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Let X and Y be Banach spaces. A set � of 1-summing operators from X into Y is said to be
uniformly summing if the following holds: given a weakly 1-summing sequence (xn) in X,
the series

∑
n ‖Txn‖ is uniformly convergent in T ∈�. We study some general properties

and obtain a characterization of these sets when � is a set of operators defined on spaces
of continuous functions.
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1. Introduction. Throughout this paper, X and Y will be Banach spaces. If X is a

Banach space, BX = {x ∈X : ‖x‖ ≤ 1} will denote its closed unit ball and X∗ will be the

topological dual of X. Given a real number p ∈ [1,∞), a (linear) operator T : X → Y is

said to be p-summing if there exists a constant C > 0 such that

( n∑
i=1

∥∥Txi∥∥p
)1/p

≤ C ·sup


( n∑
i=1

∣∣〈x∗,xi〉∣∣p
)1/p

: x∗ ∈ BX∗
 (1.1)

for every finite set {x1, . . . ,xn} ⊂ X. The least C for which the above inequality al-

ways holds is denoted by πp(T) (the p-summing norm of T ). The linear space of all

p-summing operators from X into Y is denoted by Πp(X,Y) which is a Banach space

endowed with the p-summing norm.

As usual, �pw(X) will be the Banach space of weakly p-summable sequences in X,

that is, the sequences (xn) ⊂ X satisfying
∑
n |〈x∗,xn〉|p < ∞ for all x∗ ∈ X∗; the

norm in �pw(X) is εp(xn)= sup{(∑n |〈x∗,xn〉|p)1/p : x∗ ∈ BX∗}. The set of all strongly

p-summable sequences in X is denoted by �pa(X); the norm in this space is πp(xn) =
(
∑
n‖xn‖p)1/p . If T ∈Πp(X,Y), the correspondence T̂ : (xn)� (Txn) always induces a

bounded operator from �pw(X) into �pa(Y) with ‖T̂‖ =πp(T) [5, Proposition 2.1].

Families of operators arise in different applications: equations containing a parame-

ter, homotopies of operators, and so forth. In these applications, it may be very inter-

esting to know that, given a set � ⊂Πp(X,Y) and (xn)∈ �pw(X), the series
∑
n‖Txn‖p

is uniformly convergent in T ∈�. The main purpose of this paper is to study uniformly

p-summing sets, that is, those sets � ⊂ Πp(X,Y) for which, given (xn) ∈ �pw(X), the

series
∑
n‖Txn‖p is uniformly convergent in T ∈�. These sets also enjoy some prop-

erties that justify their study; the next proposition lists some of them.
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Proposition 1.1. (a) Let (Tk) be a sequence in Πp(X,Y). Then, T̂k
k→ 0 pointwise if

and only if Tk
k→ 0 pointwise and (Tk) is uniformly p-summing.

(b) Let � ⊂ Πp(X,Y) be a uniformly p-summing set. If � is endowed with the strong

operator topology, then the map T ∈��
∑
n‖Txn‖p ∈R is continuous for every (xn)∈

�pw(X).

A basic argument shows that uniformly p-summing sets are bounded for the p-

summing norm. In fact, if X does not contain any copy of c0, bounded sets and uni-

formly 1-summing sets are the same. That is the reason for which we only consider

operators defined on a �(Ω)-space, Ω being a compact Hausdorff space. We recall that

every weakly compact operator T : �(Ω) → Y has a representing measure mT : Σ →
Y defined by mT(B) = T∗∗(χB) for all B ∈ Σ, where Σ denotes the Borel σ -field of

subsets of Ω and χB denotes the characteristic function of B. The vector measuremT is

regular and countably additive [6, Theorem VI.2.5 and Corollary VI.2.14]. If we denote

by T̃ the operator T∗∗ restricted to B(Σ) (the space of all bounded Borel-measurable

scalar-valued functions defined on Ω), then

T̃ϕ =
∫
Ω
ϕdmT , (1.2)

for all ϕ ∈ B(Σ) (the integral is the elementary Bartle integral [6, Definition I.1.12]).

