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The main aim of this paper is to provide a construction of the Banaschewski compactification
of a zero-dimensional Hausdorff topological space as a structure space of a ring of ordered
field-valued continuous functions on the space, and thereby exhibit the independence of the
construction from any completeness axiom for an ordered field. In the process of describing
this construction we have generalized the classical versions of M. H. Stone’s theorem, the
Banach-Stone theorem, and the Gelfand-Kolmogoroff theorem. The paper is concluded with
a conjecture of a split in the class of all zero-dimensional but not strongly zero-dimensional
Hausdorff topological spaces into three classes that are labeled by inequalities between
three compactifications ofX, namely, the Stone-Čech compactificationβX, the Banaschewski
compactification β0X, and the structure space MX,F of the lattice-ordered commutative ring
C(X,F) of all continuous functions on X taking values in the ordered field F , equipped with
its order topology. Some open problems are also stated.
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1. Introduction. The main thrust in the area of rings of real-valued continuous func-

tions defined over a topological spaceX was provided by the three historical papers due

to Stone [29], Gelfand and Kolmogoroff [14], and Hewitt [18]. Stone initially assumed

a metric structure on the underlying space and his study was confined to bounded

real-valued continuous functions only, that is, C∗(X,R) in the notation used by Hewitt;

Gelfand and Kolmogoroff dropped the metric structure for the first time from the un-

derlying space and replaced it by the more general topological space, thereby paving the

way for a study of C(X,R). Finally Hewitt introduced his almost omnipresentQ-spaces,

presently called the realcompact topological spaces, providing the final shape to the re-

search work for the subsequent years. All this culminated in the classic textbook [15].

Of the many areas of research that were influenced by this textbook, some of those

relevant to the main theme of this paper are the following.

1.1. Other topological algebras as range. (1) Paper [19] considers the rings of con-

tinuous functions with values in a topological ring.

(2) Paper [24] considers the rings of continuous functions with values in the ring Z.

(3) Paper [3] considers the rings of continuous functions with values in a topological

field whose topology is derived from a complete ultrametric.

(4) In [37], the author considers the rings of continuous functions with values in a

topological skew field.

(5) In [39], the author provides a historical sketch and a wide-ranging survey of the

problem of associating with every topological space X an algebraic structure A(X), in
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such a way that when two spaces X and Y are homeomorphic the algebraic structures

A(X) and A(Y) are isomorphic. The author then describes how this gives rise to the

descriptions of topological spaces that are determined by a kind of algebraic structures.

In [40], the algebraic aspects of the theory of rings of continuous functions are nicely

surveyed.

(6) Papers [1, 2] consider the hemiring of continuous functions with values in the

hemiring R≥0 of nonnegative reals.

1.2. The problem of determining topological spaces. (1) The first determination

of a class of topological space by an algebraic structure was in the papers [30, 31]

which solved the problem of determining compact Hausdorff spaces using the ring of

bounded real-valued continuous functions. This was followed by [18], with the problem

of determining the realcompact spaces by the rings of real-valued continuous functions.

Generalizations of Hewitt’s results appear in [27, 28].

(2) In [8, 20], it was shown that the multiplicative semigroup structure on the semi-

group of real-valued continuous functions on a topological space determines the class

of completely regular spaces, while [33] generalizes the range to a topological nonasso-

ciative division ring which is either locally compact or totally disconnected, and proves

a similar result for a class of T1 spaces satisfying quite natural regularity conditions.

(3) Paper [16] shows that the rings of real-valued continuous functions on two com-

pletely regular topological spaces are isomorphic if and only if the two are isomorphic

as lattices or as multiplicative semigroups.

1.3. Ideal structure. (1) Apart from the study of the structure spaces in the pioneer-

ing papers of Hewitt and Stone, an attempt to study the ideal structure of the rings of

continuous functions with values in a non-Archimedean ordered field was done in [11]

where the residue class fields are investigated.

