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Let X and Y be Banach spaces. A set .l of 1-summing operators from X into Y is said to be
uniformly summing if the following holds: given a weakly 1-summing sequence (xj) in X,
the series >4, [|Txy || is uniformly convergent in T € .. We study some general properties
and obtain a characterization of these sets when .l is a set of operators defined on spaces
of continuous functions.

2000 Mathematics Subject Classification: 47B38, 47B10.

1. Introduction. Throughout this paper, X and Y will be Banach spaces. If X is a
Banach space, By = {x € X : ||x|| <1} will denote its closed unit ball and X* will be the
topological dual of X. Given a real number p € [1,), a (linear) operator T : X — Y is
said to be p-summing if there exists a constant C > 0 such that

n 1/p n 1/p
(Z||Txi||p) sC-sup{(Z |(x*,xi)|’”) :x*eBX*} (1.1)
i=1 i=1

for every finite set {xi,...,x,} C X. The least C for which the above inequality al-
ways holds is denoted by 11, (T) (the p-summing norm of T). The linear space of all
p-summing operators from X into Y is denoted by II, (X,Y) which is a Banach space
endowed with the p-summing norm.

As usual, £%, (X) will be the Banach space of weakly p-summable sequences in X,
that is, the sequences (x,) C X satisfying >, [{x*,x,)|? < o for all x* € X*; the
norm in €%, (X) is €, (xn) = sup{ (>, [{x*,x,)|?)1/? : x* € By }. The set of all strongly
p-summable sequences in X is denoted by €5 (X); the norm in this space is Ty (Xn) =
(XnllxnIP)VPIE T €1, (X,Y), the correspondence T:(xn) — (Txn) always induces a
bounded operator from %, (X) into £} (Y) with ||T|| = 7, (T) [5, Proposition 2.1].

Families of operators arise in different applications: equations containing a parame-
ter, homotopies of operators, and so forth. In these applications, it may be very inter-
esting to know that, given a set Al CI1,(X,Y) and (x,) € £, (X), the series SallTxull?
is uniformly convergent in T € (. The main purpose of this paper is to study uniformly
p-summing sets, that is, those sets M C I, (X,Y) for which, given (x,) € 28, (X), the
series >, | Txy||? is uniformly convergent in T € .l. These sets also enjoy some prop-
erties that justify their study; the next proposition lists some of them.
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PROPOSITION 1.1. (a) Let (Tx) be a sequence in11,(X,Y). Then, fk k 0 pointwise if
and only if Ty, X0 pointwise and (Ty) is uniformly p-summing.

(b) Let M C 11, (X,Y) be a uniformly p-summing set. If A is endowed with the strong
operator topology, thenthe map T € M — >, || Tx, || € R is continuous for every (x,) €
25 (X).

A basic argument shows that uniformly p-summing sets are bounded for the p-
summing norm. In fact, if X does not contain any copy of ¢y, bounded sets and uni-
formly 1-summing sets are the same. That is the reason for which we only consider
operators defined on a 6 (Q)-space, Q) being a compact Hausdorff space. We recall that
every weakly compact operator T : 6(Q2) — Y has a representing measure mr : X —
Y defined by m¢(B) = T**(xp) for all B € 3, where X denotes the Borel o-field of
subsets of Q) and xp denotes the characteristic function of B. The vector measure mr is
regular and countably additive [6, Theorem VI.2.5 and Corollary VI.2.14]. If we denote
by T the operator T** restricted to B(X) (the space of all bounded Borel-measurable
scalar-valued functions defined on Q), then

Te= J pdmr, (1.2)
Q

for all @ € B(Z) (the integral is the elementary Bartle integral [6, Definition 1.1.12]).

It is well known that every p-summing operator defined on a Banach space X is weakly
compact. In Section 2, we consider 1-summing operators T defined on €(Q); these op-
erators are characterized as those with representing measure mr having finite variation
and 1 (T) = |m7|(Q) [6, Theorem VI.3.3]. We show that a set . C IT; (€(),Y) is uni-
formly 1-summing if and only if the family of all variation measures {|mr|: T € AL} is
uniformly bounded and there is a countably additive measure u:X — [0, ) such that
{lmr]: T € M} is uniformly p-continuous.

