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MEROMORPHIC FUNCTIONS WITH POSITIVE COEFFICIENTS
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Let
∑∗(α,β,k) be a class of meromorphic functions f(z) with positive coefficients in D =

{0<|z|<1}. The aim of the present note is to prove some properties for the class
∑∗(α,β,k).
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1. Introduction. Let
∑

denote the class of functions of the form

f(z)= 1
z
+

∞∑
n=0

anzn (1.1)

which are analytic in the punctured disc D = {z : 0< |z|< 1} with a simple pole at the

origin with residue 1. A function f(z) ∈ ∑ is said to be meromorphically starlike of

order α if it satisfies the following:

Re
(
− zf

′(z)
f(z)

)
>α (z ∈D) (1.2)

for some α (0 ≤ α < 1). We say that f(z) is in the class
∑∗(α) of such functions.

Similarly a function f(z) in
∑

is said to be meromorphically convex of order α if it

satisfies the following:

Re
(
−1− zf

′′(z)
f ′(z)

)
>α (z ∈D) (1.3)

for some α (0≤α< 1). We say that f(z) is in the class
∑
C(α) of such functions.

The class
∑∗(α) and various other subclasses of

∑
have been studied rather exten-

sively by Nehari and Netanyahu [9], Clunie [4], Pommerenke [11, 12], Miller [7], Royster

[13], and others (cf., e.g., Bajpai [2], Goel and Sohi [6], Mogra et al. [8], Uralegaddi and

Ganigi [15], Cho et al. [3], Aouf [1], and Uralegaddi and Somanatha [16, 17]; see also

Duren [5, pages 29 and 137], and Srivastava and Owa [14, pages 86 and 429]).

Owa and Pascu [10] obtained some coefficient properties for the class
∑∗(α,k)which

satisfies

∣∣∣∣zf ′(z)f(z)
+k

∣∣∣∣<
∣∣∣∣zf ′(z)f(z)

+(2α−k)
∣∣∣∣ (1.4)

for some α (α > 0), k (0≤ k≤ 1), and for all z ∈D.

http://dx.doi.org/10.1155/S0161171204306198
http://dx.doi.org/10.1155/S0161171204306198
http://dx.doi.org/10.1155/ijmms
http://www.hindawi.com


320 MASLINA DARUS

In this note, the above definition is extended and we obtain the extended coefficient

inequalities.

The extended class of functions is defined as follows.

Definition 1.1. A function f(z)∈∑ is said to be a member of the class
∑∗(α,β,k)

if it satisfies

1
β

∣∣∣∣zf ′(z)f(z)
+k

∣∣∣∣<
∣∣∣∣zf ′(z)f(z)

+(2α−k)
∣∣∣∣ (1.5)

for some α (α > 0), β (0< β≤ 1), k (0≤ k≤ 1), and for all z ∈D.

2. Coefficient inequalities for functions. For the class
∑∗(α,k), Owa and Pascu [10]

showed the following theorem.

Theorem 2.1. Let the function f(z) be defined by (1.1). If

∞∑
n=2

(
n+k+|2α+n−k|)∣∣an∣∣rn+1 ≤ 2(1−α) (2.1)

for some k (0≤ k≤ 1) and α (0≤α< 1), then f(z)∈∑∗(α,k).

Our first result for functions f(z)∈∑∗(α,β,k) is given as the following theorem.

Theorem 2.2. Let the function f(z) be defined by (1.1). If

∞∑
n=2

(
n+k+β|2α+n−k|)∣∣an∣∣rn+1 ≤ β(k+1−2α)+1−k (2.2)

for some k (0≤ k≤ 1), α (0≤α< 1), and β (0< β≤ 1), then f(z)∈∑∗(α,β,k).

