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A FORMULA FOR THE INNER SPECTRAL RADIUS
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This note presents an asymptotic formula for the minimum of the moduli of the elements
in the spectrum of a bounded linear operator acting on Banach space X. This minimum
moduli is called the inner spectral radius, and the formula established herein is an analogue
of Gelfand’s spectral radius formula.
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1. Introduction. Let X be a Banach space and let B(X) denote the Banach algebra

of all bounded linear operators on X, and let T be an element of B(X). We denote by

m(T) the “minimum moduli” of T and define it by

m(T)= inf
{‖Tx‖, x ∈X, ‖x‖ = 1

}
. (1.1)

In what follows, i(T) and iap(T) will denote, respectively, inner spectral radius and

inner approximate spectral radius of T . We define i(T) and iap(T) by

i(T)= inf
{|λ| : λ∈ σ(T)},

iap(T)= inf
{|λ| : λ∈ σap(T)

}
.

(1.2)

Makai and Zemanek [3] proved that

iap(T)= lim
n→∞

[
m
(
Tn
)]1/n. (1.3)

In this note, we prove the same formula for i(T). The main results established herein

are the following theorem and corollary.

Theorem 1.1. Let T ∈ B(X). Then, ri(T)= i(T) if and only if ri(T)≤ ri(T∗).
Corollary 1.2. It is not necessary that ri(T)= ri(T∗) for any T ∈ B(X).

2. Basic concepts. Throughout, X will denote a Banach space, B(X) is the Banach

algebra of all bounded linear operators on X. T will denote an element of B(X). We

denote T∗ as the transpose of T (T∗ is an element of B(X∗), where X∗ is dual space of

X) and define

(
T∗g

)
(x)= g(T(x)), x ∈X, g ∈X∗. (2.1)
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If X is a Hilbert space, then T∗ is the adjoint of T and T∗ ∈ B(X). We denote by σ(T),
σap(T), σp(T), and σc(T), respectively, spectrum, approximate point spectrum, point

spectrum, and compression spectrum of T and define

σ(T)= {λ : (T −λI) is not invertible, λ∈ C},
σap(T)=

{
λ : (T −λI) is not bounded below, λ∈ C},

σp(T)=
{
λ : ker(T −λI)≠ 0, λ∈ C},

σc(T)=
{
λ : ran(T −λI) is not dense in X, λ∈ C}.

(2.2)

The spectral radius of T is denoted by r(T) and defined by

r(T)= sup
{|λ| : λ∈ σ(T)}. (2.3)

We recall the following statements. One can see their proof in [1].

(1) ‖T‖ = ‖T∗‖.
(2) r(T)= limn→∞‖Tn‖1/n (Gelfand’s formula).

(3) r(T)= r(T∗).
(4) σ(T)= σ(T∗), if X is a Hilbert space, then σ(T∗)= σ(T), where σ(T)= {λ,λ∈

σ(T)}.
For operator T ∈ B(X), define

m(T)= inf
{‖Tx‖, x ∈X, ‖x‖ = 1

}
. (2.4)

m(T) is called the minimum moduli of T . Note that by definition of m(T), we have

‖Tx‖ ≥m(T)‖x‖. It is clear that; if T is an invertible element in B(X), then m(T) =
‖T−1‖−1.

Definition 2.1. The inner spectral radius and inner approximate spectral radius of

T are denoted, respectively, by i(T) and iap(T) and defined by (1.2).

Proposition 2.2. If |λ|<m(T), then (T −λI) is bounded below.

Proof. We have

∥
∥(T −λI)x∥∥≥ ‖Tx‖−‖λx‖ ≥ (m(T)−|λ|)‖x‖. (2.5)

The assumption implies that m(T)−|λ| > 0 and hence (T −λI) is bounded below by

the definition.

Proposition 2.3. For every operator T ∈ B(X),

lim
n→∞

[
m
(
Tn
)]1/n = sup

[
m
(
Tn
)]1/n. (2.6)
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Proof. For every operator T and S in B(X), we have

m(TS)≥m(T)m(S), (2.7)

by definition of the minimum moduli. Therefore, for every positive integers i and j,

m
(
T i+j

)≥m(T i)m(Tj). (2.8)

This is the crucial inequality. Let k be fixed. For every integer number n, we have

n = kq+ r , 0 ≤ r < k, where q = q(n) and r = r(n) are functions of n. Note that

limn→∞q(n)/n= 1/k. Thus, by (2.8) we have

m
(
Tn
)≥m(Tk)qm(T)r , for each positive integer n. (2.9)

Hence,

lim
n→∞ inf

[
m
(
Tn
)]n ≥m(Tk)1/k. (2.10)

Since this equation holds for all k, we have

lim
n→∞ inf

[
m
(
Tn
)]n ≥ sup

[
m
(
Tn
)]1/n ≥ lim

n→∞sup
[
m
(
Tn
)]n

(2.11)

and the result follows.

