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The behavior at infinity of the Fourier transform of the random measures that appear in
the theory of multiplicative chaos of Mandelbrot, Peyrière, and Kahane is an area quite
unexplored. For context and further reference, we first present an overview of this theory
and then the result, which is the main objective of this work, generalizing a result previously
announced by Kahane. We establish an estimate for the asymptotic behavior of the second
moment of the Fourier transform of the limit random measure in the theory of multiplicative
chaos. After looking at the behavior at infinity of the Fourier transform of some remarkable
functions and measures, we prove a formula essentially due to Frostman, involving the Riesz
kernels.
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1. Introduction. The problem considered in the second section of this work admits

a general formulation that can be stated as follows. A random measure is defined in the

sense of a random object (see [10, page 9]) by the action of a random operator on a usual

Borel measure in such a way that its Fourier transform is almost surely a uniformly

continuous and bounded function. A natural conjecture to be made is that the almost

sure behavior, at infinity, of the Fourier transform of the random measure is somehow

related to the behavior at infinity of the Fourier transform of the Borel measure used

to build this random measure. A technique that has given good results in problems

such as the one presented here goes as follows (see [9, pages 253–255, 265–267]). One

first gets good estimates on the behavior of the moments of the random functions and

then, by an accumulation argument, the almost sure behavior is obtained. The study of

the asymptotic behavior of the second moment, besides the instrumental usefulness

for the technique described, can give an idea of what to expect on the almost sure

behavior.

1.1. Multiplicative chaos: an overview. For future reference and for an understand-

able context to the following, we explain briefly some of the most important ideas of

the beautiful theory of multiplicative chaos. The main references of the plainly devel-

oped theory are the masterful expositions [10, 11, 12]. The foundation stones of this

circle of ideas may be traced to Mandelbrot’s work of 1972 [19] criticizing ideas of Kol-

mogorov’s model for turbulence (1962) and proposing a substitute framework by means

of a limit lognormal model. In it, instead of having the average energy dissipation over

a cube of fixed radius being lognormal, as in Kolmogorov’s model, it is an approximate

dissipation of energy depending on a continuous parameter that would be lognormal.
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In that way, and as explained by Mandelbrot in 1977 (see [22]), the normalized ex-

ponentiation of Gaussian processes could be a more adjusted interpretation of limit

lognormal processes, which would in turn be the correct version of the lognormal hy-

pothesis of Kolmogorov. Later on, in 1974, a couple of notes of Mandelbrot (see [20, 21])

were followed by works of Kahane (see [8]) and Peyrière (see [13, 24]) developing some

of the characteristic features of the theory. Extensions, refinements, and a refutal of a

conjecture of Kahane were provided later by other authors (see [3, 4, 25, 32]).

For a basic start, let (Ω,�,P) be a probability space and consider (Xn(t))n∈N a se-

quence of independent Gaussian centered random functions defined over T , a locally

compact metric space which for us will be the usual Euclidean normed space Rν . We

may then define the associated lognormal weights

Pn(t) := exp
(
Xn(t)− 1

2
E
[
X2
n(t)

])
. (1.1)

Observing that E[Pn(t,·)]= 1 if we define

Qn(t) := P1(t)·P2(t)···Pn(t), (1.2)

then (Qn(t,ω))n∈N, t∈Rν ,ω∈Ω is a positive Rν -martingale. That means that:

(1) for each t0 ∈ Rν fixed, (Qn(t0,·))n∈N is a � martingale where the filtration � =
(Cn)n∈N is naturally given by

Cn = σ
({
Xm :m≤n}); (1.3)

(2) for almost all ω0 ∈ Ω, we have that (Qn(·,ω0))n∈N is a sequence of positive

Borel functions on Rν .

Take now σ a positive Radon measure on Rν (see [23, page 9] or [18, page 75]) and

consider the sequence of random measures defined by (Qnσ)n∈N. The following result

ensures the existence of the weak limit of this sequence.

Theorem 1.1 [12, page 12]. Under the condition

r(t) := E[Qn(t,·)]∈ L1(σ), (1.4)

(Qnσ)n∈N converges weakly (i.e., over C0 the continuous functions on Rν having zero

as a limit at infinity) almost surely to a random measure designated by Sσ .