Proof. Using the same technique as in [10], we know that for f ∈∑∗(α,β,k),
∣∣zf ′(z)+kf(z)∣∣−β∣∣zf ′(z)+(2α−k)f(z)∣∣

=
∣∣∣∣∣(k−1)

1
z
+

∞∑
n=0

(n+k)anzn
∣∣∣∣∣−β

∣∣∣∣∣(2α−k−1)
1
z
+

∞∑
n=0

(2α+n−k)anzn
∣∣∣∣∣. (2.3)

Therefore, applying the condition of the theorem, we have

r
∣∣zf ′(z)+kf(z)∣∣−rβ∣∣zf ′(z)+(2α−k)f(z)∣∣
≤ (k−1)+

∞∑
n=0

(n+k)∣∣an∣∣rn+1−β(k+1−2α)
1
r

+
∞∑
n=0

β|2α+n−k|∣∣an∣∣rn+1

= k−1−β(k+1−2α)+
∞∑
n=0

{
(n+k)+β|2α+n−k|}∣∣an∣∣rn+1

≤ 0,

(2.4)
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which shows that

∞∑
n=0

{
(n+k)+β|2α+n−k|}∣∣an∣∣rn+1 ≤ β(k+1−2α)+1−k. (2.5)

It follows from the above that

1
β

∣∣∣∣ zf ′(z)/f(z)+k
zf ′(z)/f(z)+(2α−k)

∣∣∣∣≤ 1. (2.6)

The function f(z) given by

fn(z)= 1
z
+a0+

{
β(k+1−2α)+1−k}zn
(n+k)+β|2α+n−k| (n≥ 1) (2.7)

belongs to the class
∑∗(α,β,k).

This completes the proof of the theorem.

Corollary 2.3. Let the function f(z) be defined by (1.1) and let f(z) ∈ ∑. If f ∈∑∗(α,β,k), then

an ≤ β(k+1−2α)+1−k
(n+k)+β|2α+n−k| , n≥ 0. (2.8)

The result is sharp for functions fn(z) given by (2.7).

Remark 2.4. If f ∈ ∑∗(α,β,k) with a0 = 0, then Corollary 2.3 is true for some β
(0< β≤ (k−1)/(k+1−2α)≤ 1) and α (0≤α≤ (k+1)/2< 1).

If β= 1, we get the following corollary.

Corollary 2.5 (see [10]). Let the function f(z) be defined by (1.1) and let f(z)∈∑.

If f ∈∑∗(α,1,k), then

an ≤ 1−α
n+α, n≥ 0, (2.9)

for some α (1/2≤α< 1).

3. Distortion theorem. A distortion property for functions in the class
∑∗(α,β,k)

is given as follows.

Theorem 3.1. If the function f(z) defined by (1.1) is in the class
∑∗(α,β,k), then

for 0< |z| = r < 1,

1
r
−a0−

{
β(k+1−2α)+1−k}r
(1+k)+β|2α+1−k|

≤ ∣∣f(z)∣∣≤ 1
r
+a0+

{
β(k+1−2α)+1−k}r
(1+k)+β|2α+1−k| ,

(3.1)
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with equality for

f1(z)= 1
z
+a0+

{
β(k+1−2α)+1−k}z
(1+k)+β|2α+1−k| (z = ir ,r),

1
r 2
−a0− β(k+1−2α)+1−k

(1+k)+β|2α+1−k|
≤ ∣∣f ′(z)∣∣≤ 1

r 2
+a0+ β(k+1−2α)+1−k

(1+k)+β|2α+1−k| ,

(3.2)

with equality for

f1(z)= 1
z
+a0+

{
β(k+1−2α)+1−k}z
(1+k)+β|2α+1−k| (z =±ir ,±r). (3.3)

Proof. Since f ∈∑∗(α,β,k), Theorem 2.2 yields the inequality

∞∑
n=0

an ≤
{
β(k+1−2α)+1−k}
(1+k)+β|2α+1−k| , n≥ 0. (3.4)

