MEROMORPHIC FUNCTIONS WITH POSITIVE COEFFICIENTS

MASLINA DARUS

Received 24 June 2003

Let $\sum^{*} (\alpha, \beta, k)$ be a class of meromorphic functions f(z) with positive coefficients in $D = \{0 < |z| < 1\}$. The aim of the present note is to prove some properties for the class $\sum^{*} (\alpha, \beta, k)$.

2000 Mathematics Subject Classification: 30C45, 30C50, 30D30.

1. Introduction. Let \sum denote the class of functions of the form

$$f(z) = \frac{1}{z} + \sum_{n=0}^{\infty} a_n z^n$$
 (1.1)

which are analytic in the punctured disc $D = \{z : 0 < |z| < 1\}$ with a simple pole at the origin with residue 1. A function $f(z) \in \sum$ is said to be meromorphically starlike of order α if it satisfies the following:

$$\operatorname{Re}\left(-\frac{zf'(z)}{f(z)}\right) > \alpha \quad (z \in D)$$
(1.2)

for some α ($0 \le \alpha < 1$). We say that f(z) is in the class $\sum^{*}(\alpha)$ of such functions. Similarly a function f(z) in \sum is said to be meromorphically convex of order α if it satisfies the following:

$$\operatorname{Re}\left(-1 - \frac{zf^{\prime\prime}(z)}{f^{\prime}(z)}\right) > \alpha \quad (z \in D)$$
(1.3)

for some α ($0 \le \alpha < 1$). We say that f(z) is in the class $\sum_{C} (\alpha)$ of such functions.

The class $\sum^{*}(\alpha)$ and various other subclasses of \sum have been studied rather extensively by Nehari and Netanyahu [9], Clunie [4], Pommerenke [11, 12], Miller [7], Royster [13], and others (cf., e.g., Bajpai [2], Goel and Sohi [6], Mogra et al. [8], Uralegaddi and Ganigi [15], Cho et al. [3], Aouf [1], and Uralegaddi and Somanatha [16, 17]; see also Duren [5, pages 29 and 137], and Srivastava and Owa [14, pages 86 and 429]).

Owa and Pascu [10] obtained some coefficient properties for the class $\sum^{*} (\alpha, k)$ which satisfies

$$\left|\frac{zf'(z)}{f(z)} + k\right| < \left|\frac{zf'(z)}{f(z)} + (2\alpha - k)\right|$$
(1.4)

for some α ($\alpha > 0$), k ($0 \le k \le 1$), and for all $z \in D$.

MASLINA DARUS

In this note, the above definition is extended and we obtain the extended coefficient inequalities.

The extended class of functions is defined as follows.

DEFINITION 1.1. A function $f(z) \in \sum$ is said to be a member of the class $\sum^{*} (\alpha, \beta, k)$ if it satisfies

$$\frac{1}{\beta} \left| \frac{zf'(z)}{f(z)} + k \right| < \left| \frac{zf'(z)}{f(z)} + (2\alpha - k) \right|$$
(1.5)

for some α ($\alpha > 0$), β ($0 < \beta \le 1$), k ($0 \le k \le 1$), and for all $z \in D$.

2. Coefficient inequalities for functions. For the class $\sum^{*}(\alpha, k)$, Owa and Pascu [10] showed the following theorem.

THEOREM 2.1. Let the function f(z) be defined by (1.1). If

$$\sum_{n=2}^{\infty} \left(n+k+|2\alpha+n-k| \right) \left| a_n \right| r^{n+1} \le 2(1-\alpha)$$
(2.1)

for some k ($0 \le k \le 1$) and α ($0 \le \alpha < 1$), then $f(z) \in \sum^{*} (\alpha, k)$.

Our first result for functions $f(z) \in \sum^{*} (\alpha, \beta, k)$ is given as the following theorem.

THEOREM 2.2. Let the function f(z) be defined by (1.1). If

$$\sum_{n=2}^{\infty} \left(n+k+\beta |2\alpha+n-k| \right) |a_n| r^{n+1} \le \beta (k+1-2\alpha) + 1-k$$
(2.2)

for some k $(0 \le k \le 1)$, α $(0 \le \alpha < 1)$, and β $(0 < \beta \le 1)$, then $f(z) \in \sum^{*} (\alpha, \beta, k)$.