In Section 3, we mention a special class of uniformly p-summing operators: uniformly
dominated sets. The relationship between uniformly summing sets and relatively weak
compactness is also studied. Finally, we give some examples and open problems.

2. Uniformly 1-summing sets in IT; (¢(Q2),Y). Before facing our main theorem, we
include three results which correspond to the vector measure theory. These results will
be usually invoked along the following lines.

PROPOSITION 2.1 [6, Proposition I.1.17]. The following statements about a collection
{m;:i eI} of Y-valued measures defined on a o-field 3. are equivalent:

(a) the set {m;:1i € I} is uniformly countably additive, that is, if (E,) is a sequence of
pairwise disjoint members of X, thenlim,, || > ., m;(Ex)| = 0 uniformly ini €1,

(b) the set {y*om;:i€l, y* € Byx} is uniformly countably additive,

(c) if (E,) is a sequence of pairwise disjoint members of 3., then lim,, ||[m;(Ey)| = 0
uniformly ini €1,

(d) if (E,) is a sequence of pairwise disjoint members of X, then lim,, ||m;||(E,) =0
uniformly in i € I, where ||m;|| denotes the semivariation of m;,

(e) theset {|y*om;|:i€l, y* € By} is uniformly countably additive.
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THEOREM 2.2 [6, Theorem 1.2.4]. Let {m;:X — Y :i € I} be a uniformly bounded
(with respect to the semivariation) family of countably additive vector measures on a
o-field 2. The family {m; : i € I} is uniformly countably additive if and only if there
exists a positive real-valued countably additive measure u on 3. such that {m;:i €1} is
uniformly u-continuous, that is,

lim Hmi(E)H:O (2.1)
H(E)—0

uniformly ini e I.

If Q is a compact Hausdorff space and X denotes the o-field of the Borel subsets of
Q, a vector measure m on X is regular if for each Borel set E and € > 0 there exists a
compact set K and an open set O such that K C E C O and ||m|/(O\K) < €.

PROPOSITION 2.3 [6, Lemma VI.2.13]. LetJ be a family of regular (countably additive)
scalar measures defined on X. Each of the following statements implies all the others:

(@) for each pairwise disjoint sequence (Oy) of open subsets of Q, lim, u(0,) =0
uniformly in u € %,

(b) for each pairwise disjoint sequence (O,,) of open subsets of Q, lim,, [u[(O,) =0
uniformly in u € %,

(c) I is uniformly countably additive,

(d) K is uniformly regular, that is, if E € X and € > 0, then there exists a compact set
K and an open set O such that K CE C O and supcy |1 (O\K) < €.

Now, we are able to show our main result. In the proof, we will use the fact that |mr|
is regular when T :6(Q) — Y is 1-summing [7, Proposition 15.21].

THEOREM 2.4. Let M C I1,(€(Q),Y) be a bounded set. The following statements are
equivalent:
(@) J is uniformly 1-summing,
(b) the family of nonnegative measures {|mr|: T € MM} is uniformly countably addi-

tive,
(c) given € > 0 and a disjoint sequence (Ey,) of Borel subsets of Q), there exists ng € N
such that
> lmr(En)ll <e, (2.2)
n=ng
forall T € M.

PROOF. (a)=(b). According to [6, Lemma VIL2.13], it suffices to show that
limy, . |m7|(O0y) = 0 uniformly in T € ., for all disjoint sequences (O,,) of open sub-
sets of Q. By contradiction, suppose that there exists € > 0, a sequence (T;,) in Jl, and
a strictly increasing sequence (k;,) of natural numbers such that

|mr, | (Ok,) >2¢, VYneN. (2.3)
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Now we consider the operators S, : 6(Q, 0Oy, ) — Y defined by

Sn = @pdmr,, (2.4)

Oy,
for all @ € 6(Q,0x,, ), where €(Q, 0y, ) is the closed subspace of €(Q2) formed by all
continuous functions @ on Q such that @ vanishes in Q\Oy,,. It is known that 1 (Sy,) =

|mr, | (Ok,,), for all n € N [7, Theorem 19.3]. For each n € N, we can choose a finite set
{@l,...,@8 } C6(Q,0,) satisfying €, (@)™ <1 and

Pn
S ISn@l|| > m1(Sh) — €. (2.5)
i=1

Since the open sets Oy,, are disjoint, it follows that the sequence ((p%,...,(p},l,(pf,...,
@3,,.-.) belongs to £}, (6(Q)). Nevertheless, for all n € N, we have

> ZHTnQD’”II> ZIITnQD"II— ZIISW"HNH (Sn) =& = [mz, | (O,) —€ > & (2.6)

mz=nij=1

This denies (a) and proves that (a) implies (b).