(2) In [34, 35, 38], the projective and injective ideals of the rings of continuous func-

tions are studied.

(3) In [41, 42, 44], the maximal and prime spectra of the rings of continuous functions

taking values in a Hausdorff topological field are investigated.

(4) The connections with sheaf theory are discussed in [32, 43, 45].

1.4. f -rings. The generalization of the rings of continuous functions into f -rings has

provided great impetus towards obtaining properties for these rings in recent years.

A good survey of the investigations in this area can be obtained in [17] and a brief

introduction to this area can be found in [5]. It is only once that the notions of f -rings

will be referred to in this paper, for purposes which the papers [4, 6, 7] suffice.

The present paper deals with the following question of how much of the present

theory of rings of continuous functions depends on the first-order properties of the or-

dered field. Thus we want to investigate the results of [15] that can be extended to our

situation, where the range fieldR is replaced by a linearly ordered field F equipped with

its order topology. The investigation shows that while many results can be extended,

some can only be partially extended—in the sense that one requires some more reg-

ularity properties on the order of the field, like Dedekind completeness or countable

cofinality, to hold good for the extension to be true, and some possibly would yield
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completely new results—the split in Section 4, when the ordered field is not that of

the reals.

Throughout this paper the term order refers to a linear order and an ordered field

is always equipped with its order topology; all topological spaces that appear here are

at least Hausdorff. The paper is organized as follows.

In Section 2, the rings of continuous functions, bounded functions, and functions

with compact codomain from a topological space to an ordered field are introduced

and some basic properties of these function rings are established. Theorem 2.5 char-

acterizes the real field R and Theorem 2.7 characterizes ordered fields with countable

cofinality character, and seems to be new. Furthermore, the topological property of

complete F -regularity (F is an ordered field) is defined and it is shown that this is the

right kind of spaces that one can study using an ordered field F ; see Theorem 2.15.

Indeed this is exactly the generalization of M. H. Stone’s theorem; see [15, Theorem 3.9,

page 41]. Also, various obvious characterizations of F -regular topological spaces are

provided in Theorems 2.10 and 2.14.

In Section 3, we describe the structure space of the function rings described in Section

2. Most of the results in this section seem to be new. Generalizations of the classical

Banach-Stone theorem (Theorem 3.3) and the Gelfand-Kolmogoroff theorem (Theorem

3.5) are obtained. The main results of the paper appear in this section—Theorems 3.10

and 3.12, which provide a plethora of ways to construct the Banaschewski compactifi-

cation β0X of a zero-dimensional Hausdorff topological space. Theorem 3.11 is stated

as a separate result; it is an immediate consequence of the observations made before

and helps in conjecturing the split in Section 4.

In Section 4, we finally summarize the results of Section 3 which culminates in the de-

scription of the split. There are some questions that remain unsolved and are proposed

at the end.

2. Preliminaries. Throughout this section, X is a topological space and F is an or-

dered field. We start with various definitions.

Definition 2.1.

C(X,F)= {f ∈ FX : f is continuous on X
}
,

B(X,F)= {f ∈ C(X,F) : (∃t ∈ F) (∀x ∈X)(−t ≤ f(x)≤ t)},
C∗(X,F)= {f ∈ C(X,F) : clF

(
f(X)

)
is compact

}
,

�X,F (f )=
{
x ∈X : f(x)= 0

}
, for f ∈ C(X,F),

Z(X,F)= {�X,F (f ) : f ∈ C(X,F)
}
.

(2.1)

A subset A⊆X is said to be a zero set in X with respect to F if and only if there exists

an f ∈ C(X,F) such that A = �X,F (f ); the complement of a zero set in X with respect

to F is called a cozero set in X with respect to F . The cozero set in X with respect to F
of f ∈ C(X,F) will be denoted by cozX,F (f ).