It is well known that everyp-summing operator defined on a Banach spaceX is weakly

compact. In Section 2, we consider 1-summing operators T defined on �(Ω); these op-

erators are characterized as those with representing measuremT having finite variation

and π1(T) = |mT |(Ω) [6, Theorem VI.3.3]. We show that a set � ⊂ Π1(�(Ω),Y ) is uni-

formly 1-summing if and only if the family of all variation measures {|mT | : T ∈�} is

uniformly bounded and there is a countably additive measure µ : Σ→ [0,∞) such that

{|mT | : T ∈�} is uniformly µ-continuous.

In Section 3, we mention a special class of uniformlyp-summing operators: uniformly

dominated sets. The relationship between uniformly summing sets and relatively weak

compactness is also studied. Finally, we give some examples and open problems.

2. Uniformly 1-summing sets in Π1(�(Ω),Y ). Before facing our main theorem, we

include three results which correspond to the vector measure theory. These results will

be usually invoked along the following lines.

Proposition 2.1 [6, Proposition I.1.17]. The following statements about a collection

{mi : i∈ I} of Y -valued measures defined on a σ -field Σ are equivalent:

(a) the set {mi : i∈ I} is uniformly countably additive, that is, if (En) is a sequence of

pairwise disjoint members of Σ, then limn‖
∑
k≥nmi(Ek)‖ = 0 uniformly in i∈ I,

(b) the set {y∗ ◦mi : i∈ I, y∗ ∈ BY∗} is uniformly countably additive,

(c) if (En) is a sequence of pairwise disjoint members of Σ, then limn‖mi(En)‖ = 0

uniformly in i∈ I,
(d) if (En) is a sequence of pairwise disjoint members of Σ, then limn‖mi‖(En) = 0

uniformly in i∈ I, where ‖mi‖ denotes the semivariation of mi,

(e) the set {|y∗ ◦mi| : i∈ I, y∗ ∈ BY∗} is uniformly countably additive.
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Theorem 2.2 [6, Theorem I.2.4]. Let {mi : Σ → Y : i ∈ I} be a uniformly bounded

(with respect to the semivariation) family of countably additive vector measures on a

σ -field Σ. The family {mi : i ∈ I} is uniformly countably additive if and only if there

exists a positive real-valued countably additive measure µ on Σ such that {mi : i ∈ I} is

uniformly µ-continuous, that is,

lim
µ(E)→0

∥∥mi(E)
∥∥= 0 (2.1)

uniformly in i∈ I.
If Ω is a compact Hausdorff space and Σ denotes the σ -field of the Borel subsets of

Ω, a vector measure m on Σ is regular if for each Borel set E and ε > 0 there exists a

compact set K and an open set O such that K ⊂ E ⊂O and ‖m‖(O\K) < ε.
Proposition 2.3 [6, Lemma VI.2.13]. Let � be a family of regular (countably additive)

scalar measures defined on Σ. Each of the following statements implies all the others:

(a) for each pairwise disjoint sequence (On) of open subsets of Ω, limnµ(On) = 0

uniformly in µ ∈�,

(b) for each pairwise disjoint sequence (On) of open subsets of Ω, limn |µ|(On) = 0

uniformly in µ ∈�,

(c) � is uniformly countably additive,

(d) � is uniformly regular, that is, if E ∈ Σ and ε > 0, then there exists a compact set

K and an open set O such that K ⊂ E ⊂O and supµ∈� |µ|(O\K) < ε.
Now, we are able to show our main result. In the proof, we will use the fact that |mT |

is regular when T : �(Ω)→ Y is 1-summing [7, Proposition 15.21].

Theorem 2.4. Let � ⊂ Π1(�(Ω),Y ) be a bounded set. The following statements are

equivalent:

(a) � is uniformly 1-summing,

(b) the family of nonnegative measures {|mT | : T ∈�} is uniformly countably addi-

tive,

(c) given ε > 0 and a disjoint sequence (En) of Borel subsets of Ω, there exists n0 ∈N
such that

∑
n≥n0

∥∥mT
(
En
)∥∥< ε, (2.2)

for all T ∈�.