(b)=>(c). Again we proceed by contradiction. Suppose (E,) is a disjoint sequence of
Borel subsets of Q for which there exists € > 0, a sequence (T,) in A, and a strictly
increasing sequence (k,) of natural numbers so that

kn+1
> mr, (E)||>¢, VneN. (2.7)

i=kn+1

If we put B, = I_IIL-‘S;; .1 Ei, the above inequality yields |mr, |(By) > €. So, in view of [6,
Proposition 1.1.17], the family {|m7r|: T € JAl} is not uniformly countably additive.
(c)=(b). We need to prove
rlllln |mr|(En) =0 uniformly in T € .M, (2.8)

for all disjoint sequences (E,,) of Borel subsets of Q. Suppose (b) fails. Then, there exists
& > 0, a sequence (T,) in Jl, and a strictly increasing sequence (k,,) of natural numbers
satisfying

|mr, | (Ex,) >¢&, VYneN. (2.9)

For each n € N, we choose a finite partition {E, ... ,E;}n} of Ej,, for which
Pn
S|l (EM| > e. (2.10)

Then, the disjoint sequence (E3,... ,E},I,Elz,.. ,EZ,,...) does not satisfy (c).
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(b)=(a). According to [6, Theorem 1.2.4] there exists a countably additive measure
u:3—[0,00) so that

(1‘i€r)n0 |mg|(E) =0 uniformlyin T € M. (2.11)
u(E)—

Hence, given € > 0, there exists 6 > 0 such that, if E € X verifies u(E) < 8, then
lmr|(E) <&/2,forall T € M.

Next, given (@) € £, (6(Q)) with €1 (py) < 1, notice that the series > ,_; @4, ()] is
convergent for all t € Q. Put £, (t) = ), |@k(t)| and f(t) = limy_. fr (t). By Egorov’s
theorem, the sequence (f;,) is quasi-uniformly convergent to f. Then, there exists F € >
such that u(E) < 6 and

Sniove — flowe (2.12)

uniformly. If C = sup{|mr|(Q): T € AL}, there exists ny € N so that

S @n(t)] < ==, VteQ\E (2.13)
n=ng 2¢C
Now,
S AT@all= 3 ||| @nttyams
nz=ngo n=ngo
= 2| en®dme||+ > @u(t)dmr
n=ngo '[E nz=zngo Q\E
< L d LD d
<n§0L"”‘)' |mT|+n§0ij|<p<>< el o
—jE(n;O|¢n<t>|)d|mT|+jQ\E(n;0|wn<t>|)d|mT|
< |mT|(E)+%|mT|(Q\E)
< E. O

We denote by 7(X,Y) the class of completely continuous operators from X into
Y, that is, the class of operators which map weakly convergent sequences in X into
norm-convergent sequences in Y. A set Al C ¥ (X,Y) is said to be uniformly completely
continuous if, given a weakly convergent sequence (x,) in X, (Tx,) is norm convergent
uniformly in T € Jl. The following result gives some characterizations of uniformly
completely continuous sets in 1 (€(Q),Y). Recall that an operator T defined on % (Q)
is completely continuous if and only if T is weakly compact [6, Corollary VI.2.17], so
mr is countably additive and regular, too.

THEOREM 2.5. Let Ml C V' (6(Q),Y) be a bounded set for the operator norm. The
following statements are equivalent:
(a) A is uniformly completely continuous,
(b) the family {mr:T € M} is uniformly countably additive,
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(¢) M* ={T*:T € M} is collectively weakly compact, that is, the set Uy T* (By+)
is relatively weakly compact in 6(Q)*.