Assume that ri(T)= limn→∞[m(Tn)]1/n. By Gelfand’s formula, it is clear that if T is

invertible, then ri(T)= [r(T−1)]−1.

Corollary 2.4. Let T ∈ B(X). Then, 0∈ σap(T) if and only if m(T)= 0.

Proof. The result follows from the facts that 0 ∈ σap(T) if and only if T is not

bounded below and ‖Tx‖ ≥m(T)‖x‖ for each x ∈X.

Proposition 2.5. Let T ∈ B(X). If λ∈ σap(T), then |λ| ≥ ri(T).
Proof. Suppose λ ∈ σap(T). Assume, contrary to what we wish to prove, that

|λ| < ri(T). Thus, |λ|n < m(Tn) for some integer n by the definition of ri(T). By

Proposition 2.2, (Tn−λnI) is bounded below. We have

Tn−λn = (Tn−1+Tn−2λ+···+λn)(T −λ). (2.12)

Hence, (T − λ) is bounded below and so λ �∈ σap(T), which is contradictory to our

assumption.
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Corollary 2.6. For each T ∈ B(X),

σap(T)⊆
{
λ : ri(T)≤ |λ| ≤ r(T)

}
. (2.13)

Makai and Zemanek in [3] proved that iap(T)= ri(T) for every T ∈ B(X). In the next

section, we will prove that i(T)= ri(T) if and only if ri(T)≤ ri(T∗).

3. Inner spectral radius. The purpose of this section is to prove the main result.

We know that ∂σap(T) ⊆ σ(T) and ri(T) = iap(T) and so ri(T) ∈ σ(T). Therefore,

for every T ∈ B(X), we have

i(T)≤ ri(T). (3.1)

Fact 3.1. If X is a finite-dimensional space, then σap(T)= σ(T) for each T ∈ B(X)
and hence ri(T)= i(T).

Fact 3.2. If T is a compact operator acting on Banach space X, then ri(T)= i(T).
We begin with some general lemmas that we need in the proof of the main theorem.

Lemma 3.3. Let T ∈ B(X). Then, σc(T) = σp(T∗). (If X is a Hilbert space, then

σc(T)= σp(T∗)).
Proof. First, we show that σc(T) ⊆ σp(T∗). Suppose λ is an element in σc(T).

ConsiderM the closure of ran(T−λI). By definition of σc(T),M ≠X. If x0 is a nonzero

element inX−M , then by the Hahn-Banach theorem there is f0 ∈X∗ such that f0(M)=0

and f0(x0)= 1. We have ((T∗−λI)f0)(x)= f0((T−λI)x)= 0 for everyx ∈X and hence

f0 ∈ ker(T∗−λI), that is λ∈ σp(T∗).
Now, we prove σp(T∗)⊆ σc(T). Suppose λ∈ σp(T∗), thus, there is a nonzero func-

tional g in X∗ such that (T∗−λI)g = 0 and so, g((T−λI)x)= 0 for each x ∈X by (2.1).

Hence, g(t)= 0 for any t in closure ran(T −λI).
But g ≠ 0 on X, and hence there is x0 ∈X−M such that g(x0)≠ 0. Therefore,M ≠X,

that is, λ∈ σc(T).
If X is a Hilbert space, then we know that ker(T)= (ranT∗)⊥ and closure(ranT∗)=

(kerT)⊥ in [1, Theorem II.2.19]. Thus, by the definition of σp(T) and σc(T), we get the

following result.

Lemma 3.4. Let T ∈ B(X). Then, σ(T)= σap(T)
⋃
σc(T).

Proof. It follows from [1, Proposition VII.6.4] and the definition of σap(T) and

σc(T).

