R), the space of tempered
distributions on R, such that

(Vo) (OO =(Zy, f), fEDR). (1.8)

In this paper, we are interested in Dunkl wavelets and associated Dunkl continuous
wavelet transforms. More precisely, we give here a general construction allowing inverse
formulas for the Dunkl intertwining operator and its dual.

The contents of this paper are as follows. In Section 2, we define and study the Dunkl
intertwining operator and its dual. Section 3 is devoted to Dunkl wavelets and associ-
ated Dunkl wavelet transforms. In the last section, we give as application of the previous
results inverse formulas for the Dunkl intertwining operator and its dual.

2. The Dunkl intertwining operator on R and its dual. We define and study in this
section the Dunkl intertwining operator on R and its dual and we give their properties.

NOTATION 2.1. We have the following notations:
(i) D4(R) is the space of C*-functions on R with support in the interval [—a,a];
(ii)) S(R) is the space of C*-functions on R, rapidly decreasing together with their
derivatives;
(iii) ¥, (R) is the subspace of ¥(R) consisting of functions f such that

VneN, L@f(x)x"dx =0; (2.1)
(iv) ¥%(R) is the subspace of ¥(R) consisting of functions f such that
VneN, ka(x)mn(x)\xlz"‘*]dx:O, (2.2)
where

Vx eR, myu(x)= Va(u?:l> (x); (2.3)
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(V) Uy is the measure defined on R by

|X|2a+1
dp(x) = de, (2.4)
(vi) LL(R), 1 =¥ < 400, is the space of measurable functions f on R such that
- 1/r
o = | [ 1£00 ) dptati0)] <00
R (2.5)
[l = €sSSUP| f() | < +00.
xeR
DEFINITION 2.2. Define the Dunkl intertwining operator V4 on ¢(R) by
|x|
kal(x, d if x =0,
VxR, Vof(x)= J_m (X, f(dy 1 (2.6)
f(0) if x =0,
where
CT(ax+1)[x[2 L a2
ko(x,y) = NCCTSIDR (x*=7) (IxI+2) x1-1x11x10 (), (2.7)
with xj-|x|, x| the characteristic function of the interval ] - |x|, [x]|[.
THEOREM 2.3. (i) For all f iné(R),
d
Vx eR, Valf)(x)=Ru(fe)(x)+ aRaI(fO)(x); (2.8)

where f, (resp., fo) is the even (vesp., odd) part of f, Ry is the Riemann-Liouville integral
operator defined in [5], and I is the operator given by

|x|
VxeR, I(fy)(x)= . Sfo(t)dt. (2.9)

(ii) The transform V is the unique topological isomorphism from €(R) onto itself,
satisfying

d
Vol =— =AxVu , €(R),
(dyf) (f), fed®) (2.10)
Vua(f)(0) = £(0).
The inverse transform V' is given by
VxeR, Vil (00 =R3 (fo) () + - R (fo) (x), 2.11)

where R is the inverse operator of Ry.

Let f be in ¢(R) and g in D(R). The operator !V, defined on D(R) by the relation

LR V() (300 () it (x) = jkf(y)fvaw)(y)dua(y), (2.12)
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is given by

vy eR, tva<f><y>:j‘ R

lka(X:y)f(X)dU(x(X)1 (2.13)

where k, is the kernel given by relation (2.7). It is called the dual Dunkl intertwining
operator. It has the following properties.

THEOREM 2.4. For all f in D(R),
VyeR, Walf)(¥) = Ralfo) )+ %tRa(](fo))(y), (2.14)

where f, (resp., fo) is the even (resp., odd) part of f, 'Ry is the Weyl integral operator
defined in [4], and ] is the operator given by

J(fo)(x) = J_ foy)dy, xeR. (2.15)

THEOREM 2.5. (i) The transform 'V is a topological isomorphism from D (R) (resp.,
S(R)) onto itself. Moreover,

S EDa(R) <= 'Vy(f) € Da(R). (2.16)

The inverse transform (V) ~! is given by
VyeR, (Vo) () =(Ra) (fo) )+ %(tRa)_l(J(fo))(y), (2.17)

where (!Ry) ™! is the inverse operator of 'R.
(ii) The transform 'V satisfies the transmutation relation

VyeR, WVelAaf)(y)= %%(f)(y), FED®). (2.18)

3. Classical continuous wavelets and Dunkl wavelets

3.1. Classical continuous wavelets on R. We say that a measurable function g on R
is a classical continuous wavelet on R if it satisfies, for almost all x € R, the condition

dA

0<CS :J |F(g)(Ax) |° AA <+, (3.1)