PROOF. (a)=(b). By [6, Proposition 1.1.17], the family {m7 : T € M} is uniformly
countably additive if and only if N = {y*om¢r: T € M, y* € Byx} is. According to
[6, Lemma VI.1.13], we have to prove that

7llimy*omT(On) =0 uniformly in N, (2.15)
for all disjoint sequences (O;,) of open subsets of Q. By contradiction, suppose there
exists such a sequence (O;,) for which lim,, .. y* om(0O,) = 0 but not uniformly in N.
Then, there exists € > 0 and sequences (y,f) C By, (T,) € (A, and (Ok,) C (Oy) such
that

|viomr, (Ok,)| >&, VYnmeN. (2.16)

Now, using the regularity of each mr,, we can find a sequence of compact sets (Hy)
with H,, C Oy, and

[[m, || (Ok, \Hn) < VneN, (2.17)

&
2 y
(Ilm] denotes the semivariation of m, that is, [[m||(E) = sup{|y*om|(E) : y* € Byx}).
By Urysohn’s lemma, for every n € N there exists a continuous function @, : Q —
[0,1] such that @, (Hy,) = 1 and @, (Q\Oy,) = 0. Obviously, the series >,/ ; @y is

unconditionally convergent in 6 (Q). Since .l is uniformly completely continuous, there
exists ng € N such that

||T(pn||<§, Yn=mno, VT € A (2.18)

Then, we have

[Im, (Ok, )| = |lmr, (Oky) = Tn@nl[ + | Tu @l

= “ngokn men _JQ (pnmen + ||T1’l(p1’l||

- a-ewams,
Oy \Hn

[ -@udmz, | +IITuwal
kn

(2.19)
+ || Th@nll

< |[mr,[|(Ox, \Hn) + || Tn@nl|

<§,

for all n > ng. This is in contradiction with (2.16).
(b)=(a). By [6, Theorem 1.2.4], there exists a scalar countably additive measure u : X —
[0,00) such that {m : T € Jl} is uniformly pu-continuous. Then, if (@) is a sequence
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that tends to zero weakly in €(Q), it is obvious that zero is the pointwise limit of the
sequence (@ (t)). Now, using Egorov’s theorem and proceeding along similar lines as
the proof of (b)=(a) in Theorem 2.4, the proof concludes.

(b)<(c). The set Upey T* (By+) = {y*omr:T € M, y* € Byx} C 6(Q)* is relatively
weakly compact if and only if it is bounded and uniformly countably additive [4, Theo-
rem VIL.13]. A call to [6, Proposition I.1.17] makes clear that ¢y T* (By+) is uniformly
countably additive if and only if condition (b) is satisfied. O

COROLLARY 2.6. If Ml C II;(€(Q),Y) is uniformly 1-summing, then J is uniformly
completely continuous.

The converse of the last result is not true in general.

PROPOSITION 2.7. Suppose that the cardinal of Q) is infinite. The following statements
are equivalent:
(a) each subset of I1, (6(Q),Y) uniformly completely continuous is uniformly 1-sum-
ming,
(b) Y is finite-dimensional.

PROOF. (a)=(b). By contradiction, suppose there is an unconditionally summable
serie > ¥k in Y such that > [l vkl = oo. Let (wy) be a sequence in Q with wy + w;
when k = [. For each m € N consider the operator T, : 4(Q) — Y defined by

Tm@ = > @ (wi) k- (2.20)
k=1

It is not difficult to show that Jil = (T;;,) is uniformly completely continuous. Neverthe-
less,

m
1 (Tm) = > [|vil| = oo, (2.21)
k=1

50 Jl cannot be uniformly 1-summing because it is not 1T;-bounded.
(b)=(a). This follows easily in view of conditions (b) in Theorems 2.4 and 2.5. O

We have showed that the converse of Corollary 2.6 is not true in general. However,
a direct argument using Theorems 2.4 and 2.5 leads up to conclude that every uni-
formly completely continuous set Jl C IT; (€(Q),Y) verifying the following condition is
uniformly 1-summing:
(i) given T € Mt and a finite subset {(@1,¥),..., (@m, V) } of €(Q) X By«, there
exist S € M and z* € Byx such that [{y}, Tpu)| < [{(z*,Spu)|, n=1,...,m.