Lemma 3.5. Let T ∈ B(X). If σ(T)⊆ {λ : ri(T)≤ |λ| ≤ r(T)}, then ri(T)= i(T).
Proof. By assumption, we have ri(T) ≤ i(T) and the result follows the fact that

i(T)≤ ri(T).
Theorem 3.6. Let T ∈ B(X). Then, ri(T)= i(T) if and only if ri(T)≤ ri(T∗).
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Proof. First, suppose that ri(T)≤ ri(T∗). By Lemmas 3.3 and 3.4, σ(T)= σap(T)
⋃

σp(T∗) (if X is a Hilbert space, then σ(T)= σap(T)
⋃
σp(T∗)). We have

σ(T)⊆ {λ : ri(T)≤ |λ| ≤ r(T)
}
. (3.2)

Hence, by Lemma 3.5, ri(T)= i(T).
Conversely, suppose that ri(T)= i(T). We haveσ(T)= σ(T∗) (ifX is a Hilbert space,

then σ(T∗)= σ(T)). Thus, i(T)= i(T∗) by definition of i(T), and, therefore,

ri(T)= i(T)= i
(
T∗
)≤ ri

(
T∗
)
. (3.3)

Example 3.7. Let X be a Hilbert space and N ∈ B(X) a normal operator. Then,

i(N)= i(N∗)= ri(N)= ri
(
N∗
)
. (3.4)

Since N is normal, ‖Nx‖ = ‖N∗x‖ for every x in X, and, therefore, m(N) =m(N∗).
Similarly, we havem(Nn)=m(N∗n) for eachn, and so, i(N)= i(N∗)= ri(N)= ri(N∗).

If X is a Hilbert space and N ∈ B(X) is a normal operator, then r(N) = ‖N‖. In the

next proposition, we prove that ri(N)=m(N) for the normal operator N in B(X).
Recall that for each operator T ∈ B(X) the numerical range of T is defined and

denoted as follows:

W(T)= {λ∈ C : λ= 〈Tx,x〉, x ∈X with ‖x‖ = 1
}
. (3.5)

The following interesting theorem was proved in [2, Theorem 27.9].

Theorem 3.8. If T is a selfadjoint operator in B(X), M1 and M2 denote, respectively,

the infimum and the supremum of the numerical range of T , then M1 and M2 are ap-

proximate eigenvalues of T , and the spectrum of T is contained in the interval [M1,M2].

By this theorem, for each positive operator T ∈ B(X) we have

i(T)= ri(T)= inf
{〈Tx,x〉, x ∈X with ‖x‖ = 1

}
. (3.6)

Proposition 3.9. If N is normal operator acting on Hilbert space X, then i(N) =
ri(N)=m(N).

Proof. As shown in Example 3.7, we have m(N) = m(N∗). Now, we prove that

m(NN∗)=m(N)2. Since NN∗ is positive, by (3.6) and Proposition 2.3, we have

m
(
NN∗

)≤ ri
(
NN∗

)= inf
{〈
NN∗x,x

〉
, x ∈X with ‖x‖ = 1

}

= inf
{∥∥Nx

∥
∥2, x ∈X with ‖x‖ = 1

}=m(N)2.
(3.7)

By (2.8), we get

m
(
NN∗

)≥m(N)m(N∗)=m(N)2. (3.8)

Hence,

m
(
NN∗

)=m(N)2. (3.9)
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By induction, we show that if j = 2n, n= 0,1,2, . . . , thenm(Nj)=m(N)j . This is clearly

true for n= 0. Assume it to be true for some n, then for all x ∈H, we have

∥
∥N2n+1

(x)
∥
∥= ∥∥N2n(N2n(x)

)∥∥= ∥∥(N2n)∗(N2n(x)
)∥∥, (3.10)

because N2n is normal. This shows that m(N2n+1)=m((N2n)∗N2n), which is equal to

m(N2n)2. Thus, m(N2n+1)= (m(N)2n)2 =m(N)2n+1
. Therefore,

ri(N)= lim
n→∞

[
m
(
Nn
)]1/n = lim

n→∞
[
m
(
N2n)]1/2n =m(N). (3.11)

Example 3.10. Suppose U is a unilateral weighted shift with weights (1,2,1, . . .) act-

ing on separable Hilbert space H. William Ridge [4] proved that σap(U)={λ :|λ|=√2},
σ(U) = {λ : |λ| ≤ √2}, and σap(U∗) = σ(U∗) = σ(U). Hence, ri(U) = r(U) = √2,

ri(U∗)= i(U∗)= 0, and i(U)= 0. Therefore, we have i(U)≠ ri(U) and ri(U∗) < ri(U).

We know that r(T) = r(T∗) for any T ∈ B(X). But in the above example ri(U∗) <
ri(U) so, we can write the next corollary.

Corollary 3.11. It is not necessary that ri(T)= ri(T∗) for any T ∈ B(X).
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