Proof. (a)⇒(b). According to [6, Lemma VI.2.13], it suffices to show that

limn→∞ |mT |(On)= 0 uniformly in T ∈�, for all disjoint sequences (On) of open sub-

sets of Ω. By contradiction, suppose that there exists ε > 0, a sequence (Tn) in �, and

a strictly increasing sequence (kn) of natural numbers such that

∣∣mTn
∣∣(Okn)> 2ε, ∀n∈N. (2.3)



3400 J. M. DELGADO AND C. PIÑEIRO

Now we consider the operators Sn : �(Ω,Okn)→ Y defined by

Snϕ =
∫
Okn

ϕdmTn, (2.4)

for all ϕ ∈ �(Ω,Okn), where �(Ω,Okn) is the closed subspace of �(Ω) formed by all

continuous functionsϕ on Ω such thatϕ vanishes in Ω\Okn . It is known that π1(Sn)=
|mTn |(Okn), for all n∈N [7, Theorem 19.3]. For each n∈N, we can choose a finite set

{ϕn
1 , . . . ,ϕn

pn} ⊂�(Ω,Okn) satisfying ε1(ϕn
i )
pn
i=1 ≤ 1 and

pn∑
i=1

∥∥Snϕn
i
∥∥>π1

(
Sn
)−ε. (2.5)

Since the open sets Okn are disjoint, it follows that the sequence (ϕ1
1, . . . ,ϕ1

p1
,ϕ2

1, . . . ,
ϕ2
p2
, . . .) belongs to �1

w(�(Ω)). Nevertheless, for all n∈N, we have

∑
m≥n

pm∑
i=1

∥∥Tnϕm
i
∥∥≥ pn∑

i=1

∥∥Tnϕn
i
∥∥= pn∑

i=1

∥∥Snϕn
i
∥∥>π1

(
Sn
)−ε = ∣∣mTn

∣∣(Okn)−ε > ε. (2.6)

This denies (a) and proves that (a) implies (b).

(b)⇒(c). Again we proceed by contradiction. Suppose (En) is a disjoint sequence of

Borel subsets of Ω for which there exists ε > 0, a sequence (Tn) in �, and a strictly

increasing sequence (kn) of natural numbers so that

kn+1∑
i=kn+1

∥∥mTn
(
Ei
)∥∥> ε, ∀n∈N. (2.7)

If we put Bn =
⊔kn+1
i=kn+1Ei, the above inequality yields |mTn |(Bn) > ε. So, in view of [6,

Proposition I.1.17], the family {|mT | : T ∈�} is not uniformly countably additive.

(c)⇒(b). We need to prove

lim
n→∞

∣∣mT
∣∣(En)= 0 uniformly in T ∈�, (2.8)

for all disjoint sequences (En) of Borel subsets ofΩ. Suppose (b) fails. Then, there exists

ε > 0, a sequence (Tn) in �, and a strictly increasing sequence (kn) of natural numbers

satisfying

∣∣mTn
∣∣(Ekn)> ε, ∀n∈N. (2.9)

For each n∈N, we choose a finite partition {En1 , . . . ,Enpn} of Ekn for which

pn∑
i=1

∥∥mTn
(
Eni
)∥∥> ε. (2.10)

Then, the disjoint sequence (E1
1 , . . . ,E1

p1
,E2

1 , . . . ,E2
p2
, . . .) does not satisfy (c).
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(b)⇒(a). According to [6, Theorem I.2.4] there exists a countably additive measure

µ : Σ→ [0,∞) so that

lim
µ(E)→0

∣∣mT
∣∣(E)= 0 uniformly in T ∈�. (2.11)

Hence, given ε > 0, there exists δ > 0 such that, if E ∈ Σ verifies µ(E) < δ, then

|mT |(E) < ε/2, for all T ∈�.