3. Final notes and examples. The Grothendieck-Pietsch domination theorem states
that an operator T: X — Y is p-summing if and only if there exists a positive Radon
measure u defined on the (weak*) compact space Byx+ such that

Il < | 1o )P due), 6.1

X ¥
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for all x € X [5, Theorem 2.12]. Since the appearance of this theorem, there is a great
interest in finding out the structure of uniformly p-dominated sets. A subset J( of
I1,(X,Y) is uniformly p-dominated if there exists a positive Radon measure u such
that the inequality (3.1) holds for all x € X and all T € Jl. In [3, 8, 9], the reader can
find some of the most recent steps given on this subject. Now we are going to show
that these sets are uniformly p-summing.

PROPOSITION 3.1. If M C II,(X,Y) is a uniformly p-dominated set, then M** =
{T**: T € M} is uniformly p-summing.

PROOF. Let u be a measure for which .l is uniformly p-dominated. In a similar way
as in the Pietsch factorization theorem [5, Theorem 2.13], we can obtain, for all T € .,
operators Ur: Ly (1) — o (Byx), |Ur|l < u(Bx»)!/P, and an operator V: X — Le (1) such
that the following diagram is commutative:

X—1 sy
v 0 (By+) (3.2)

L®(u) T LP(u)

Here, i, is the canonical injection from L. () into L, () and iy is the isometry from
Y into { (By+) defined by iy (y) = ((y*,>))y*epy«. Notice that i;* can be viewed as
ip composed with the canonical projection P: Lo (u)** — Lo, (u) which is simply the
adjoint of the usual embedding L, (u) — L1 (u)**. By weak compactness, we may and
do consider T** as a map from X** into Y for which

iyoT™ =UroipoPoV**, (3.3)
Given € > 0 and (x;*) € €%, (X**), we can choose ny € N so that

ipoP oV (xM)|IP < ———, (3.4)
n;()H i || U(BX*)

because i, o P o V** is p-summing. Then, we have

2 NTH P = X iy o T (i M)IP = 3 (Uroip o Pov (x™)|I”
n=ng nz=ngo nz=ngo (3 5)
<u(Bxe) 3 llipePove (xi)|l” < |
nz=ny

for all T € .M. So, M** is uniformly p-summing. |
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It is easy to show that the study of uniformly p-summing sets can be reduced to
the behavior of its sequences. Indeed, a bounded set Jt in IT, (X,Y) is uniformly p-
summing if and only if every sequence (T,) in Jl admits a uniformly p-summing sub-
sequence. Thus, it seems to be interesting to make clear the relationship between uni-
formly p-summing sets and relatively weakly compact sets. For p = 1, we have the
following result.

PROPOSITION 3.2. Every relatively weakly compact set in I1,(X,Y) is uniformly 1-
summing.

PROOF. Let .Il be a relatively weakly compact set in IT; (X,Y). Given X = (x,) €
£),(X), consider the (weak-weak) continuous operator Uz : IT; (X,Y) — £1(Y) defined
by Uz (T) = (Txy). Then, U (M) is relatively weakly compact in £} (Y); according to [2,
Theorem 2], we can conclude that .l is uniformly 1-summing. |

Proposition 3.2 does not remain true if p = 2. For example, for each B = (B,) € £»
consider the operator Tg: co — ¥» defined by T(oty) = (0t - Bn) and put M = {Tg: B €
By,} cx(co,¥2) [5, Theorem 3.5]. If we consider ¢; as a subspace of > (co, £>), the set
M = By, is relatively weakly compact. Nevertheless, no matter how we choose k € N,

> | Toenll’ =1, (3.6)
n=k
S0 .t cannot be uniformly 2-summing.
Now we show that there are uniformly p-summing sets failing to be relatively weakly
compact.

PROPOSITION 3.3. If every uniformly p-summing set is relatively weakly compact in
I1,(X,Y), then Y is reflexive.