PROOF. Using the same technique as in [10], we know that for $f \in \sum^{*} (\alpha, \beta, k)$,

$$\left| zf'(z) + kf(z) \right| - \beta \left| zf'(z) + (2\alpha - k)f(z) \right|$$

= $\left| (k-1)\frac{1}{z} + \sum_{n=0}^{\infty} (n+k)a_n z^n \right| - \beta \left| (2\alpha - k - 1)\frac{1}{z} + \sum_{n=0}^{\infty} (2\alpha + n - k)a_n z^n \right|.$ (2.3)

Therefore, applying the condition of the theorem, we have

$$r | zf'(z) + kf(z) | - r\beta | zf'(z) + (2\alpha - k)f(z) |$$

$$\leq (k-1) + \sum_{n=0}^{\infty} (n+k) | a_n | r^{n+1} - \beta(k+1-2\alpha) \frac{1}{r}$$

$$+ \sum_{n=0}^{\infty} \beta | 2\alpha + n - k| | a_n | r^{n+1}$$

$$= k - 1 - \beta(k+1-2\alpha) + \sum_{n=0}^{\infty} \{ (n+k) + \beta | 2\alpha + n - k| \} | a_n | r^{n+1}$$

$$\leq 0,$$
(2.4)

which shows that

$$\sum_{n=0}^{\infty} \left\{ (n+k) + \beta |2\alpha + n - k| \right\} \left| a_n \right| r^{n+1} \le \beta (k+1-2\alpha) + 1 - k.$$
(2.5)

It follows from the above that

$$\frac{1}{\beta} \left| \frac{zf'(z)/f(z) + k}{zf'(z)/f(z) + (2\alpha - k)} \right| \le 1.$$
(2.6)

The function f(z) given by

$$f_n(z) = \frac{1}{z} + a_0 + \frac{\{\beta(k+1-2\alpha)+1-k\}z^n}{(n+k)+\beta|2\alpha+n-k|} \quad (n \ge 1)$$
(2.7)

belongs to the class $\sum^{*} (\alpha, \beta, k)$.

This completes the proof of the theorem.

COROLLARY 2.3. Let the function f(z) be defined by (1.1) and let $f(z) \in \Sigma$. If $f \in \Sigma^*(\alpha, \beta, k)$, then

$$a_n \le \frac{\beta(k+1-2\alpha)+1-k}{(n+k)+\beta(2\alpha+n-k)}, \quad n \ge 0.$$
(2.8)

The result is sharp for functions $f_n(z)$ given by (2.7).

REMARK 2.4. If $f \in \sum^* (\alpha, \beta, k)$ with $a_0 = 0$, then Corollary 2.3 is true for some β $(0 < \beta \le (k-1)/(k+1-2\alpha) \le 1)$ and α $(0 \le \alpha \le (k+1)/2 < 1)$.

If $\beta = 1$, we get the following corollary.

COROLLARY 2.5 (see [10]). Let the function f(z) be defined by (1.1) and let $f(z) \in \Sigma$. If $f \in \Sigma^*(\alpha, 1, k)$, then

$$a_n \le \frac{1-\alpha}{n+\alpha}, \quad n \ge 0, \tag{2.9}$$

for some α $(1/2 \le \alpha < 1)$.

3. Distortion theorem. A distortion property for functions in the class $\sum^{*} (\alpha, \beta, k)$ is given as follows.

THEOREM 3.1. If the function f(z) defined by (1.1) is in the class $\sum^{*} (\alpha, \beta, k)$, then for 0 < |z| = r < 1,

$$\frac{1}{r} - a_0 - \frac{\{\beta(k+1-2\alpha)+1-k\}r}{(1+k)+\beta|2\alpha+1-k|} \\
\leq |f(z)| \leq \frac{1}{r} + a_0 + \frac{\{\beta(k+1-2\alpha)+1-k\}r}{(1+k)+\beta|2\alpha+1-k|},$$
(3.1)

with equality for

$$f_{1}(z) = \frac{1}{z} + a_{0} + \frac{\{\beta(k+1-2\alpha)+1-k\}z}{(1+k)+\beta|2\alpha+1-k|} \quad (z = ir, r),$$

$$\frac{1}{r^{2}} - a_{0} - \frac{\beta(k+1-2\alpha)+1-k}{(1+k)+\beta|2\alpha+1-k|}$$

$$\leq |f'(z)| \leq \frac{1}{r^{2}} + a_{0} + \frac{\beta(k+1-2\alpha)+1-k}{(1+k)+\beta|2\alpha+1-k|},$$
(3.2)

with equality for

$$f_1(z) = \frac{1}{z} + a_0 + \frac{\{\beta(k+1-2\alpha)+1-k\}z}{(1+k)+\beta(2\alpha+1-k)} \quad (z = \pm ir, \pm r).$$
(3.3)