As a consequence of this result, we may define an operator Q on the positive Radon

measures on Rν , M+ =M+(Rν), into the space of random measures by

∀σ ∈M+, Qσ = Sσ = lim
n→+∞Qnσ. (1.5)

This is by definition the multiplicative chaos operator associated with (Xn)n∈N. A basic

fundamental fact is that the distribution of the operator Q, namely, the joint distri-

bution of (Qσ1(B1),Qσ2(B2), . . . ,Qσn(Bn)) for all choices of n, σ1, . . . ,σn, B1, . . . ,Bn,
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depends only on

q(s,t) :=
+∞∑
n=1

pn(t,s)≤+∞, (1.6)

where we suppose that pn(t,s) := E[Xn(t)·Xn(s)]≥ 0.

In this paper, we will be particularly interested in the case where, for a certain pa-

rameter u> 0, we have

q(s,t)=u ln+
(

1
‖t−s‖Rν

)
+O(1), (1.7)

which is a natural model for isotropic turbulence. Suppose that r ∈ L1(σ). In general,

there are two extreme cases concerning the image of operator Q:

(1) either Qσ ≡ 0 almost surely in which case we say that Q is degenerate on σ ;

(2) or the martingale (Qnσ(B))n∈N converges in L1(Ω) for each given Borel set B.

This means that

E[Qσ](B)= rσB =
∫
B
r(t)dσ(t), (1.8)

which we represent by

EQσ = E
[∫
dSσ

]
=
∫
rdσ (1.9)

and is usually described by saying that Q is fully acting on σ or Q lives on σ . It is

possible to show [12, page 13] that for each ϕ ∈ C0 we have

E
[∫
ϕdSσ

]
=
∫
ϕrdσ. (1.10)

In the case where q(s,t) is given by formula (1.7), every compact having Hausdorff

dimension greater than u/2 supports measures such that Qσ ≠ 0.

When dealing with moments, it is particularly useful to consider the L2 theory. One

may say that Q is strongly nondegenerate on σ if for every compact K of Rν we have

EQσ(K)= σ(K). (1.11)

The L2 theory gives some conditions for Q to be strongly nondegenerate on σ .

Theorem 1.2 [10, page 133]. The following are equivalent:

(i) Q is strongly nondegenerate in σ , and moreover E[Qσ(K)]2 <+∞;

(ii)
∫
K
∫
K epn(t,s)dσ(t)dσ(s)=O(1);

(iii)
∫
K
∫
K eq(t,s)dσ(t)dσ(s) <+∞.

Under condition (iii) of Theorem 1.2, if k(t) is a complex bounded function over Rν ,

we have

E

[∣∣∣∣∫
K
k(t)dSσ

∣∣∣∣2
]
=
∫
K

∫
K
k(t)k(s)eq(t,s)dσ(t)dσ(s). (1.12)
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For q(s,t) given by formula (1.7), condition (iii) of Theorem 1.2 says that σ has finite

u-energy (see for a definition [23, page 109] or Theorem 3.4). As a consequence (see

[12, page 45]), for u<d we have Q lives on σ whenever σ has finite u-energy.

We define the Fourier transform of the random measure Sσ . Under the main hypoth-

esis of Theorem 1.1, namely, r ∈ L1(σ), we have almost surely

lim
n→+∞

∫
Qndσ = Sσ (1) <+∞ (1.13)

as a consequence of formula (1.9). We can then conclude that there is a convergence

over the bounded continuous functions on Rν (see [18, page 98]). As a consequence,

the definition of the Fourier transform of the random measure Sσ is straightforward.

Definition 1.3. The Fourier transform Ŝσ , of the random measure Sσ , is by defini-

tion the map defined almost surely by

∀ξ ∈Rν , Ŝσ (ξ)= lim
n→+∞

∫
Rν

exp(2πiξt)Qnσ(dt). (1.14)

As usual (see [14, page 132]), it is easily verified that almost surely Ŝσ is uniformly

continuous and that for a bounded and positive Radon measure σ the map Ŝσ is almost

surely bounded.