0

where % is the classical Fourier transform.
Let a €]0,+oo[ and let g be a classical wavelet on R in L2(R). We consider the family
Jax, X € R, of classical wavelets on R in L?(R) defined by

gu,x(y) =H,(g)(x-y), (3.2)

where H, is the dilation operator given by the relation

Ha(f) 0 =~ (%), (3.3)
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We define, for regular functions f on R, the classical wavelet transform T, on R by

Ty(N(@x) = | f0)gardy VxR (3.4)
This transform can also be written in the form

Ty(f)(a,x) = f*Ha(g)(x), (3.5)

where x is the classical convolution product.
The transform T, has been studied in [5]. Several properties are given; in particular,
if we consider a classical wavelet g on R in L?(R), we have the following results.
(i) Plancherel formula. For all f in L2(R), we have

2,1 (% 2, da
anz|f(x)| dx = ce Jo JR|Tg(f)(a,x)| dx P (3.6)

(ii) Inversion formula. For all f in L' (R) such that %(f) belongs to L' (R), we have

Flx) = Cig [ (] o) @1gux 133 52, ae, (3.7)

where for each x € R, both the inner and the outer integrals are absolutely
convergent, but possibly not the double integral.

3.2. Dunkl wavelets on R. Using the Dunkl transform %p and the Dunkl translation
operators Ty, X € R, we define and study in this section Dunkl wavelets on R and the
Dunkl continuous wavelet transform on R, and we prove for this transform Plancherel
and inversion formulas.

NOTATION 3.1. We have the following notations:
(i) o(x,¥,2), p(x,y,z), and Wy(x,y,z) are the functions defined for all x,y,z €

R\ {0} by
L(x2+yz—zz) if x,y 0
o(x,y,2) =4 2XY
0 otherwise,
1 (3.8)
p(x,y,2) = (5(1 -o(x,y,2)+0(z,x,y) +o(z,y,x)),
Wal(x,y,2) = 2T (a+ DK (Ix], 171, 12]) p(x,,2),
where K is the Bessel kernel,
(i) forall x,y € R, ug ,, is the measure on R given by
Wa(x,v,z)dus(z) if x,y + 0,
aps , (z) =1 0x if y =0, (3.9)

Oy if x=0,

where 6, is the Dirac measure;
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(iii) the Dunkl translation operators Ty, x € R, are defined on ¢(R) by

VyeR, T f(y)= J[Rf(z)du;ﬂy. (3.10)

DEFINITION 3.2. A Dunkl wavelet on R is a measurable function g on R satisfying,
for almost all x € R, the condition

O<Cg:J |GJ7D(g)(/\x)|2%<+oo, (3.11)
0
where
T (f)(A) = JRf(x)wﬁ(x)dua(x), AER, (3.12)
and @{ (z) is the Dunkl kernel given by
T'(x+1) LN y ,
« — Azt (1 _ pyx—1/2 o+1/2
YR(z) ATt 1/2) 716 (1-1) (1+1¢) dt, A,zeC. (3.13)
EXAMPLE 3.3. The function «;, t > 0, defined by
Ck “x2/4
VxeR, o= W@ X t, (314)
satisfies
vy eR, @D((xt)(y):e’tyz. (3.15)

The function g(x) = —(d/dt) x;(x) is a Dunkl wavelet on R in ¥(R), and C,; = 1/8t2.
PROPOSITION 3.4. A function g is a Dunkl wavelet on R in ¥(R) (resp., ¥2(R)) if and
only if the function *Vy(g) is a classical wavelet on R in ¥(R) (resp., ¥.(R)), and

Civgig) = Co- (3.16)

PROOF. The transform %p is a topological isomorphism from ¥(R) onto itself, from
PX(R) onto ¥o(R). We deduce then these results from Theorem 2.4.

Let a €]0,+[ and let g be a regular function on R. We consider the function g,
defined by

1 X

It satisfies the following properties:
(i) for g in L%(R), the function g, belongs to L (R) and we have

Fp(ga)(¥) =Fp(g)(ay), yeER; (3.18)
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(ii) for g in #(R) (resp., ¥¥(R)), the function g, belongs to ¥(R) (resp., ¥¥(R)) and
we have

ga = (Vo) "0Ha0'Vi(g). (3.19)

Let g be a Dunkl wavelet on R in L?x(lR). We consider the family g, x,x € R, of Dunkl
wavelets on R in L2 (R) defined by

Jax(y) =Txga(-Y), ¥ ER, (3.20)

where Ty, x € R, are the Dunkl translation operators.
Using (3.15), we deduce that the family g4 x, X € R, given by

VY ER, Gax(y)= - (;tat)( V), 3.21)

is a family of Dunkl wavelets on R in ¥(R). O

DEFINITION 3.5. Let g be a Dunkl wavelet on R in L%(R). The Dunkl continuous
wavelet transform Sg on R is defined for regular functions f on R by