PROOF. Fixing x§ € X* with ||x§ || = 1, the isometry y € Y — x§ ® ¥ € x§ ®Y allows
us to see Y as a subspace of IT, (X,Y). If € > 0 and (x,) € 8, (X), there exists ng € N
so that

> xgxn) P <& (3.7)
nzng
hence, for every y € By,
> lxger) ()l = 2 [{xgxn) |PIxIIP <. (3.8)
n=ngp n=ng

This yields that By is uniformly p-summing and, by hypothesis, weakly compact. O

The converse of Proposition 3.3 is not always true. By contradiction, suppose every
uniformly 1-summing set in IT; (¢1,¥>) is relatively weakly compact. Because ¥; does
not contain any copy of cg, every bounded set in IT; (£;,¥>) is relatively weakly compact.
Then, we conclude that IT; (¢1,£>) is reflexive, which is not possible since £, viewed as
a subspace of IT; (£1,4>), is not.

However, if p = 1 and X = €(Q), the reflexivity of Y is a sufficient condition for a uni-
formly 1-summing set to be relatively weakly compact. Indeed, if ¥bvca(Z,Y) denotes
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the set of all regular, countably additive, Y-valued measures m on X with bounded
variation, recall that relatively weakly compact sets .l in ¥bvca(2,Y) are those ver-
ifying the following conditions: (i) .t is bounded; (ii) the family of nonnegative mea-
sures {|m/|:m € L} is uniformly countably additive; and (iii) for each E € X, the set
{m(E) : m € A} is relatively weakly compact in Y [6, Theorem IV.2.5]. Having in mind
the identification between IT; (¢(Q2),Y) and rbvca(Z,Y), and making use of the char-
acterization of uniformly 1-summing sets obtained in Theorem 2.4, we conclude the
next characterization.

COROLLARY 3.4. The following statements are equivalent:
(a) Y is reflexive,
(b) every set M inTI; (6(Q),Y) is uniformly 1-summing if and only if M is relatively
weakly compact.

It is well known that a linear operator T is 1-summing if and only if T** is. So, it
is natural to ask if a set .l is uniformly 1-summing whenever J(** = {T** : T € Jl} is.
Unfortunately, we are going to show that this is not true in general. It suffices to take
X as the separable £ -space of Bourgain and Delbaen [1]. This space has the Radon-
Nikodym property, so it does not contain any copy of ¢y. Nevertheless, X* is isomorphic
to ¢, and, therefore, X** contains a copy of cy. Let (e,,) be the canonical basis of £;
and J : {1 — X* an isomorphism. Put T,, = Je, € II; (X,R); the set M = {T,, : n € N}
is uniformly 1-summing since it is bounded and X does not contain any copy of c.
Notice that the elements of JA(** are the linear forms x** € X** — (x**, Je,) € R, for
all n € N. If (e}) is the canonical basis of cq, then ((J*)~'(e}:)) € £L (X**); hence, no
matter how we choose k € N, it turns out that

ST e | = X (U g de) | = D [ee) | =1, (3.9
nx=k

nx=k nx=k

and J** cannot be uniformly 1-summing.

Nevertheless, if .l is a set of operators defined on ¢y, then itis true that .l is uniformly
1-summing if and only if /** is too. To see this, notice that for a 1-summing operator T :
(0tn) € Co — Dp_q OnXn € X, the second adjoint T** : £, — X is defined by T**(B;) =
=1 Buxn, for all (By) € 4w

When .l is a set of operators defined on a ¢ (Q)-space, we do not know whether J(**
inherits the property or not. Anyway, we are going to prove the following weaker result.
We inject isometrically B(2) into €(Q)** in the natural way.

PROPOSITION 3.5. Ifl C T, (€(Q),X) is uniformly 1-summing, then Al = {(T:B(=) -
X : T € M} is uniformly 1-summing too.

PROOF. The argument is similar to the one used in the proof of (b)=(a) in Theo-
rem 2.4. O

Finally, we give an example to show that Corollary 2.6 is not true if ¢(Q) is replaced
by a general Banach space X. It suffices to take X = £, and M = {e}; : n € N}, where (e})
is the unit basis of €5 ~ 5. The set .t is bounded in IT; (£, R) and, therefore, uniformly
1-summing but it is not uniformly completely continuous.
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