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Let {X,Xn; n≥ 1} be a sequence of real-valued i.i.d. random variables and let Sn =
∑n
i=1Xi,

n ≥ 1. In this paper, we study the probabilities of large deviations of the form P(Sn >
tn1/p), P(Sn <−tn1/p), and P(|Sn|> tn1/p), where t > 0 and 0<p < 2. We obtain precise
asymptotic estimates for these probabilities under mild and easily verifiable conditions. For

example, we show that if Sn/n1/p P
��������������→ 0 and if there exists a nonincreasing positive function

φ(x) on [0,∞) which is regularly varying with index α ≤ −1 such that limsupx→∞P(|X| >
x1/p)/φ(x)= 1, then for every t > 0, limsupn→∞P(|Sn|> tn1/p)/(nφ(n))= tpα.

2000 Mathematics Subject Classification: 60F10, 60F05.

1. Introduction. Throughout this paper, let {X,Xn; n ≥ 1} be a sequence of real-

valued independent and identically distributed (i.i.d.) random variables and, as usual,

let Sn =
∑n
i=1Xi, n≥ 1 denote their partial sums. If

Sn−an
bn

P
�����������������������������������������→ 0, (1.1)

where {an; n≥ 1} and {bn > 0; n≥ 1} are sequences of constants, then the probabili-

ties of the form

P
(
Sn−an > tbn

)
, P

(
Sn−an <−tbn

)
, P

(∣∣Sn−an∣∣> tbn), (1.2)

where t > 0, are called probabilities of large deviations of the sums {Sn; n ≥ 1}. The

study of large deviations started with Cramér [9] and Chernoff [7]. They showed that if

M(t)≡ E(etX)<∞ ∀t ∈R, (1.3)

then

(i) for every closed set A⊆R,

limsup
n→∞

logP
(
n−1Sn ∈A

)
n

≤−Λ(A), (1.4)

(ii) for every open set A⊆R,

liminf
n→∞

logP
(
n−1Sn ∈A

)
n

≥−Λ(A), (1.5)
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where, for x ∈R and A⊆R,

λ(x)= sup
t∈R

(
tx− logM(t)

)
, Λ(A)= inf

x∈A
λ(x). (1.6)

This fundamental result is what we call the large deviation principle for partial sums

{Sn; n≥ 1}. Donsker and Varadhan [11] and Bahadur and Zabell [1] established a large

deviation principle for sums of i.i.d. Banach space-valued random variables. Bolthausen

[2] extended the Cramér-Chernoff-Donsker-Varadhan-Bahadur-Zabell large deviation

principle when the laws of the random variables converge weakly and satisfy a uniform

exponential integrability condition. As an application of the Bolthausen large deviation

principle, Li et al. [20] established a large deviation principle for bootstrapped sam-

ple means. In another direction, under the Cramér condition, which asserts that there

exists a positive constant C such that

M(t)≡ E(etX)<∞ for |t|<C, (1.7)

Petrov [23] obtained asymptotic expansions for the following probabilities of large de-

viations:

P
(
Sn ≥nE(X)+n1/2x

)
, P

(
Sn ≤nE(X)−n1/2x

)
, (1.8)

where x ≥ 0 and x = o(n1/2). Let σ 2 = Var(X). It follows from the Petrov asymptotic

expansions [23] that if

bn√
n
�→∞, bn

n
�→ 0, (1.9)

then

limsup
n→∞

n
b2
n

logP
(
Sn−nE(X)

bn
∈A

)
≤−σ

2

2
inf
x∈A

x2 for A closed,

liminf
n→∞

n
b2
n

logP
(
Sn−nE(X)

bn
∈A

)
≥−σ

2

2
inf
x∈A

x2 for A open.
(1.10)

Borovkov and Mogul’skĭı [4], Chen [5, 6], de Acosta [10], and Ledoux [18] obtained ver-

sions of (1.10) in a Banach space setting under various conditions. There have been

a great number of investigations on the probabilities of large deviations for sums

of independent random variables. Surveys of these investigations can be found in

[3, 16, 25, 26, 27, 28].