PROOF. Since $f \in \sum^{*} (\alpha, \beta, k)$, Theorem 2.2 yields the inequality

$$\sum_{n=0}^{\infty} a_n \le \frac{\{\beta(k+1-2\alpha)+1-k\}}{(1+k)+\beta|2\alpha+1-k|}, \quad n \ge 0.$$
(3.4)

Thus, for 0 < |z| = r < 1, and making use of (3.4), we have

$$\begin{split} |f(z)| &\leq \left|\frac{1}{z}\right| + a_0 + \sum_{n=1}^{\infty} a_n |z|^n \leq \frac{1}{r} + a_0 + r \sum_{n=1}^{\infty} a_n \\ &\leq \frac{1}{r} + a_0 + \frac{\{\beta(k+1-2\alpha)+1-k\}r}{(1+k)+\beta|2\alpha+1-k|}, \\ |f(z)| &\geq \left|\frac{1}{z}\right| - a_0 - \sum_{n=1}^{\infty} a_n |z|^n \geq \frac{1}{r} - a_0 - r \sum_{n=1}^{\infty} a_n \\ &\geq \frac{1}{r} - a_0 - \frac{\{\beta(k+1-2\alpha)+1-k\}r}{(1+k)+\beta|2\alpha+1-k|}. \end{split}$$
(3.5)

Also from Theorem 2.1 it follows that

$$\sum_{n=1}^{\infty} na_n \le a_0 + \frac{\{\beta(k+1-2\alpha)+1-k\}}{(1+k)+\beta|2\alpha+1-k|}.$$
(3.6)

Thus

$$\begin{split} \left| f'(z) \right| &\leq \frac{1}{|z|^2} + a_0 + \sum_{n=1}^{\infty} na_n |z|^{n-1} \leq \frac{1}{r^2} + a_0 + \sum_{n=1}^{\infty} na_n \\ &\leq \frac{1}{r^2} + a_0 + \frac{\{\beta(k+1-2\alpha)+1-k\}}{(1+k)+\beta|2\alpha+1-k|}, \\ \left| f'(z) \right| &\geq \frac{1}{|z|^2} - a_0 - \sum_{n=1}^{\infty} na_n |z|^{n-1} \geq \frac{1}{r^2} - a_0 - \sum_{n=1}^{\infty} na_n \\ &\geq \frac{1}{r^2} - a_0 - \frac{\{\beta(k+1-2\alpha)+1-k\}}{(1+k)+\beta|2\alpha+1-k|}. \end{split}$$
(3.7)

Hence we complete the proof of Theorem 3.1.

322

4. Radii of starlikeness and convexity. The radii of starlikeness and convexity for the class $\sum^{*} (\alpha, \beta, k)$ are given by the following theorem.

THEOREM 4.1. If the function f(z) defined by (1.1) is in the class $\sum^{*}(\alpha, \beta, k)$, then f(z) is meromorphically starlike of order ρ ($0 \le \rho < 1$) in the disk $|z| < r_1(\alpha, \beta, \rho)$, where $r_1(\alpha, \beta, \rho)$ is the largest value for which

$$r_{1} = r_{1}(\alpha, \beta, \rho) = \inf_{n \ge 0} \left(\frac{(1-\rho)\{(n+k) + \beta | 2\alpha + n-k|\}}{(n+2-\rho)\{\beta(k+1-2\alpha) + 1-k\}} \right)^{1/(n+1)}.$$
(4.1)

The result is sharp for functions $f_n(z)$ given by (2.7).

PROOF. It suffices to show that

$$\left|\frac{zf'(z)}{f(z)} + 1\right| \le 1 - \rho \tag{4.2}$$

for $|z| \leq r_1$. We have

$$\left|\frac{zf'(z)}{f(z)} + 1\right| \le \frac{\sum_{n=0}^{\infty} (n+1) |a_n| |z|^{n+1}}{1 - \sum_{n=0}^{\infty} |a_n| |z|^{n+1}} \le 1 - \rho.$$
(4.3)

Hence (4.3) holds true if

$$\sum_{n=0}^{\infty} (n+1) \left| a_n \right| \left| z \right|^{n+1} \le (1-\rho) \left(1 - \sum_{n=0}^{\infty} \left| a_n \right| \left| z \right|^{n+1} \right)$$
(4.4)

or

$$\sum_{n=0}^{\infty} \frac{(n+2-\rho)}{1-\rho} a_n |z|^{n+1} \le 1;$$
(4.5)

with the aid of (2.8), (4.5) is true if

$$\frac{(n+2-\rho)}{1-\rho}|z|^{n+1} \le \frac{(n+k)+\beta|2\alpha+n-k|}{\beta(k+1-2\alpha)+1-k}.$$
(4.6)

Solving (4.6) for |z|, we obtain

$$|z| \le \left(\frac{(1-\rho)\{(n+k)+\beta|2\alpha+n-k|\}}{(n+2-\rho)\{\beta(k+1-2\alpha)+1-k\}}\right)^{1/(n+1)} \quad (n\ge 0).$$
(4.7)

This completes the proof of Theorem 4.1.