Next, given (ϕn)∈ �1
w(�(Ω)) with ε1(ϕn)≤ 1, notice that the series

∑∞
n=1 |ϕn(t)| is

convergent for all t ∈Ω. Put fn(t)=
∑n
k=1 |ϕk(t)| and f(t)= limn→∞fn(t). By Egorov’s

theorem, the sequence (fn) is quasi-uniformly convergent to f . Then, there exists E ∈ Σ
such that µ(E) < δ and

fn|Ω\E �→ f|Ω\E (2.12)

uniformly. If C = sup{|mT |(Ω) : T ∈�}, there exists n0 ∈N so that

∑
n≥n0

∣∣ϕn(t)
∣∣< ε

2C
, ∀t ∈Ω\E. (2.13)

Now,

∑
n≥n0

∥∥Tϕn
∥∥= ∑

n≥n0

∥∥∥∥∫
Ω
ϕn(t)dmT

∥∥∥∥
≤

∑
n≥n0

∥∥∥∥∫
E
ϕn(t)dmT

∥∥∥∥+ ∑
n≥n0

∥∥∥∥∫
Ω\E

ϕn(t)dmT

∥∥∥∥
≤

∑
n≥n0

∫
E

∣∣ϕn(t)
∣∣d∣∣mT

∣∣+ ∑
n≥n0

∫
Ω\E

∣∣ϕn(t)
∣∣d∣∣mT

∣∣
=
∫
E

( ∑
n≥n0

∣∣ϕn(t)
∣∣)d∣∣mT

∣∣+∫
Ω\E

( ∑
n≥n0

∣∣ϕn(t)
∣∣)d∣∣mT

∣∣
≤ ∣∣mT

∣∣(E)+ ε
2C

∣∣mT
∣∣(Ω\E)

< ε.

(2.14)

We denote by �(X,Y) the class of completely continuous operators from X into

Y , that is, the class of operators which map weakly convergent sequences in X into

norm-convergent sequences in Y . A set � ⊂�(X,Y) is said to be uniformly completely

continuous if, given a weakly convergent sequence (xn) in X, (Txn) is norm convergent

uniformly in T ∈ �. The following result gives some characterizations of uniformly

completely continuous sets in �(�(Ω),Y ). Recall that an operator T defined on �(Ω)
is completely continuous if and only if T is weakly compact [6, Corollary VI.2.17], so

mT is countably additive and regular, too.

Theorem 2.5. Let � ⊂ �(�(Ω),Y ) be a bounded set for the operator norm. The

following statements are equivalent:

(a) � is uniformly completely continuous,

(b) the family {mT : T ∈�} is uniformly countably additive,
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(c) �∗ = {T∗ : T ∈�} is collectively weakly compact, that is, the set
⋃
T∈�T∗(BY∗)

is relatively weakly compact in �(Ω)∗.

Proof. (a)⇒(b). By [6, Proposition I.1.17], the family {mT : T ∈ �} is uniformly

countably additive if and only if � = {y∗ ◦mT : T ∈ �, y∗ ∈ BY∗} is. According to

[6, Lemma VI.1.13], we have to prove that

lim
n→∞y

∗ ◦mT
(
On
)= 0 uniformly in �, (2.15)

for all disjoint sequences (On) of open subsets of Ω. By contradiction, suppose there

exists such a sequence (On) for which limn→∞y∗◦mT(On)= 0 but not uniformly in �.

Then, there exists ε > 0 and sequences (y∗n ) ⊂ BY∗ , (Tn) ∈ �, and (Okn) ⊂ (On) such

that

∣∣y∗n ◦mTn
(
Okn

)∣∣> ε, ∀n∈N. (2.16)

Now, using the regularity of each mTn , we can find a sequence of compact sets (Hn)
with Hn ⊂Okn and

∥∥mTn
∥∥(Okn\Hn)< ε2 , ∀n∈N, (2.17)

(‖m‖ denotes the semivariation of m, that is, ‖m‖(E)= sup{|y∗◦m|(E) : y∗ ∈ BY∗}).
By Urysohn’s lemma, for every n ∈ N there exists a continuous function ϕn : Ω →
[0,1] such that ϕn(Hn) = 1 and ϕn(Ω\Okn) = 0. Obviously, the series