Sg(f)(a,x) = Jmf(y)mlylz"‘“dy, a>0, xeR. (3.22)
This transform can also be written in the form
S5 (f)a,x) = f*pga(x), (3.23)
where *p is the Dunkl convolution product defined by
VXER, fHpg(x) = | Tof (-7)9(¥)dka(2). (3.24)

THEOREM 3.6 (Plancherel formula for SgD). Let g be a Dunkl wavelet on R in Lg(([R).
For all f inL3(R),

2izart gy - L[ D 2, 2ai1 g, 4a
[ 1reorix dx= ¢ [ [ Ispran fpetaxdd gas)

PROOF. The function f *p g satisfies the relation Fp (f *pg) = Fp(f)-Fp(g). Using
Fubini-Tonnelli’s theorem and relations (3.23) and (3.18), we obtain

L © D 2 200+1 d_ll
Cg[ J |S2(F)a,x) |l 2 Tdax

- J (J | f %D Ga(x)| \X|2a+1dx>daa

TG J (J 1% () () 1 |Fp(Fa) )| |y|2a+1dy>da (3.26)

=JR |Fp (f)(x) ] (C—gjo |%<g><ay)\27“)|y|2“”dy-
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But from Definition 3.2, we have for almost all y € R,

1 zda
aj |Fp(g)(ay) | -1, (3.27)
then
j f |S2(f)(a,x)|*|x 2““Ialx j |Fp (£ y2* dy.  (3.28)
We then deduce the relation (3.25). |

The following theorem gives an inversion formula for the transform S g.

THEOREM 3.7. Let g be a Dunkl wavelet on R in L2 (R). For f in LL(R) (resp., L%(R))
such that Fp (f) belongs to L. (R) (resp., L, (R)NLE (R)),

da
fix) = J (] sPhr@yganiyietay) e, ae, (320
where for each x € R, both the inner and the outer integrals are absolutely convergent,
but possibly not the double integral.
PROOF. We obtain (3.29) by using an analogous proof as for [5, Theorem 6.1I11.3, page

199]. O

4. Inversion of the Dunkl intertwining operator and of its dual by using Dunkl
wavelets. Using the inversion formulas for the Dunkl continuous wavelet transform
Sg and classical continuous transform Sy, we deduce relations which give the inverse
operators of the Dunkl intertwining operator V, and of its dual V.

THEOREM 4.1. (i) Let g be a Dunkl wavelet on R in 2(R) (resp., ¥(R)). Then for all f
in the same space as g,

VxeR, SP(f)(a,x)=("Va) [Stva (ValH)(@ )] (x). 4.1)
(ii) Let g be a Dunkl wavelet on R in ¥ (R). Then for all f in¥.(R),
VX ER, Sty (f)(a,x) =V [SD(Va(f))(a,)](x). (4.2)

PROOF. We deduce these results from relations (2.8), (3.22), and properties of the
Dunkl convolution product. |

THEOREM 4.2. Let g be a Dunkl wavelet on R in ¥%(R). Then,
(i) forall f in ¥:(R),
Vx eR, SJ(f)(a,x)=a *VualSutveg) (‘Val)) (@, -)](x), (4.3)

where I is the operator given by the relation

2c+1
Vx ER, H(f)(x)= *1[ x|

nm%f)](x); (4.4)
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(ii) forall f in¥.(R),
VX ER, Sty ()@,x)=a Vo [SD , (Va(f)(a,)](x), (4.5)

where Hp is the operator given by the relation

|X|21x+1

_gi—1 —_—
Vx eR, Hp(f)(x)=%Fp ["2ar(a+1>

%(f)] (x). 4.6)

PROOF. We obtain these relations from Theorem 4.1 and the fact that

H(Va(@)3) =@ (G (Va(@))a

(4.7)
Hp(ga) = a™** (Hp(9))a- .
THEOREM 4.3. Let g be a Dunkl wavelet on R in ¥%(R). Then,
(i) for all f in ¥:(R),
VxeR, (Vo) (F)x)
- Cig j: (LR Vel Sitvaton () (@ )13 gax () |y|2“+1dy) a‘iﬁl 49
(ii) forall f in¥.(R),
Vx R, Vi'(f)(x)
- C?Vlk(g) | (] alsty 00 0D@ N0 Va@an 1y ) o 4
PROOF. We deduce (4.8) and (4.9) from Theorems 4.2, 2.4 and relation (2.9). O

REMARK 4.4. We can establish in a similar way without major changes the results
given above for the Dunkl intertwining operator and its dual in the multidimensional
case.
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