Remark 1.4. With additional hypothesis, it can be verified that Sσ is a random mea-

sure in the sense of a measurable map taking its values in a (measurable) space of

measures. More precisely, if the operator Q is strongly nondegenerate, then the mar-

tingale defined for all ϕ ∈ C0(Rν) by (
∫
ϕQndσ)n∈N is an L2 martingale. In fact, for

some constants c, A,

∀n∈N, E

[∣∣∣∣∫ ϕQndσ∣∣∣∣2
]
≤ c

∫∫
exp

(
qn(t,s)

)
dσ(t)dσ(s)≤A<+∞. (1.15)

Following [2], we can say that the sequence of random measures (Qnσ)n∈N converges

in quadratic mean (see [2, page 49]). This shows that Sσ is a random measure when

considered as a map defined on a probability space and taking its values in the space

of the Radon signed measures, which is a measurable space, when endowed with the

Borel σ algebra associated with the topology of vague convergence. The random mea-

sures associated to the multiplicative chaos are in this way and under some restrictive

hypothesis nontrivial examples of random signed measures in the sense of Kallemberg

and Oliveira.

2. On the asymptotic behavior. Asymptotic behavior of the Fourier transform of

a measure is a classical subject in harmonic analysis (see [15, page 218], [23, page

168], [30, pages 347–351, 360–364]). This subject has received some attention recently.

In part, due to the relevance for applications of the L2 energy norm, the behavior of

second-order moments is particularly interesting (see, e.g., [6, 17, 31, 33]).

The main result furnished by the established theory on the asymptotic behavior of

the Fourier transform of the random measure Sσ is the following.
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Theorem 2.1 [10, page 135]. If q(s,t) given by formula (1.7) is a bounded C∞ func-

tion with compact support and if σ has compact support and a C∞ density with respect

to the Lebesgue measure, then

E
[∣∣Ŝσ (ξ)∣∣2

]
	 ‖ξ‖u−ν . (2.1)

The main purpose of this work is to prove the following extension of this result. It

gives the asymptotic behavior of the second moment in the case where σ is a positive

Radon measure with compact support admitting an L2 density.

Theorem 2.2. If q(s,t) given by formula (1.7) and σ is a positive Radon measure

with compact support on Rν , such that

∫
Rν

∣∣σ̂ (x)∣∣2dx <+∞, ∀ξ ∈Rν ,
∫
Rν

∣∣σ̂ (x)∣∣2

‖x−ξ‖ν−u dx <+∞ (2.2)

and such that the operator Q is strongly nondegenerate on σ , then, for some constants

c and d,

E
[∣∣Ŝσ (ξ)∣∣2

]
≤ 1
‖ξ‖ν−u

(
c+d‖ξ‖ν sup

‖x−ξ‖<‖ξ‖/2

∣∣σ̂ (x)∣∣2

)
. (2.3)

Proof. We use the result in [10] which says that

E
[∣∣Ŝ(ξ)∣∣2

]
= E

[∣∣∣∣∫ exp(2πitξ)dS(t)
∣∣∣∣2
]
=
∫
(Rν )2

exp
(
2πi(t−s)ξ)eq(t,s)dσ(t)dσ(s)

(2.4)

as a consequence of formula (1.12). We will deal first with the special case where σ
admits a C∞ density f with compact support. Suppose then that dσ(t)= f(t)dt. By a

trivial change of variables and by Fubini’s theorem, we get∫
R2ν

e−2πi(t−s)ξ

‖t−s‖u dσ(t)dσ(s)=
∫
R2ν

e−2πivξ

‖v‖u f(v+s)f (s)dvds

=
∫
Rν

e−2πivξ

‖v‖u (f ∗ f̌ )(s)dv.
(2.5)