∑∞
n=1ϕn is

unconditionally convergent in �(Ω). Since � is uniformly completely continuous, there

exists n0 ∈N such that

∥∥Tϕn
∥∥< ε

2
, ∀n≥n0, ∀T ∈�. (2.18)

Then, we have

∥∥mTn
(
Okn

)∥∥≤ ∥∥mTn
(
Okn

)−Tnϕn
∥∥+∥∥Tnϕn

∥∥
=
∥∥∥∥∫

Ω
χOkn dmTn−

∫
Ω
ϕndmTn

∥∥∥∥+∥∥Tnϕn
∥∥

=
∥∥∥∥∫

Okn

(
1−ϕn

)
dmTn

∥∥∥∥+∥∥Tnϕn
∥∥

=
∥∥∥∥∫

Okn \Hn

(
1−ϕn

)
dmTn

∥∥∥∥+∥∥Tnϕn
∥∥

≤ ∥∥mTn
∥∥(Okn\Hn)+∥∥Tnϕn

∥∥
< ε,

(2.19)

for all n≥n0. This is in contradiction with (2.16).

(b)⇒(a). By [6, Theorem I.2.4], there exists a scalar countably additive measure µ : Σ→
[0,∞) such that {mT : T ∈�} is uniformly µ-continuous. Then, if (ϕn) is a sequence
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that tends to zero weakly in �(Ω), it is obvious that zero is the pointwise limit of the

sequence (ϕn(t)). Now, using Egorov’s theorem and proceeding along similar lines as

the proof of (b)⇒(a) in Theorem 2.4, the proof concludes.

(b)�(c). The set
⋃
T∈�T∗(BY∗) = {y∗ ◦mT : T ∈�, y∗ ∈ BY∗} ⊂ �(Ω)∗ is relatively

weakly compact if and only if it is bounded and uniformly countably additive [4, Theo-

rem VII.13]. A call to [6, Proposition I.1.17] makes clear that
⋃
T∈�T∗(BY∗) is uniformly

countably additive if and only if condition (b) is satisfied.

Corollary 2.6. If � ⊂ Π1
(
�(Ω),Y

)
is uniformly 1-summing, then � is uniformly

completely continuous.

The converse of the last result is not true in general.

Proposition 2.7. Suppose that the cardinal ofΩ is infinite. The following statements

are equivalent:

(a) each subset of Π1(�(Ω),Y ) uniformly completely continuous is uniformly 1-sum-

ming,

(b) Y is finite-dimensional.

Proof. (a)⇒(b). By contradiction, suppose there is an unconditionally summable

serie
∑
kyk in Y such that

∑
k‖yk‖ = ∞. Let (ωk) be a sequence in Ω with ωk ≠ ωl

when k≠ l. For each m∈N consider the operator Tm : �(Ω)→ Y defined by

Tmϕ =
m∑
k=1

ϕ
(
ωk

)
yk. (2.20)

It is not difficult to show that � = (Tm) is uniformly completely continuous. Neverthe-

less,

π1
(
Tm

)= m∑
k=1

∥∥yk∥∥ m
�→∞, (2.21)

so � cannot be uniformly 1-summing because it is not π1-bounded.

(b)⇒(a). This follows easily in view of conditions (b) in Theorems 2.4 and 2.5.

We have showed that the converse of Corollary 2.6 is not true in general. However,

a direct argument using Theorems 2.4 and 2.5 leads up to conclude that every uni-

formly completely continuous set � ⊂Π1(�(Ω),Y ) verifying the following condition is

uniformly 1-summing:

(i) given T ∈ � and a finite subset {(ϕ1,y∗1 ), . . . ,(ϕm,y∗m)} of �(Ω)×BY∗ , there

exist S ∈� and z∗ ∈ BY∗ such that |〈y∗n ,Tϕn〉| ≤ |〈z∗,Sϕn〉|, n= 1, . . . ,m.