One can easily see that F ⊆ C∗(X,F) ⊆ B(X,F) ⊆ C(X,F), if one identifies the mem-

ber t ∈ F with the constant function X t
�→ F , where t : x � t. Also, if one assigns

the operations of addition, multiplication and maximum and minimum pointwise on
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the functions, then one easily gets C(X,F) to be a lattice-ordered commutative ring

with unity, and gets B(X,F) and C∗(X,F) to be lattice-ordered commutative subrings

of C(X,F).
It is easy to see that if X has at least two points, then no lattice-ordered subring of

C∗(X,F) containing F , other than F itself, can be a field, so that the rings in question

always have divisors of zero. The following results are useful in the sequel.

Theorem 2.2. (1) Any topological field is either connected or totally disconnected (see

[46, page 213]).

(2) An ordered field either is isomorphic to R, the field of real numbers, or is zero

dimensional.

Proof. (1) Let K be a topological field and letW be the component of 0. Let, for any

x ∈K and any H ⊆K, xH = {xh : h∈H}.
If W = {0}, then the field is totally disconnected; if not, let x ∈ W and x ≠ 0. Then

x−1W is a connected subset ofK that contains 1, and henceK =⋃y∈K yx−1W . However,

since each of the sets yx−1W are connected and 0 ∈ yx−1W , it follows that the set⋃
y∈K yx−1W is connected and hence K is connected.

(2) From (1), an ordered field is either connected or else totally disconnected. Since

an ordered set is connected if and only if it is Dedekind complete [15, Problem 30, page

52], it follows that if F as an ordered field is connected, then it is isomorphic to R.

Let F be an ordered field that is totally disconnected and let F∗ be the Dedekind

completion of F . Then it is clear that {(a∗,b∗)∩F : a∗,b∗ ∈ F∗} is a clopen base for

the topology of F . Hence F is zero dimensional.

Corollary 2.3. Any ordered field, nonisomorphic to R, is neither locally connected

nor locally compact in its order topology.

It follows from Theorem 2.2(2) that F ≠ R implies that C∗(X,F) contains a noncon-

stant function if and only if X is disconnected. The case for F = R is settled in [15]

as follows: C∗(X,R) possesses a nonconstant function if and only if C(X,R) possesses

a nonconstant function, and because every Tychonoff space with at least two points

always has a nonconstant continuous function. Hence C(X,R) has a nonconstant con-

tinuous function when X is a Tychonoff space with at least two points.

The following lemma shows that C(X,F) and B(X,F) determine the same family of

zero sets in X with respect to F .

Lemma 2.4. Given any f ∈ C(X,F), there exists a positive unit u∈ C(X,F) such that

uf = (−1∨f)∧1.

If, further, f ∈ B(X,F), then u can be chosen to be in B(X,F) too.

Proof. For any f ∈ C(X,F), define

u(x)=



1∣∣f(x)∣∣ if
∣∣f(x)∣∣≥ 1,

1 otherwise.
(2.2)

Surely u is continuous and is a candidate required for the proof of the lemma.
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Hence if one of the two rings C(X,F) and B(X,F) possesses a nonconstant function,

the other also does.

The following shows the equality of B(X,F) and C∗(X,F) to be a characteristic prop-

erty of R.

Theorem 2.5. For an ordered field F , F = R if and only if, for any topological space

X, C∗(X,F)= B(X,F).

Proof. If F = R, then the conclusion is trivially true. If F ≠ R, then the function

F
f
��������→ F , defined by f =min{g,1}, where

g(x)=



−x if x ≤ 0,

0 if 0≤ x ≤ 1,

x−1 if x ≥ 1,

(2.3)

is a member of B(X,F), and since by Corollary 2.3 [0,1] is not compact, it follows that

f is not a member of C∗(X,F).

Remark 2.6. It is known that the Heine-Borel property for an ordered field is a char-

acteristic property for R. Thus, Theorem 2.5 is a latent exhibition of this equivalence.

As usual the zero sets in X with respect to F are closed subsets of X. However, we

have the following.