Clearly, (1.4), (1.5), and (1.10) provide the rate, in a certain sense, at which the con-

vergence in probability takes place in the weak law of large numbers (WLLN). However,

it can be shown that the Cramér condition (1.7) is necessary for the classical large de-

viation principle (1.4)-(1.5) to hold. Under some mild conditions, the convergence rates

of the law of large numbers have been studied by many authors. There is a large lit-

erature of investigation on this topic; see, for example, Stout [29], Petrov [25, 26], and

references in these three books. The introduction of [19] provides a concise summary

of this topic. For example, assume h(x) is positive, nondecreasing, and slowly varying
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at infinity, and let 0<p < 2 and r ≥ 0. Heyde and Rohatgi [14] showed that

P
(∣∣Sn∣∣
n1/p ≥ ε

)
= o

(
1

nrh(n)

)
∀ε > 0 (1.11)

if and only if

E(X)= 0 if 1<p < 2,

lim
n→∞n

1−(1/p)E
(
XI{|X|≤n1/p}

)= 0 if 0<p ≤ 1,

P
(|X|>n1/p)= o( 1

nr+1h(n)

)
.

(1.12)

A version of Heyde-Rohatgi’s result in a Banach space setting was obtained by Li [21].

It is natural to ask if it is possible to establish a Cramér-Chernoff-type large devia-

tion principle if the random variable X is not assumed to satisfy the Cramér condition

(1.7). While the Cramér condition (1.7) is of course weaker than (1.3), it implies that

E(|X|r ) <∞ for all r > 0. In this paper, we will answer this question in the positive by

presenting, under mild and easily verifiable conditions, precise asymptotic estimates

for the probabilities of large deviations of the form

P
(
Sn > tn1/p), P

(
Sn <−tn1/p), P

(∣∣Sn∣∣> tn1/p), (1.13)

where t > 0 and 0<p < 2. This will be accomplished by Theorems 2.1, 2.2, and 2.3.

2. Main results. We now state our main results. Proofs will be given in Section 4.

Theorem 2.1 (two-sided large deviation probabilities). Let {X,Xn; n ≥ 1} be a se-

quence of real-valued i.i.d. random variables, and let Sn =
∑n
i=1Xi, n ≥ 1. If, for some

0<p < 2,

Sn
n1/p

P
�����������������������������������������→ 0, (2.1)

and if there exists a positive nonincreasing function φ(x) on [0,∞) which is regularly

varying with index α≤−1 such that

lim
x→∞xφ(x)= 0, limsup

x→∞
P
(|X|>x1/p)
φ(x)

= 1, (2.2)

then

limsup
n→∞

P
(|Sn|> tn1/p)
nφ(n)

= tpα ∀t > 0. (2.3)

Theorem 2.2 (one-sided large deviation probabilities). (i) If, for some 0 < p < 2,

(2.1) holds, and if there exists a positive nonincreasing function φ1(x) on [0,∞) which
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is regularly varying with index α≤−1 such that

lim
x→∞xφ1(x)= 0, limsup

x→∞
P
(
X >x1/p)
φ1(x)

= 1,

lim
x→∞

xP
(|X|>x1/p)(
xφ1(x)

)1/m = 0 for some integer m≥ 1,
(2.4)

then

limsup
n→∞

P
(
Sn > tn1/p)
nφ1(n)

= tpα ∀t > 0. (2.5)

(ii) If, for some 0 < p < 2, (2.1) holds and if there exists a positive nonincreasing

function φ2(x) on [0,∞) which is regularly varying with index α≤−1 such that

lim
x→∞xφ2(x)= 0, limsup

x→∞
P
(
X <−x1/p)
φ2(x)

= 1,

lim
x→∞

xP
(|X|>x1/p)(
xφ2(x)

)1/m = 0 for some integer m≥ 1,
(2.6)

then

limsup
n→∞

P
(
Sn <−tn1/p)
nφ2(n)

= tpα ∀t > 0. (2.7)

Theorem 2.3. If, for some 0 < p < 2, (2.1) holds and the conditions (2.2), (2.4), or

(2.6), respectively, are satisfied with “lim” in place of “limsup,” then

lim
n→∞

P
(
t1n1/p <

∣∣Sn∣∣≤ t2n1/p)
nφ(n)

= tpα1 −tpα2 ∀0< t1 < t2 ≤∞, (2.8)

lim
n→∞

P
(
t1n1/p < Sn ≤ t2n1/p)

nφ1(n)
= tpα1 −tpα2 ∀0< t1 < t2 ≤∞, (2.9)

or

lim
n→∞

P
(−t2n1/p ≤ Sn <−t1n1/p)

nφ2(n)
= tpα1 −tpα2 ∀0< t1 < t2 ≤∞, (2.10)

respectively.