Thus, for 0< |z| = r < 1, and making use of (3.4), we have

∣∣f(z)∣∣≤
∣∣∣∣1
z

∣∣∣∣+a0+
∞∑
n=1

an|z|n ≤ 1
r
+a0+r

∞∑
n=1

an

≤ 1
r
+a0+

{
β(k+1−2α)+1−k}r
(1+k)+β|2α+1−k| ,

∣∣f(z)∣∣≥
∣∣∣∣1
z

∣∣∣∣−a0−
∞∑
n=1

an|z|n ≥ 1
r
−a0−r

∞∑
n=1

an

≥ 1
r
−a0−

{
β(k+1−2α)+1−k}r
(1+k)+β|2α+1−k| .

(3.5)

Also from Theorem 2.1 it follows that

∞∑
n=1

nan ≤ a0+
{
β(k+1−2α)+1−k}
(1+k)+β|2α+1−k| . (3.6)

Thus

∣∣f ′(z)∣∣≤ 1
|z|2 +a0+

∞∑
n=1

nan|z|n−1 ≤ 1
r 2
+a0+

∞∑
n=1

nan

≤ 1
r 2
+a0+

{
β(k+1−2α)+1−k}
(1+k)+β|2α+1−k| ,

∣∣f ′(z)∣∣≥ 1
|z|2 −a0−

∞∑
n=1

nan|z|n−1 ≥ 1
r 2
−a0−

∞∑
n=1

nan

≥ 1
r 2
−a0−

{
β(k+1−2α)+1−k}
(1+k)+β|2α+1−k| .

(3.7)

Hence we complete the proof of Theorem 3.1.
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4. Radii of starlikeness and convexity. The radii of starlikeness and convexity for

the class
∑∗(α,β,k) are given by the following theorem.

Theorem 4.1. If the function f(z) defined by (1.1) is in the class
∑∗(α,β,k), then

f(z) is meromorphically starlike of order ρ (0 ≤ ρ < 1) in the disk |z| < r1(α,β,ρ),
where r1(α,β,ρ) is the largest value for which

r1 = r1(α,β,ρ)= inf
n≥0

(
(1−ρ){(n+k)+β|2α+n−k|}
(n+2−ρ){β(k+1−2α)+1−k}

)1/(n+1)
. (4.1)

The result is sharp for functions fn(z) given by (2.7).

Proof. It suffices to show that
∣∣∣∣zf ′(z)f(z)

+1
∣∣∣∣≤ 1−ρ (4.2)

for |z| ≤ r1. We have

∣∣∣∣zf ′(z)f(z)
+1

∣∣∣∣≤
∑∞
n=0(n+1)

∣∣an∣∣|z|n+1

1−∑∞
n=0

∣∣an∣∣|z|n+1
≤ 1−ρ. (4.3)

Hence (4.3) holds true if

∞∑
n=0

(n+1)
∣∣an∣∣|z|n+1 ≤ (1−ρ)

(
1−

∞∑
n=0

∣∣an∣∣|z|n+1

)
(4.4)

or

∞∑
n=0

(n+2−ρ)
1−ρ an|z|n+1 ≤ 1; (4.5)

with the aid of (2.8), (4.5) is true if

(n+2−ρ)
1−ρ |z|n+1 ≤ (n+k)+β|2α+n−k|

β(k+1−2α)+1−k . (4.6)

Solving (4.6) for |z|, we obtain

|z| ≤
(
(1−ρ){(n+k)+β|2α+n−k|}
(n+2−ρ){β(k+1−2α)+1−k}

)1/(n+1)
(n≥ 0). (4.7)

This completes the proof of Theorem 4.1.