THEOREM 4.2. If the function f(z) defined by (1.1) is in the class $\sum^* (\alpha, \beta, k)$, then f(z) is meromorphically convex of order ρ ($0 \le \rho < 1$) in the disk $|z| < r_2(\alpha, \beta, \rho)$, where $r_2(\alpha, \beta, \rho)$ is the largest value for which

$$r_{2} = r_{2}(\alpha, \beta, \rho) = \inf_{n \ge 0} \left(\frac{(1-\rho)\{(n+k) + \beta | 2\alpha + n - k|\}}{n(n+2-\rho)\{\beta(k+1-2\alpha) + 1 - k\}} \right)^{1/(n+1)}.$$
(4.8)

The result is sharp for functions $f_n(z)$ given by (2.7).

PROOF. We omit the details of the proof as they are very tedious. It suffices to show that

$$\left|\frac{zf''(z)}{f'(z)} + 2\right| \le 1 - \rho \tag{4.9}$$

for $|z| \le r_2$, with the aid of Theorem 2.2. Thus we have the assertion of Theorem 4.2.

Acknowledgments. The work presented here was supported by the Intensified Research for Priority Areas (IRPA) Grant 09-02-02-0080-EA208. The author would like to thank all the referees for their suggestions regarding the content of this note.

REFERENCES

- M. K. Aouf, On a certain class of meromorphic univalent functions with positive coefficients, Rend. Mat. Appl. (7) 11 (1991), no. 2, 209–219.
- [2] S. K. Bajpai, A note on a class of meromorphic univalent functions, Rev. Roumaine Math. Pures Appl. 22 (1977), no. 3, 295–297.
- [3] N. E. Cho, S. H. Lee, and S. Owa, A class of meromorphic univalent functions with positive coefficients, Kobe J. Math. 4 (1987), no. 1, 43–50.
- [4] J. Clunie, On meromorphic schlicht functions, J. London Math. Soc. 34 (1959), 215-216.
- P. L. Duren, Univalent Functions, Grundlehren der mathematischen Wissenschaften, vol. 259, Springer-Verlag, New York, 1983.
- [6] R. M. Goel and N. S. Sohi, On a class of meromorphic functions, Glas. Mat. Ser. III 17(37) (1982), no. 1, 19–28.
- J. Miller, Convex meromorphic mappings and related functions, Proc. Amer. Math. Soc. 25 (1970), 220–228.
- [8] M. L. Mogra, T. R. Reddy, and O. P. Juneja, *Meromorphic univalent functions with positive coefficients*, Bull. Austral. Math. Soc. 32 (1985), no. 2, 161–176.
- Z. Nehari and E. Netanyahu, On the coefficients of meromorphic schlicht functions, Proc. Amer. Math. Soc. 8 (1957), 15–23.
- [10] S. Owa and N. N. Pascu, Coefficient inequalities for certain classes of meromorphically starlike and meromorphically convex functions, JIPAM. J. Inequal. Pure Appl. Math. 4 (2003), no. 1, Article 17, 1-6.
- [11] Ch. Pommerenke, Über einige Klassen meromorpher schlichter Funktionen, Math. Z. 78 (1962), 263-284 (German).
- [12] _____, On meromorphic starlike functions, Pacific J. Math. 13 (1963), 221–235.
- [13] W. C. Royster, *Meromorphic starlike multivalent functions*, Trans. Amer. Math. Soc. 107 (1963), 300–308.
- [14] H. M. Srivastava and S. Owa (eds.), Current Topics in Analytic Function Theory, World Scientific Publishing, New Jersey, 1992.
- [15] B. A. Uralegaddi and M. D. Ganigi, A certain class of meromorphically starlike functions with positive coefficients, Pure Appl. Math. Sci. 26 (1987), no. 1-2, 75–81.
- [16] B. A. Uralegaddi and C. Somanatha, Certain differential operators for meromorphic functions, Houston J. Math. 17 (1991), no. 2, 279–284.
- [17] _____, New criteria for meromorphic starlike univalent functions, Bull. Austral. Math. Soc. 43 (1991), no. 1, 137–140.

Maslina Darus: School of Mathematical Sciences, Faculty of Sciences and Technology, University of Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia

E-mail address: maslina@pkrisc.cc.ukm.my

324