3. Final notes and examples. The Grothendieck-Pietsch domination theorem states

that an operator T : X → Y is p-summing if and only if there exists a positive Radon

measure µ defined on the (weak∗) compact space BX∗ such that

∥∥Tx∥∥p ≤ ∫
BX∗

∣∣〈x∗,x〉|p dµ(x∗), (3.1)
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for all x ∈ X [5, Theorem 2.12]. Since the appearance of this theorem, there is a great

interest in finding out the structure of uniformly p-dominated sets. A subset � of

Πp(X,Y) is uniformly p-dominated if there exists a positive Radon measure µ such

that the inequality (3.1) holds for all x ∈ X and all T ∈ �. In [3, 8, 9], the reader can

find some of the most recent steps given on this subject. Now we are going to show

that these sets are uniformly p-summing.

Proposition 3.1. If � ⊂ Πp(X,Y) is a uniformly p-dominated set, then �∗∗ =
{T∗∗ : T ∈�} is uniformly p-summing.

Proof. Let µ be a measure for which � is uniformly p-dominated. In a similar way

as in the Pietsch factorization theorem [5, Theorem 2.13], we can obtain, for all T ∈�,

operators UT : Lp(µ)→ �∞(BY∗), ‖UT‖ ≤ µ(BX∗)1/p , and an operator V : X → L∞(µ) such

that the following diagram is commutative:

X
T

V

y
iY

�∞
(
BY∗

)

L∞(µ)
ip

Lp(µ)

UT

(3.2)

Here, ip is the canonical injection from L∞(µ) into Lp(µ) and iY is the isometry from

Y into �∞(BY∗) defined by iY (y) = (〈y∗,y〉)y∗∈BY∗ . Notice that i∗∗p can be viewed as

ip composed with the canonical projection P : L∞(µ)∗∗ → L∞(µ) which is simply the

adjoint of the usual embedding L1(µ)→ L1(µ)∗∗. By weak compactness, we may and

do consider T∗∗ as a map from X∗∗ into Y for which

iY ◦T∗∗ =UT ◦ip ◦P ◦V∗∗. (3.3)

Given ε > 0 and (x∗∗n )∈ �pw(X∗∗), we can choose n0 ∈N so that

∑
n≥n0

∥∥ip ◦P ◦V∗∗(x∗∗n )∥∥p < ε
µ
(
BX∗

) , (3.4)

because ip ◦P ◦V∗∗ is p-summing. Then, we have

∑
n≥n0

∥∥T∗∗x∗∗n ∥∥p = ∑
n≥n0

∥∥iY ◦T∗∗(x∗∗n )∥∥p = ∑
n≥n0

∥∥UT ◦ip ◦P ◦V∗∗(x∗∗n )∥∥p
≤ µ(BX∗) ∑

n≥n0

∥∥ip ◦P ◦V∗∗(x∗∗n )∥∥p < ε, (3.5)

for all T ∈�. So, �∗∗ is uniformly p-summing.
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It is easy to show that the study of uniformly p-summing sets can be reduced to

the behavior of its sequences. Indeed, a bounded set � in Πp(X,Y) is uniformly p-

summing if and only if every sequence (Tn) in � admits a uniformly p-summing sub-

sequence. Thus, it seems to be interesting to make clear the relationship between uni-

formly p-summing sets and relatively weakly compact sets. For p = 1, we have the

following result.

Proposition 3.2. Every relatively weakly compact set in Π1(X,Y) is uniformly 1-

summing.

Proof. Let � be a relatively weakly compact set in Π1(X,Y). Given x̂ = (xn) ∈
�1
w(X), consider the (weak-weak) continuous operator Ux̂ : Π1(X,Y) → �1

a(Y) defined

by Ux̂(T)= (Txn). Then, Ux̂(�) is relatively weakly compact in �1
a(Y); according to [2,

Theorem 2], we can conclude that � is uniformly 1-summing.