Theorem 4.2. If the function f(z) defined by (1.1) is in the class
∑∗(α,β,k), then

f(z) is meromorphically convex of order ρ (0≤ ρ < 1) in the disk |z|< r2(α,β,ρ), where

r2(α,β,ρ) is the largest value for which

r2 = r2(α,β,ρ)= inf
n≥0

(
(1−ρ){(n+k)+β|2α+n−k|}
n(n+2−ρ){β(k+1−2α)+1−k}

)1/(n+1)
. (4.8)

The result is sharp for functions fn(z) given by (2.7).
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Proof. We omit the details of the proof as they are very tedious. It suffices to show

that
∣∣∣∣zf ′′(z)f ′(z)

+2
∣∣∣∣≤ 1−ρ (4.9)

for |z|≤ r2, with the aid of Theorem 2.2. Thus we have the assertion of Theorem 4.2.

Acknowledgments. The work presented here was supported by the Intensified Re-

search for Priority Areas (IRPA) Grant 09-02-02-0080-EA208. The author would like to

thank all the referees for their suggestions regarding the content of this note.

References

[1] M. K. Aouf, On a certain class of meromorphic univalent functions with positive coefficients,
Rend. Mat. Appl. (7) 11 (1991), no. 2, 209–219.

[2] S. K. Bajpai, A note on a class of meromorphic univalent functions, Rev. Roumaine Math.
Pures Appl. 22 (1977), no. 3, 295–297.

[3] N. E. Cho, S. H. Lee, and S. Owa, A class of meromorphic univalent functions with positive
coefficients, Kobe J. Math. 4 (1987), no. 1, 43–50.

[4] J. Clunie, On meromorphic schlicht functions, J. London Math. Soc. 34 (1959), 215–216.
[5] P. L. Duren, Univalent Functions, Grundlehren der mathematischen Wissenschaften, vol.

259, Springer-Verlag, New York, 1983.
[6] R. M. Goel and N. S. Sohi, On a class of meromorphic functions, Glas. Mat. Ser. III 17(37)

(1982), no. 1, 19–28.
[7] J. Miller, Convex meromorphic mappings and related functions, Proc. Amer. Math. Soc. 25

(1970), 220–228.
[8] M. L. Mogra, T. R. Reddy, and O. P. Juneja, Meromorphic univalent functions with positive

coefficients, Bull. Austral. Math. Soc. 32 (1985), no. 2, 161–176.
[9] Z. Nehari and E. Netanyahu, On the coefficients of meromorphic schlicht functions, Proc.

Amer. Math. Soc. 8 (1957), 15–23.
[10] S. Owa and N. N. Pascu, Coefficient inequalities for certain classes of meromorphically star-

like and meromorphically convex functions, JIPAM. J. Inequal. Pure Appl. Math. 4
(2003), no. 1, Article 17, 1–6.

[11] Ch. Pommerenke, Über einige Klassen meromorpher schlichter Funktionen, Math. Z. 78
(1962), 263–284 (German).

[12] , On meromorphic starlike functions, Pacific J. Math. 13 (1963), 221–235.
[13] W. C. Royster, Meromorphic starlike multivalent functions, Trans. Amer. Math. Soc. 107

(1963), 300–308.
[14] H. M. Srivastava and S. Owa (eds.), Current Topics in Analytic Function Theory, World Sci-

entific Publishing, New Jersey, 1992.
[15] B. A. Uralegaddi and M. D. Ganigi, A certain class of meromorphically starlike functions

with positive coefficients, Pure Appl. Math. Sci. 26 (1987), no. 1-2, 75–81.
[16] B. A. Uralegaddi and C. Somanatha, Certain differential operators for meromorphic func-

tions, Houston J. Math. 17 (1991), no. 2, 279–284.
[17] , New criteria for meromorphic starlike univalent functions, Bull. Austral. Math. Soc.

43 (1991), no. 1, 137–140.

Maslina Darus: School of Mathematical Sciences, Faculty of Sciences and Technology, University
of Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia

E-mail address: maslina@pkrisc.cc.ukm.my

mailto:maslina@pkrisc.cc.ukm.my