The hypotheses on f imply that (f ∗ f̌ ) is a C∞ function with compact support strictly

positive in a neighborhood of zero. As a consequence of Proposition 3.3, we get for

some constant c,

E
[∣∣Ŝ(ξ)∣∣2

]
≤ c
‖ξ‖min(u,(ν+1)/2) , (2.6)

which is a weaker result than the one announced for u ≥ (ν−1)/2. The general case

needs another kind of approach. We apply Theorem 3.4 to the last term in formula (2.4)

to get for some constant d,

E
[∣∣Ŝ(ξ)∣∣2

]
≤ d

∫
Rν

∣∣σ̂ (x)∣∣2

‖x−ξ‖ν−u dx. (2.7)
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Denote by I the following integral:

I =
∫
Rn

∣∣σ̂ (x)∣∣2

‖x−ξ‖a dx. (2.8)

In order to obtain the asymptotic behavior of this integral, we consider a point ξ, fixed

in Rn and the partition of the domain of integration given by

Rn = B
(

0,
‖ξ‖
2

)
∪B(ξ,α)∪

{
x ∈Rn : ‖x‖ ≥ ‖ξ‖

2
, ‖x−ξ‖ ≥α

}
, (2.9)

where α is a parameter that we will deal with, below. Let I1 (resp., I2, I3) be the integral

of the function |σ̂ (x)|2/‖x−ξ‖a over the set on the left (resp., on the middle, on the

right) of the partition (2.9). Then, it is clear that

I1 ≤ 1
‖ξ‖a

∫
‖x‖/‖ξ‖<1/2

|σ̂ (x)|2
|1−‖x‖/‖ξ‖|a dx ≤

1
‖ξ‖a 2a‖σ̂‖2

2, (2.10)

I2 ≤ sup
‖x−ξ‖<α

|σ̂ (x)|2
∫
‖x‖<α

dx
‖x‖a ≤α

ν−a sup
‖x−ξ‖<α

|σ̂ (x)|2
∫
‖x‖<α

dx
‖x‖a , (2.11)

I3 ≤ 1
αa

∫
‖x‖>‖ξ‖/2

|σ̂ (x)|2dx ≤ ‖σ̂‖
2
2

αa
. (2.12)

As a consequence, for some constants c and d and choosing α= ‖ξ‖/2 in (2.11) and in

(2.12) we have that

I ≤ 1
‖ξ‖a

(
c+d‖ξ‖ν sup

‖x−ξ‖<‖ξ‖/2

∣∣σ̂ (x)∣∣2

)
, (2.13)

as desired.

Remark 2.3. Let σ be the Lebesgue measure concentrated on the unit ball of Rν . As

a consequence of formula (3.1), we will have that for some constant c,

∣∣σ̂ (x)∣∣2 ≤ c
‖x‖ν+1

, (2.14)

and as a consequence,

E
[∣∣Ŝ(ξ)∣∣2

]
≤ c
‖ξ‖ν−u , (2.15)

in agreement with the result stated in [10, page 30].

Remark 2.4. The final conclusion in the statement of Theorem 2.2 clearly depends

on the asymptotic behavior of the Fourier transform of the measure σ . We present next

an example (given by [27]) that shows that in general the integral in (2.8) has no rate of

decay better than O(1). We will see that the measure under scrutiny has not compact

support. As a consequence, a natural question is to find an example such as the one

presented but with a measure with compact support.
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Consider a sequence of functions (ϕn)n∈N defined by

∀n∈N, ϕn = I[−n,1−n]+I[n−1,n]. (2.16)

Asϕn is an even function, its Fourier ϕ̂n transform is real valued. A quick computation

shows that

∀n∈N, ϕ̂n(ξ)= 2sin(πξ)cos
(
(2n−1)πξ

)
πξ

. (2.17)

Define now a sequence of functions (ψn)n∈N by

∀n∈N, ψn =ϕn∗ϕn. (2.18)

A simple but tedious computation shows that ψn(x) is a linear by pieces continuous

function with compact support, simply described as the sum of three tent functions

given by

ψn(x)= (2n+x)I[−2n,−2n+1](x)+(−x−2n+2)I[−2n+1,−2n+2](x)

+(2x+2)I[−1,0](x)+(2−2x)I[0,1](x)

+(x−2n+2)I[2n−2,2n−1](x)+(2n−x)I[2n−1,2n](x).
(2.19)