Example 2.4. Consider a sequence of real-valued i.i.d. random variables {X,Xn; n≥
1} with the following common probability density function:

f(x)= 1
x3
I{x≥1}+ 3

2x4
I{x≤−1}, −∞<x <∞. (2.11)

Then (1.7) fails but

E(X)= 0.25, E
(|X|p)<∞ ∀0<p < 2. (2.12)
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Thus, by the Marcinkiewicz-Zygmund strong law of large numbers (SLLN) (see, e.g.,

Chow and Teicher [8, page 125]),

Sn−0.25n
n1/p �→ 0 a.s. (2.13)

Note that for 0<p < 2 and x ≥ 1,

P(X > x)= 0.5x−2, P(X <−x)= 0.5x−3,

P
(|X|>x)= 0.5

(
x−2+x−3) (2.14)

whence, for all large x,

P
(
X−0.25>x1/p)= 0.5

(
0.25+x1/p)−2 ∼ 0.5x−2/p,

P
(
X−0.25<−x1/p)= 0.5

(
x1/p−0.25

)−3 ∼ 0.5x−3/p,

P
(|X−0.25|>x1/p)= 0.5

(
0.25+x1/p)−2+0.5

(
x1/p−0.25

)−3 ∼ 0.5x−2/p.

(2.15)

Thus by Theorem 2.3, for any 0<p < 2, we have the following conclusions:

lim
n→∞n

(2/p)−1P
(
Sn > 0.25n+tn1/p)= 0.5t−2 ∀t > 0,

lim
n→∞n

(3/p)−1P
(
Sn < 0.25n−tn1/p)= 0.5t−3 ∀t > 0,

lim
n→∞n

(2/p)−1P
(∣∣Sn−0.25n

∣∣> tn1/p)= 0.5t−2 ∀t > 0.

(2.16)

Example 2.5. Let 0 < p < 2 and let {X,Xn; n ≥ 1} be a sequence of real-valued

symmetric i.i.d. random variables such that

P
(|X|>x)∼ L

(
xp
)

xβp
as x �→∞, (2.17)

where L(x) is a positive function on [0,∞) which is slowly varying as x→∞ and either

β= 1 and L(x)→ 0 as x→∞ or β > 1. Then

xP
(|X|>x1/p)∼ L(x)

xβ−1
�→ 0 as x �→∞ (2.18)

and (2.1) then holds by the Klass and Teicher [17] WLLN analogue of Feller’s [12] famous

generalization of the Marcinkiewicz-Zygmund SLLN. Since φ(x) ≡ P(|X| > x1/p) =
L(x)/xβ is regularly varying with index −β ≤ −1 and (2.2) holds with “lim” in place

of “limsup,” it follows from Theorem 2.3 that

lim
n→∞

P
(∣∣Sn∣∣> tn1/p)
nL(n)/nβ

= lim
n→∞

nβ−1P
(∣∣Sn∣∣> tn1/p)
L(n)

= t−pβ. (2.19)

It may be noted that E(|X|r )=∞whenever r > βp whence (1.7) fails. Moreover, Sn/n1/p

does not necessarily converge to 0 a.s. To see this, suppose β = 1 and L(x) ∼ 1/ logx
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as x→∞. Then for x0 sufficiently large,

E
(|X|p)≥ const.

∫∞
x0

xp−1L
(
xp
)

xp
dx

≥ const.
∫∞
x0

1
x logx

dx

=∞.

(2.20)

Thus by the (converse of the) Marcinkiewicz-Zygmund SLLN, Sn/n1/p does not converge

to 0 a.s.

3. Auxiliary results. In this section, we collect some auxiliary results needed for

the proofs of our main results. We need some additional notation. Let κq(Y) denote

a quantile of order q, 0 < q < 1, for a real-valued random variable Y . The inequalities

provided by (3.1) and (3.2) are extensions of the classical Lévy inequalities wherein

q = 1/2.