Proposition 3.2 does not remain true if p = 2. For example, for each β = (βn) ∈ �2

consider the operator Tβ : c0 → �2 defined by T(αn) = (αn ·βn) and put � = {Tβ : β ∈
B�2} ⊂Π2(c0,�2) [5, Theorem 3.5]. If we consider �2 as a subspace of Π2(c0,�2), the set

� = B�2 is relatively weakly compact. Nevertheless, no matter how we choose k∈N,∑
n≥k

∥∥Teken∥∥2 = 1, (3.6)

so � cannot be uniformly 2-summing.

Now we show that there are uniformly p-summing sets failing to be relatively weakly

compact.

Proposition 3.3. If every uniformly p-summing set is relatively weakly compact in

Πp(X,Y), then Y is reflexive.

Proof. Fixing x∗0 ∈X∗ with ‖x∗0 ‖ = 1, the isometry y ∈ Y � x∗0 ⊗y ∈ x∗0 ⊗Y allows

us to see Y as a subspace of Πp(X,Y). If ε > 0 and (xn) ∈ �pw(X), there exists n0 ∈ N
so that ∑

n≥n0

∣∣〈x∗0 ,xn〉∣∣p < ε; (3.7)

hence, for every y ∈ BY ,∑
n≥n0

∥∥(x∗0 ⊗y)(xn)∥∥p = ∑
n≥n0

∣∣〈x∗0 ,xn〉∣∣p‖y‖p < ε. (3.8)

This yields that BY is uniformly p-summing and, by hypothesis, weakly compact.

The converse of Proposition 3.3 is not always true. By contradiction, suppose every

uniformly 1-summing set in Π1(�1,�2) is relatively weakly compact. Because �1 does

not contain any copy of c0, every bounded set inΠ1(�1,�2) is relatively weakly compact.

Then, we conclude that Π1(�1,�2) is reflexive, which is not possible since �∗1 , viewed as

a subspace of Π1(�1,�2), is not.

However, if p = 1 and X =�(Ω), the reflexivity of Y is a sufficient condition for a uni-

formly 1-summing set to be relatively weakly compact. Indeed, if rbvca(Σ,Y ) denotes



3406 J. M. DELGADO AND C. PIÑEIRO

the set of all regular, countably additive, Y -valued measures m on Σ with bounded

variation, recall that relatively weakly compact sets � in rbvca(Σ,Y ) are those ver-

ifying the following conditions: (i) � is bounded; (ii) the family of nonnegative mea-

sures {|m| : m ∈ �} is uniformly countably additive; and (iii) for each E ∈ Σ, the set

{m(E) :m ∈�} is relatively weakly compact in Y [6, Theorem IV.2.5]. Having in mind

the identification between Π1(�(Ω),Y ) and rbvca(Σ,Y ), and making use of the char-

acterization of uniformly 1-summing sets obtained in Theorem 2.4, we conclude the

next characterization.

Corollary 3.4. The following statements are equivalent:

(a) Y is reflexive,

(b) every set � in Π1(�(Ω),Y ) is uniformly 1-summing if and only if � is relatively

weakly compact.

It is well known that a linear operator T is 1-summing if and only if T∗∗ is. So, it

is natural to ask if a set � is uniformly 1-summing whenever �∗∗ = {T∗∗ : T ∈�} is.

Unfortunately, we are going to show that this is not true in general. It suffices to take

X as the separable �∞-space of Bourgain and Delbaen [1]. This space has the Radon–

Nikodym property, so it does not contain any copy of c0. Nevertheless,X∗ is isomorphic

to �1 and, therefore, X∗∗ contains a copy of c0. Let (en) be the canonical basis of �1

and J : �1 → X∗ an isomorphism. Put Tn = Jen ∈ Π1(X,R); the set � = {Tn : n ∈ N}
is uniformly 1-summing since it is bounded and X does not contain any copy of c0.