As ψ̂n = (ϕ̂n)2, we have that

∀n∈N, ψ̂n(ξ)= 4sin2(πξ)cos2
(
(2n−1)πξ

)
π2ξ2

. (2.20)

This shows thatψn belongs to L1(R)∩L2(R). Take a sequence (an)n∈N∗ of nonnegative

numbers such that
∑+∞
n=1an <+∞ and define a measure dσ(ξ)= f(ξ)dξ with

∀ξ ∈R, f (ξ)=
+∞∑
n=1

anψ̂n(ξ). (2.21)

As σ(R) = 2
∑+∞
n=1an, the measure σ is finite. Moreover, as a consequence of Cauchy-

Schwarz inequality, the density of σ with respect to the Lebesgue measure is in L2(R).
In fact, we have

(∫
R
f 2(ξ)dξ

)1/2
=
( +∞∑
n,m=1

anam
∫
R
ψ̂n(ξ)ψ̂m(ξ)dξ

)1/2

≤ ∥∥ψn∥∥2

∥∥ψm∥∥2

( +∞∑
n=1

a2
n

)1/2( +∞∑
m=1

a2
m

)1/2

<+∞.
(2.22)

Observe now that for every p ∈N,

∣∣σ̂ (x)∣∣= 1
2π

+∞∑
n=1

anψn(x)≥ apψp(x). (2.23)
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As a consequence, for some constant c,

I(2n−1)=
∫
R

∣∣σ̂ (x)∣∣2∣∣x−(2n−1)
∣∣a dx ≥

∫ 2n

2n−2

∣∣σ̂ (x)∣∣2 ≥ ca2
n. (2.24)

Finally, by choosing, for example,

an =


1
k2
, if n= 22k ,

0, otherwise,
(2.25)

we see that I has no rate of decay better than O(1).

3. Auxiliary results and methodological remarks. In this section, we state some

results that were used in the proof of Theorem 2.2. Hereafter, letters c, d, and e will

denote constants not necessarily the same at every instance.

3.1. Some remarkable Fourier transforms. The asymptotic behavior of the Fourier

transform of the indicator function of the unit ball in Rn, as given in the following

proposition, is well known (see [5] or [28, page 51]).

Proposition 3.1. Let B = B(0,1) = {x ∈ Rn : ‖x‖ < 1} be the unit ball of Rn and

U = IB the indicator function of B. Then, for some constant c,

∣∣Û(ξ)∣∣≤ c
|ξ|(n+1)/2 . (3.1)

We get a similar result when the unit ball is replaced by B(0,δ) and the indicator

function appears multiplied by a remarkable locally integrable radial function.

Proposition 3.2. Let Bδ = B(0,δ) = {x ∈ Rn : ‖x‖ < δ} be a ball of Rn, centered in

zero with radius δ > 0 and, for 0<α<n, the function defined by

Uαδ (x)=
IBδ(x)
‖x‖α . (3.2)

Then, for some constants denoted always by c,

∣∣∣Ûαδ (ξ)∣∣∣≤


c
‖ξ‖n−α , if α>

n−1
2
,

c
‖ξ‖(n+1)/2 , if α≤ n−1

2
.

(3.3)

As a consequence of the last proposition, we obtain the asymptotic behavior of a

Fourier transform that was used in the proof of Theorem 2.2.

Proposition 3.3. Let g be a C∞(Rn) function with compact support such that g
is strictly positive in a neighborhood of zero. Let 0 < α < n and define Iα,g , a Fourier

transform, by

Iα,g(ξ)=
∫
Rn

e−2πiξ·x

‖x‖α g(x)dx. (3.4)
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The asymptotic behavior of Iα,g is the same as the asymptotic behavior of Ûα1 , that is, for

some constant c,

∣∣Iα,g(ξ)∣∣≤ c
‖ξ‖min(n−α,(n+1)/2) . (3.5)

The proof follows an argument of localization.

3.2. Some Parseval formulas and tempered distributions. The result in this sub-

section was used in the proof of the main theorem to express the second moment of

the Fourier transform of the random measure Sσ .