Lemma 3.1. Let {Vk; 1 ≤ k ≤ n} be a set of n real-valued independent random vari-

ables and set U0 = 0 and Uk = V1+···+Vk, 1≤ k≤ n. Then, for every q in the interval

(0,1) and every real x,

P
(

max
1≤k≤n

(
Uk+κ1−q

(
Un−Uk

))
>x

)
≤ 1
q
P
(
Un > x

)
, (3.1)

P
(

max
1≤k≤n

(∣∣Uk∣∣−κq(∣∣Un−Uk∣∣))>x
)
≤ 1
q
P
(∣∣Un∣∣>x), (3.2)

P
(

max
1≤k≤n

(
Vk+κ1−q

(
Uk−1

))
>x

)
≤ 1
q
P
(

max
1≤k≤n

Uk > x
)
, (3.3)

P
(

max
1≤k≤n

(∣∣Vk∣∣−κq(∣∣Uk−1

∣∣))>x)≤ 1
q
P
(

max
1≤k≤n

∣∣Uk∣∣>x
)
. (3.4)

Proof. Note that we can put κ1−q(Un−Uk)=−κq(Uk−Un), 1≤ k≤n, and so (3.1) is

due to Petrov [24]; also see [26, Theorem 2.1]. Using almost the same argument as in the

proof of (3.1) given by Petrov [24], (3.2) follows. Our proof of (3.3) is also a modification

of Petrov’s [24] proof of (3.1). We write

Mj = max
j≤k≤n

(
Vk+κ1−q

(
Uk−1

))
, j = 1,2, . . . ,n,

Dn =
{
Vn+κ1−q

(
Un−1

)
>x

}
,

Dj =
{
Mj+1 ≤ x, Vj+κ1−q

(
Uj−1

)
>x

}
, j = 1,2, . . . ,n−1,

Ej =
{
Uj−1−κ1−q

(
Uj−1

)≥ 0
}
, j = 1,2, . . . ,n.

(3.5)

We then have

{
max

1≤k≤n
(
Vk−κ1−q

(
Uk−1

))
>x

}
= {M1 >x

}=∪nj=1Dj (3.6)



PRECISE LIM SUP BEHAVIOR OF PROBABILITIES OF LARGE DEVIATIONS . . . 3571

and, noting that {Dj ; 1≤ j ≤n} is a disjoint collection of events,

P
(
M1 >x

)= n∑
j=1

P
(
Dj
)
. (3.7)

Furthermore,

P
(
Ej
)≥ q, j = 1,2, . . . ,n. (3.8)

Note that the events Dj and Ej are independent and

Dj∩Ej ⊆
{
Uj > x

}⊆ { max
1≤k≤n

Uk > x
}
, j = 1,2, . . . ,n. (3.9)

Hence

P
(

max
1≤k≤n

Uk > x
)
≥ P(∪nk=1

(
Dk∩Ek

))= n∑
j=1

P
(
Dj∩Ej

)= n∑
j=1

P
(
Dj
)
P
(
Ej
)
. (3.10)

Taking into account (3.7) and (3.8), we conclude that

P
(

max
1≤k≤n

Uk > x
)
≥ q

n∑
j=1

P
(
Dj
)= qP(M1 >x

)
, (3.11)

proving (3.3). Inequality (3.4) follows from the same procedure as above if {Mj ; 1≤ j ≤
n}, {Dj ; 1≤ j ≤n}, and {Ej ; 1≤ j ≤n} are defined, respectively, by

Mj = max
j≤k≤n

(∣∣Vk∣∣−κq(∣∣Uk−1

∣∣)), j = 1,2, . . . ,n,

Dn =
{∣∣Vn∣∣−κq(∣∣Un−1

∣∣)>x},
Dj =

{
Mj+1 ≤ x,

∣∣Vj∣∣−κq(∣∣Uj−1

∣∣)>x}, j = 1,2, . . . ,n−1,

Ej =
{∣∣Uj−1

∣∣−κq(∣∣Uj−1

∣∣)≤ 0
}
, j = 1,2, . . . ,n.

(3.12)

The lemma is proved.

The following result due to Li [22] is a generalization of the Hoffmann-Jørgensen [15]

inequalities.