Notice that the elements of �∗∗ are the linear forms x∗∗ ∈ X∗∗ � 〈x∗∗,Jen〉 ∈ R, for

all n ∈ N. If (e∗n) is the canonical basis of c0, then ((J∗)−1(e∗n)) ∈ �1
w(X∗∗); hence, no

matter how we choose k∈N, it turns out that∑
n≥k

∣∣∣T∗∗k ((
J∗
)−1(e∗n))∣∣∣= ∑

n≥k

∣∣∣〈(J∗)−1(e∗n),Jek〉∣∣∣= ∑
n≥k

∣∣〈e∗n,ek〉∣∣= 1, (3.9)

and �∗∗ cannot be uniformly 1-summing.

Nevertheless, if � is a set of operators defined on c0, then it is true that � is uniformly

1-summing if and only if �∗∗ is too. To see this, notice that for a 1-summing operator T :

(αn) ∈ c0 �
∑∞
n=1αnxn ∈ X, the second adjoint T∗∗ : �∞ → X is defined by T∗∗(βn) =∑∞

n=1βnxn, for all (βn)∈ �∞.

When � is a set of operators defined on a �(Ω)-space, we do not know whether �∗∗

inherits the property or not. Anyway, we are going to prove the following weaker result.

We inject isometrically B(Σ) into �(Ω)∗∗ in the natural way.

Proposition 3.5. If � ⊂Π1(�(Ω),X) is uniformly 1-summing, then �̃ = {T̃ : B(Σ)→
X : T ∈�} is uniformly 1-summing too.

Proof. The argument is similar to the one used in the proof of (b)⇒(a) in Theo-

rem 2.4.

Finally, we give an example to show that Corollary 2.6 is not true if �(Ω) is replaced

by a general Banach space X. It suffices to take X = �2 and � = {e∗n :n∈N}, where (e∗n)
is the unit basis of �∗2 � �2. The set � is bounded in Π1(�2,R) and, therefore, uniformly

1-summing but it is not uniformly completely continuous.



UNIFORMLY SUMMING SETS OF OPERATORS … 3407

References

[1] J. Bourgain and F. Delbaen, A class of special �∞-spaces, Acta Math. 145 (1980), no. 3-4,
155–176.

[2] J. K. Brooks and N. Dinculeanu, Weak compactness in spaces of Bochner integrable functions
and applications, Adv. Math. 24 (1977), no. 2, 172–188.

[3] J. M. Delgado and C. Piñeiro, A note on uniformly dominated sets of summing operators, Int.
J. Math. Math. Sci. 29 (2002), no. 5, 307–312.

[4] J. Diestel, Sequences and Series in Banach Spaces, Graduate Texts in Mathematics, vol. 92,
Springer-Verlag, New York, 1984.

[5] J. Diestel, H. Jarchow, and A. Tonge, Absolutely Summing Operators, Cambridge Studies in
Advanced Mathematics, vol. 43, Cambridge University Press, Cambridge, 1995.

[6] J. Diestel and J. J. Uhl, Jr., Vector Measures, Mathematical Surveys, vol. 15, American Math-
ematical Society, Rhode Island, 1977.

[7] N. Dinculeanu, Vector Measures, International Series of Monographs in Pure and Ap-
plied Mathematics, vol. 95, Pergamon Press, Oxford; VEB Deutscher Verlag der Wis-
senschaften, Berlin, 1967.

[8] R. Khalil and M. Hussain, Uniformly dominated sets ofp-summing operators, Far East J. Math.
Sci., Special Volume (1998), no. Part I, 59–68.

[9] B. Marchena and C. Piñeiro, Bounded sets in the range of an X∗∗-valued measure with
bounded variation, Int. J. Math. Math. Sci. 23 (2000), no. 1, 21–30.

J. M. Delgado: Departamento de Matemáticas, Facultad de Ciencias Experimentales, Campus
Universitario del Carmen, Avda. de las Fuerzas Armadas, 21071 Huelva, Spain

E-mail address: jmdelga@uhu.es

Cándido Piñeiro: Departamento de Matemáticas, Facultad de Ciencias Experimentales, Campus
Universitario del Carmen, Avda. de las Fuerzas Armadas, 21071 Huelva, Spain

E-mail address: candido@uhu.es

mailto:jmdelga@uhu.es
mailto:candido@uhu.es