For 0<α<n, let Uα denote the locally integrable function, defined by

Uα(x)= 1
‖x‖α IR∗n(x), (3.6)

where R∗n = Rn −{0}. This function defines a tempered distribution whose Fourier

transform denoted by Ûα but also by �Uα is represented again by a locally integrable

function given by

Ûα(ξ)= c(α)
‖ξ‖n−α IR∗n(ξ), c(α)= Γ

(
(n−α)/2)

πn/2−αΓ(α/2)
. (3.7)

(See [29, page 117] or [16, pages 52, 278].)

This result essentially given by Frostman is usually formulated for real measures and

with no exponential term in formula (3.9) (see [1, page 22]).

Theorem 3.4. Let σ be a positive Radon measure over Rn with compact support and

0<α<n such that Eα, the α energy of σ , is finite, that is,

Eα =
∫
Rn

∫
Rn

dσ(t)dσ(s)
‖t−s‖α <+∞. (3.8)

Then,

∫
Rn

∫
Rn

e2iπξ(t−s)

‖t−s‖α dσ(t)dσ(s)= c(α)
∫
Rn

∣∣σ̂ (x)∣∣2

‖x−ξ‖n−α dx, (3.9)

whenever the integral on the right is finite.

Proof. The formula we have to prove is verified for measures given by dσ(t) =
φ(t)dt, where φ ∈ �, � being the Schwartz test function space of rapidly decreasing

functions. Indeed, for such a measure the integral on the left-hand side of formula (3.9)

which we denote by I is written as

I =
∫
Rn

(∫
Rn

e2iπξt

‖t−s‖αφ(t)dt
)
e−2iπξsφ(s)ds =

∫
Rn

(2π)n−α

c(n−α) In−α(h)(s)h(s)ds,
(3.10)
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where, for 0< β<n, the β Riesz potential of f is given by

Iβ(f )(x)= c(β)
(2π)β

∫
Rn

f (y)
‖x−y‖n−β dy (3.11)

and h stands for h(s)= e2iπξsφ(s). Now, given f ,g ∈�, we have that

∫
Rn
Iβ(f )(x)g(x)dx =

∫
Rn

f̂ (x)ĝ(x)(
2π‖x‖)β dx, (3.12)

which is essentially Parseval’s formula (see [29, page 117] for all the properties of the

notion of Riesz potential used). Observing that ĥ(y)= φ̂(y−ξ) and ĥ= φ̂(ξ−y), we

have

I = 1
c(n−α)

∫
Rn

φ̂(y−ξ)φ̂(ξ−y)
‖y‖n−α dy, (3.13)

which gives the result claimed in the statement of the theorem by a trivial change of

variables, noticing that, as φ is real,

φ̂(u)φ̂(−u)= φ̂(u)φ̂(u)= ∣∣φ̂(u)∣∣2, (3.14)

and that C(α) = 1/c(n−α). Let now µ be a complex measure with compact support

and, for 0< β<n, define Iβ, the β Riesz potential of µ, by

Iβ(µ)(x)= c(β)
(2π)β

(
µ∗Un−α). (3.15)

This definition makes good sense as we are considering the convolution of µ, a distribu-

tion with compact support, with Un−α which is a tempered distribution. Observe that

as a consequence of a theorem of Sobolev (see [26, page 181]), Iβ(µ) is locally in Lq for

q < n/(n−β) and in particular Iβ(µ) is integrable over any compact of Rn. Moreover,

the Fourier transform of Iβ(µ) in the sense of distributions is easily computed (see, e.g.,

[7, page 21]) to give

Îβ(µ)= c(β)
(2π)β

µ̂ ·Ûn−β = 1
(π)β

µ̂ ·Ûn−β. (3.16)

Considering now dµ(t)= e2πiξ·tdσ(t), we have that

I =
∫
Rn

(∫
Rn

dµ(t)
‖t−s‖α

)
dµ(s)= (2π)α

c(n−α)
∫
Rn
In−α(µ)(s)dµ(s). (3.17)