Lemma 3.2. Under the conditions of Lemma 3.1, for all n≥ 1 and all x,y,z ≥ 0,

P
(
Un > x+y+z

)≤ P( max
1≤k≤n

Vk > x
)
+4P

(
Un >y−µ(1)n

)
P
(
Un > z−µ(2)n

)
, (3.13)

P
(∣∣Un∣∣>x+y+z)≤ P

(
max

1≤k≤n
∣∣Vk∣∣>x

)
+4P

(∣∣Un∣∣>y−µ(1)n )
P
(∣∣Un∣∣> z−µ(2)n )

,

(3.14)

where µ(1)n =max1≤k≤nκ1/2(|Un−Uk|) and µ(2)n =max1≤k≤nκ1/2(|Uk|), n≥ 1.
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4. Proofs of main results. We only give the proof of Theorem 2.2. The relations

(2.3), (2.8), and (2.9) can be proved in the same vein. Replacing {X,Xn; n ≥ 1} by

{−X,−Xn; n ≥ 1} in (2.5) and (2.9) yields, respectively, (2.7) and (2.10). The proof of

Theorem 2.2 will be broken down into the following four steps.

Step 1. We show that (2.1) and (2.4) imply that there exists an integer v ≥ 1 such

that

P
(∣∣Sn∣∣
n1/p > ε

)
=O((nφ1(n)

)1/v) ∀ε > 0. (4.1)

To see this, write

Xn,i =XiI{|Xi|≤n1/p}, i= 1,2, . . . ,n, Tn =
n∑
i=1

Xn,i, n≥ 1. (4.2)

Then it follows from (2.1) that (see, e.g., Chow and Teicher [8, page 359])

lim
n→∞E

(
Tn
n1/p

)
= lim
n→∞n

1−(1/p)E
(
XI{|X|≤n1/p}

)= 0, (4.3)

and (2.4) ensures that

P
( |Sn−Tn|

n1/p > ε
)
≤nP(|X|>n1/p)= o((nφ1(n)

)1/m) ∀ε > 0. (4.4)

Now it follows from (2.4) and [13, Theorem 1(b), page 281] that

P
(∣∣Tn−E(Tn)∣∣

n1/p > ε
)
≤ 2n
ε2n2/p E

(
X2I{|X|≤n1/p}

)

≤ 4
ε2n(2/p)−1

∫ n1/p

0
xP

(|X|>x)dx
= 4
pε2n(2/p)−1

∫ n
0
y1/pP

(|X|>y1/p)y(1/p)−1dy

=O
(
n1−(2/p)

∫ n
0
y(2/p)−2(yφ1(y)

)1/mdy
)

=O
(
n1−(2/p)

∫ n
0
y(2/p)−2(yφ1(y)

)1/vdy
)

=O(n1−(2/p)n(2/p)−2(nφ1(n)
)1/vn

)
=O((nφ1(n)

)1/v),

(4.5)

where v ≥m is an integer such that 2/p−1+ (1+α)/v > 0. Thus, the relation (4.1)

follows from (4.3), (4.4), and (4.5).

Step 2. Set S0 = 0 and note that since the Xn, n≥ 1, are i.i.d.,

µ(1)n = max
0≤k≤n−1

κ1/2
(∣∣Sn−Sk∣∣)= max

1≤k≤n
κ1/2

(∣∣Sk∣∣)= µ(2)n , n≥ 1, (4.6)
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and that (2.1) guarantees that

lim
n→∞

µ(2)n
n1/p = 0. (4.7)

Then for every ε > 0, it follows from (3.13) and (2.4) that

P
(
Sn
n1/p > ε

)
≤ P

(
max

1≤k≤n
Xk >

ε
3
n1/p

)
+4

(
P
(
Sn
n1/p >

ε
3
− µ(2)n
n1/p

))2

=O(nφ1(n)
)+4

(
P
(
Sn
n1/p >

ε
3
− µ(2)n
n1/p

))2

.

(4.8)

In view of (4.7), it follows by repeating v−1 times the above procedure for arriving at

(4.8) that for every ε > 0 and all sufficiently small ε1 > 0 and sufficiently large n,

P
(
Sn
n1/p > ε

)
≤O(nφ1(n)

)+O
((
P
(
Sn
n1/p > ε1

))2v)

=O(nφ1(n)
)+O((nφ1(n)

)2v/v
) (

by (4.1)
)

=O(nφ1(n)
)
.