Theorem 2.7. Let F be any ordered field with cofinality characterωα. Then, the zero

sets in X with respect to F are intersections of an ωα sequence of cozero sets in X with

respect to F .

In particular, for any topological space X, the zero sets in X with respect to F are

Gδ-subsets of X if and only if α= 0.

Proof. For any f ∈ C(X,F), �X,F (f ) =
⋂
r∈T {x ∈ X : |f(x)| < r−1}, where each

of the sets on the right-hand side are clearly cozero sets in X with respect to F and

T ⊆ F>0 = {x ∈ F : x > 0} is cofinal in F .

The “if” part of the final statement follows from the first; for the “only if” part, if

α > 0, then f(x) = |x| is a member of C(X,F), �X,F (f ) = {0}, and {0} is not a Gδ-set.

However, the following example shows that countable cofinality of an ordered field

does not, in general, imply it to be Archimedean, and thus by the above proposition

Gδ-ness of the zero sets may also occur for many other ordered fields other than R or

its subfields.

Example 2.8. Consider the real field R and consider the polynomial ring R[x]. For

f = a0+a1x+a2x2+···+anxn ∈R[x], define f > 0 if and only if an > 0. Clearly this

definition yields a positive cone, so that with the order f ≤ g if and only if g−f > 0 or

g = f it is easy to see that R[x] is an ordered ring.
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Now consider the field R(x) of rational polynomials, f/g, f ,g ∈ R[x], and g > 0,

and extend the order on R[x] as follows: for f ,f ′, g,g′ ∈ R[x] with g,g′ > 0, define

f/g ≤ f ′/g′ if and only if fg′ ≤ f ′g in R[x]. It is easy to see that this makes R(x) an

ordered field.

However, for any natural number n ∈ N, x > n and thus one has that the poly-

nomial x is infinitely larger than every constant polynomial n. Hence R(x) is not an

Archimedean ordered field. But for any member f/g ∈ R(x), there exists a natural

number n ∈ N, namely, n = deg(f )− deg(g)+ 1, such that f/g < xn. Thus the set

{1,x,x2, . . .} is cofinal in R(x), showing that the cofinality character of R(x) is ω0.

Definition 2.9. (1) A,B ⊆ X are said to be completely F -separated if and only if

there exists an f ∈ C(X,F) such that f(x)= 0 on A and f(x)= 1 on B.

(2) X is said to be completely F -regular if and only if, for every closed subset A of X
and every x ∈X \A, the sets {x} and A are completely F -separated.

This is the clear analog of the Tychonoff property when F =R. We first provide some

equivalent descriptions of this property, in general.

Theorem 2.10. For any topological space X the following are equivalent:

(1) X is completely F -regular;

(2) Z(X,F) is the base for the closed subsets of X;

(3) X has the weak topology induced by C(X,F);
(4) B(X,F) separates points and closed subsets of X;

(5) C∗(X,F) separates points and closed subsets of X.

Proof. (1)⇒(2). Immediate from Definition 2.9(2).

(2)⇒(3). Let V ⊆ X be an open subset of X and x ∈ V . Then G = X \V is closed and

x �∈ G, so that from the hypothesis there exists an f ∈ C(X,F) such that G ⊆ �X,F (f )
and f(x) ≠ 0. Hence x ∈ cozX,F (f ) ⊆ V and thus the class of cozero sets in X with

respect to F yields a base for the topology for X. But the equations

f←
(
(−∞,a))= cozX,F

(
(f ∧a)−a

)
,

f←
(
(a,∞))= (−f)←((−∞,−a)),

f←
(
(a,b)

)= f←((−∞,b))∩f←((a,∞))
(2.4)

show that the family of cozero sets in X with respect to F is precisely the family of all

finite intersections of inverse images of open intervals under maps in C(X,F). Hence

the topology of X is the weak topology induced by C(X,F).
(3)⇒(4). The hypothesis equivalently states that C(X,F) separates points and closed

subsets of X and Lemma 2.4 implies that C(X,F) separates points and closed subsets

of X if and only if B(X,F) separates points and closed subsets of X.