As µ has compact support and as a consequence of the hypotheses done on the integral
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on the right-hand side of formula (3.9) we can apply Parseval’s formula (as given, e.g.,

in [14, page 132] or [18, page 121]) to obtain

I = (2π)α

c(n−α)
∫
Rn

̂In−α(µ)(x)µ̂(x)dx = c(α)
∫
Rn
µ̂(x)Uα(x)µ̂(−x)dx, (3.18)

which, after some computations of Fourier transforms and a change of variables, is

exactly the desired result.
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[15] V. P. Khavin and N. K. Nikol’skĭı (eds.), Commutative Harmonic Analysis. IV, Encyclopaedia
of Mathematical Sciences, vol. 42, Springer-Verlag, Berlin, 1992.

[16] V.-K. Khoan, Distributions, Analyse de Fourier, Opérateurs aux Derivées Partielles, Vols I, II,
Librairie Vuibert, Paris, 1972.

[17] K. A. Makarov, Asymptotic expansions for Fourier transform of singular self-affine mea-
sures, J. Math. Anal. Appl. 187 (1994), no. 1, 259–286.

[18] P. Malliavin, Integration and Probability, Graduate Texts in Mathematics, vol. 157, Springer-
Verlag, New York, 1995.



3434 MANUEL L. ESQUÍVEL

[19] B. Mandelbrot, Possible refinement of the lognormal hypothesis concerning the distribution
of energy dissipation in intermittent turbulence, Statistical Models and Turbulence,
Lecture Notes in Physics, vol. 12, Springer, New York, 1972, pp. 333–351.

[20] , Multiplications aléatoires itérées et distributions invariantes par moyenne pondérée
aléatoire, C. R. Acad. Sci. Paris Sér. A 278 (1974), 289–292 (French).

[21] , Multiplications aléatoires itérées et distributions invariantes par moyenne pondérée
aléatoire: quelques extensions, C. R. Acad. Sci. Paris Sér. A 278 (1974), 355–358
(French).

[22] , The Fractal Geometry of Nature, W. H. Freeman and Company, New York, 1983.
[23] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge Studies in Ad-

vanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995.
[24] J. Peyrière, Turbulence et dimension de Hausdorff, C. R. Acad. Sci. Paris Sér. A 278 (1974),

567–569 (French).
[25] H. Sato and M. Tamashiro, Multiplicative chaos and random translation, Ann. Inst. H.

Poincaré Probab. Statist. 30 (1994), no. 2, 245–264.
[26] L. Schwartz, Théorie des Distributions, Publications de l’Institut de Mathématique de

l’Université de Strasbourg, no. IX-X, Hermann, Paris, 1966.
[27] G. Sinnamon and G. Zimmerman, personal communication.
[28] C. D. Sogge, Fourier Integrals in Classical Analysis, Cambridge Tracts in Mathematics, vol.

105, Cambridge University Press, Cambridge, 1993.
[29] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Math-

ematical Series, vol. 30, Princeton University Press, New Jersey, 1970.
[30] , Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals,

Princeton Mathematical Series, vol. 43, Princeton University Press, New Jersey, 1993.
[31] R. S. Strichartz, Self-similar measures and their Fourier transforms. I, Indiana Univ. Math.

J. 39 (1990), no. 3, 797–817.
[32] E. C. Waymire and S. C. Williams, Multiplicative cascades: dimension spectra and depen-

dence, J. Fourier Anal. Appl. (1995), 589–609, Special Issue: Proceedings of the Con-
ference in Honor of Jean-Pierre Kahane.

[33] B. Wu and W. Su, Fourier transformation and singular integrals on self-similar measure,
Approx. Theory Appl. (N.S.) 14 (1998), no. 4, 102–114.

Manuel L. Esquível: Departamento de Matemática, Faculdade de Ciências e Tecnologia, Uni-
versidade Nova de Lisboa (FCT/UNL), Quinta da Torre, 2829-516 Caparica, Portugal; Centro de
Matemática e Aplicações Fundamentais, Universidade de Lisboa (CMAF/UL), 1649-003 Lisboa,
Portugal

E-mail address: mle@fct.unl.pt

mailto:mle@fct.unl.pt