(4.9)

Step 3. For every given t > 0, applying (3.13) again, it follows from (4.7) and (4.9)

that for every 0< ε < t,

P
(
Sn
n1/p > t

)
≤ P

(
max

1≤k≤n
Xk > (t−ε)n1/p

)
+4

(
P
(
Sn
n1/p >

ε
2
− µ(2)n
n1/p

))2

≤nP(X > (t−ε)n1/p)+O((nφ1(n)
)2).

(4.10)

Since φ1(x) is regularly varying with index α ≤ −1 and since limsupx→∞P(X >
x1/p)/φ1(x)= 1 and limx→∞xφ1(x)= 0, it follows from (4.10) that

limsup
n→∞

P
(
Sn > tn1/p)
nφ1(n)

≤ (t−ε)pα. (4.11)

Letting ε ↓ 0 yields

limsup
n→∞

P
(
Sn > tn1/p)
nφ1(n)

≤ tpα. (4.12)

Step 4. For n≥ 1 and 0< q < 1, write

g(n,q)= min
0≤k≤n−1

κ1−q
(
Sk
)
, (4.13)

where S0 = 0. Then we see from (2.1) that

lim
n→∞

g(n,q)
n1/p = 0 ∀0< q < 1. (4.14)
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For every given t > 0, by applying Lemma 3.1, we have

P
(

max
1≤k≤n

Xk > tn1/p
)
≤ P

(
max

1≤k≤n
(
Xk+κ1−q

(
Sk−1

))
> tn1/p+g(n,q)

)

≤ 1
q
P
(

max
1≤k≤n

Sk > tn1/p+g(n,q)
) (

by (3.3)
)

≤ 1
q
P
(

max
1≤k≤n

(
Sk+κ1−q

(
Sn−k

))
> tn1/p+2g(n,q)

)

= 1
q
P
(

max
1≤k≤n

(
Sk+κ1−q

(
Sn−Sk

))
> tn1/p+2g(n,q)

)

≤ 1
q2
P
(
Sn > tn1/p+2g(n,q)

) (
by (3.1)

)

(4.15)

and this, together with (4.14), ensures that for every ε > 0,

limsup
n→∞

P
(
Sn > tn1/p)
nφ1(n)

≥ limsup
n→∞

P
(
Sn > (t+ε)n1/p+2g(n,q)

)
nφ1(n)

≥ q2 limsup
n→∞

P
(
max1≤k≤nXk > (t+ε)n1/p)

nφ1(n)
.

(4.16)

We now show that

lim
n→∞

P
(
max1≤k≤nXk > tn1/p)
nP

(
X > tn1/p

) = 1 ∀t > 0. (4.17)

Note that

P
(
max1≤k≤nXk > tn1/p)
nP

(
X > tn1/p

) = 1−(1−P(X > tn1/p))n
nP

(
X > tn1/p

)
≥ 1−exp

{−nP(X > tn1/p)}
nP

(
X > tn1/p

)
�→ 1

(4.18)

by L’Hospital’s rule since (2.4) ensures that

xP
(
X >x1/p)= xφ1(x)

P
(
X >x1/p)
φ1(x)

�→ 0 as x �→∞. (4.19)

Thus,

liminf
n→∞

P
(
max1≤k≤nXk > tn1/p)
nP

(
X > tn1/p

) ≥ 1 (4.20)

whereas

limsup
n→∞

P
(
max1≤k≤nXk > tn1/p)
nP

(
X > tn1/p

) ≤ 1 (4.21)

is immediate thereby establishing (4.17). Since φ1(x) is regularly varying with index

α≤−1 and limsupx→∞P(X > x1/p)/φ1(x)= 1, we have

limsup
n→∞

P
(
X > tn1/p)
φ1(n)

= tαp ∀t > 0. (4.22)
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Then it follows from (4.16), (4.17), and (4.22) that

limsup
n→∞

P
(
Sn > tn1/p)
nφ1(n)

≥ q2(t+ε)αp ∀0< q < 1, ∀ε > 0. (4.23)

Letting q ↑ 1 and ε ↓ 0 gives

limsup
n→∞

P
(
Sn > tn1/p)
nφ1(n)

≥ tαp ∀t > 0, (4.24)

which, when combined with (4.12), establishes (2.5).
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