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ON POLYNOMIALS WITH SIMPLE TRIGONOMETRIC FORMULAS
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We show that the sequences of polynomials with zeros cot(mπ/(n+ 2)) and tan(mπ/
(n+2)) are not orthogonal sequences with respect to any integral inner product. We give an
algebraic formula for these polynomials, that is simpler than the formula originally derived
by Cvijovic and Klinowski (1998). New sequences of polynomials with algebraic numbers as
roots and closed trigonometric formulas are also derived by these methods.
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1. Introduction. It is easy to see that cot(mπ/(n+2)) and tan(mπ/(n+2)) are

algebraic numbers, n = 1,2,3, . . . , and m = 1,2, . . . ,n+1, unless n+2 is even and m =
(n+ 2)/2, where the tangent is undefined. The harder problem of actually finding a

polynomial of degree n or n+ 1 with integer coefficients having these numbers as

roots was solved by Cvijovic and Klinowski [2], who showed that the cotangents above

are roots of

Cn+1(x)=
[(n+1)/2]∑
m=0

(−1)m
(
n+2

2m+1

)
xn−2m+1 (1.1)

(here we use the degree of Cn+1(x) as the subscript) and the tangents are roots of the

reciprocal polynomial given by Kn+1(x) = xn+1Cn+1(1/x) (here the degree of K2m =
the degree of K2m+1 = 2m for all m = 0,1, . . . ). We noticed that the first sequence of

polynomials, {Cn(x)}, has real roots and the root interlacing property, a property that

sequences of real orthogonal polynomials are also known to have (for each n ≥ 1,

putting all the roots in ascending order, the roots of Cn+1(x) alternate with those of

Cn(x)). This led to our motivating question: is {Cn(x)} a sequence of polynomials or-

thogonal with respect to some weighted integral inner product? We found that a change

of variable gave a relation between Chebyshev polynomials and the above polynomials

allowing a three-term recurrence formula for the {Cn(x)} to be derived. While con-

sidering these formulas, we discovered an algebraic closed form for the polynomials

Cn+1(x) that allows the main results of [2] to be easily derived without the use of their

expansion formula or this connection to the Chebyshev polynomials. It also suggested

how to find such other polynomials having roots related to the remaining trigonometric

functions.
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2. Results

2.1. Is then {Cn(x)} a sequence of polynomials orthogonal with respect to some

weighted integral inner product? Recall that for an orthogonal sequence of polynomi-

als {Pn(x)}, a three-term recurrence formula must hold of the type Pn+1(x) = (anx−
bn)Pn(x)− cnPn−1(x) [1, page 178]. We exhibit a three-term recurrence formula be-

tween the {Cn(x)} of a different type showing that these do not form an orthogonal

sequence of polynomials. To do this, a simple closed form for these polynomials is

given, which also makes the closed trigonometric form easy to compute. First, note

that

Cn+1(x)=�(x+i)n+2 = (x+i)
n+2−(x−i)n+2

2i
(2.1)

and has degree n+1. It follows that

2iCn+1(x)=
(
x2+2ix−1

)
(x+i)n−(x2−2ix−1

)
(x−i)n

= [2x(x+i)−(1+x2)](x+i)n−[2x(x−i)−(1+x2)](x−i)n. (2.2)

Thus,

Cn+1(x)= 2xCn(x)−
(
1+x2)Cn−1(x), (2.3)

showing that these are not a system of orthogonal polynomials. It is also clear that

Kn+1(x) is not a sequence of orthogonal polynomials since, fromKn+1(x)=xn+1Cn+1(1/
x), follows

Kn+1(x)= 2Kn(x)−
(
1+x2)Kn−1(x). (2.4)

The closed trigonometric forms given in [2] now easily follow by substituting x = cot(θ)
in (2.1). Since cot(θ)+i= eiθ/sin(θ), it follows that

Cn+1
(
cot(θ)

)= sin
(
(n+2)θ

)
sinn+2(θ)

. (2.5)

This expression is zero when θ =mπ/(n+2), m= 1, . . . ,n+1, verifying that the roots

of Cn+1(x) are the cotangents of these θ. The relation between Kn+1(x) and Cn+1(x)
produces the closed form

Kn+1
(
tan(θ)

)= sin
(
(n+2)θ

)
sin(θ)cosn+1(θ)

, (2.6)

giving the tangent expression for the roots of Kn+1 mentioned above.
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2.2. Naturally, one is next led to investigate

Pn+2(x)=�(x+i)n+2 (2.7)

of degree n+2. Here, it is found that Pn+2(cot(θ))= cos((n+2)θ)/sinn+2(θ) or

Pn+2(x)= cos
(
(n+2)cot−1(x)

)
sinn+2 (cot−1(x)

) (2.8)

having roots

cot
(
(2m+1)
(n+2)

π
2

)
, (2.9)

m = 0,1, . . . ,n+1, and the roots of Qn+2(x)= xn+2Pn+2(1/x) are tan(((2m+1)/(n+
2))(π/2)), m = 0,1, . . . ,n+1 (unless n is odd, in which case m = (n+1)/2 does not

define a root), giving two more sequences of polynomials with trigonometric formulas

and roots. The three-term recurrence relation for {Pn(x)} (and, of course, {Qn(x)})
can be derived as above and is the same as that for {Cn(x)} given in (2.3), except that

the initial values are different: P0(x) = 1, P1(x) = x, while C0(x) = 1, and C1(x) = 2x.

These seem to be previously unnoticed sequences of polynomials with simple formulas

for the roots. (See [2].)

2.3. The well-known Chebyshev polynomials [1] are orthogonal polynomials and

have the trigonometric forms given by Tn+1(x) = cos((n+1)cos−1(x)), −1 ≤ x ≤ 1,

and Un+1(x)= sin((n+2)cos−1(x))/sin(cos−1(x)), −1<x < 1. The roots of these are

cos(((2m+1)/(n+1))(π/2)), m = 0, . . . ,n, and cos(mπ/(n+2)), m = 1, . . . ,n+1, re-

spectively. These are mentioned in [2], but not the related reciprocal polynomials. These

also have simple root formulas and are given by Vn+1(x) = xn+1Tn+1(1/x) which can

be written as

Vn+1(x)= cos
(
(n+1)sec−1(x)

)
cosn+1

(
sec−1(x)

) , x <−1, x > 1, (2.10)

with roots sec(((2m+1)/(n+1))(π/2)), m = 0, . . . ,n, where, if n is even, m �= n/2,

and Wn+1(x)= xn+1Un+1(1/x) giving

Wn+1(x)= sin
(
(n+2)sec−1(x)

)
sin

(
sec−1(x)

)
cosn+1

(
sec−1(x)

) , x <−1, x > 1, (2.11)

with roots sec(mπ/(n+2)), m= 1, . . . ,n+1, and, again, if n is even, m �= (n+2)/2.
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2.4. This leaves the determination of polynomials having roots which are sines or

cosecants of the above multiples of π or π/2. Suppose that x = sin(θ). Then, x =
cos(π/2−θ), so this expression can be substituted into the Chebyshev polynomials to

solve these remaining cases. For example,

Tn+1(x)= cos
(
(n+1)π

2
−(n+1)sin−1(x)

)
(2.12)

has roots of the type sin(mπ/(n+1)), when n is even and, when n is odd, roots of

the type sin(((2m+1)/(n+1))(π/2)). Similar results hold for Un+1(x), with the roots

also varying as n is even or odd. Finally, the related reciprocal polynomials also have

closed trigonometric formulas and roots which are cosecants of these types.

2.5. We conclude with two relations between Cn+1(x) and Un+1(x). If y = cos(θ),
0 < θ < π , then Un+1(y)= (1−y2)(n+1)/2Cn+1(y/(1−y2)1/2), while, if x = cot(θ),
thenCn+1(x)=Un+1(x/(1+x2)1/2)(1+x2)(n+1)/2. Equation (2.3) was originally derived

from a relation like this and the three-term formula for the Chebyshev polynomials.

Similar relations hold between the Chebyshev polynomials of the first kind, Tn+1(x),
and the polynomials Pn+2(x) above.
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