(4)⇒(1). This is just a translation of Definition 2.9(2).

If (5) holds, then surely (4) holds. If F = R, from Theorem 2.5, (4) surely implies (5);

the nontrivial part of the proof of (4) implying (5) when F ≠R is deferred until we have

proved Theorem 2.11.
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Surprisingly, if F ≠R, there are simpler ways to recognize the property of complete

F -regularity, and we will provide a couple of them in Theorems 2.11 and 2.14.

Theorem 2.11. For F ≠R, a topological space X is completely F -regular if and only

if it is zero dimensional.

Proof. If X is completely F -regular, then from Theorem 2.10(3) X has the weak

topology induced by C(X,F), and from Theorem 2.2(2) it follows that X has a base for

its topology of clopen sets, and hence is zero dimensional. Conversely, if X is zero

dimensional, then for any closed subset A ⊆ X and any point x ∈ X \A there exists a

clopen set W such that x �∈W ⊇A. However, since W is clopen, the characteristic map

X
χW�������������������������������������������→ {0,1} ⊆ F is continuous and is therefore a member of C(X,F) separating A and

x. Hence X is completely F -regular.

Note that the “if” part of the proof of Theorem 2.11 uses the fact that the space is

zero dimensional to construct the separating function χW from C∗(X,F). This produces

the deferred proof.

Proof ((4)⇒(5) in Theorem 2.10 when F ≠ R). Since (4) holds, it follows from the

proved equivalence in Theorem 2.10 that X is completely F -regular; also, since F ≠R, it

follows from Theorem 2.11 that X is zero dimensional, and the proof of Theorem 2.11

shows that C∗(X,F) separates points and closed subsets of X.

Corollary 2.12. F is completely F -regular.

Proof. If F = R, the proposition is known to be true; if F ≠ R, then from Theorem

2.2(2) it follows that F is zero dimensional, and then using Theorem 2.11 the statement

is proved.

Corollary 2.13. The property of complete F -regularity is productive and hereditary.

Proof. For F =R, this is a well-known result; for F ≠R, this is a well-known property

of zero-dimensional spaces.

Theorem 2.14. A topological space X is completely F -regular if and only if it is home-

omorphic to a subspace of a product of F .

Proof. The “if” part of the proposition follows directly from Corollary 2.13. Con-

versely, let X be completely F -regular and P = FC(X,F) equipped with the product topol-

ogy, and let X
p
��������→ P be the evaluation map, that is, p(x)= {f(x)}f∈C(X,F), for any x ∈X.

Since X is completely F -regular, it follows that p is one-to-one; also being a map into

a product space with continuous projections, p is continuous. Let x ∈ U ⊆ X where

U is an open subset of X. Then from the complete F -regularity of X there exists a

continuous map X
g
�������→ [0,1]⊆ F such that g(x) = 1 and X \U ⊆ �X,F (g) if and only if

x ∈ g←((1/2,2))⊆U . Hence, p(x)∈ p(X)∩πg←((1/2,2))⊆ p(U), where P
πg
�������������������������������������→ F is the

gth projection map. This shows that p(U) is open in p(X). Hence, p is a topological

embedding of X to a product of F , so that X is homeomorphic to a subspace of a

product of F .
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At this point we can recollect that, given a topological space E, a topological space X
is said to be E-completely-regular if and only if X is homeomorphic to a subspace of a

product of the space E (see [13] and cf. [36]). Thus the summary of Theorems 2.14 and

2.11 is that for a topological space X, the following three conditions are equivalent:

(1) X is zero dimensional,

(2) X is completely F -regular for any ordered field F ≠R,

(3) X is F -completely-regular, for any ordered field F ≠R.

We will now show that for the purposes of our study of a topological space in terms

of the function ring C(X,F), it will be enough to restrict ourselves to the class of com-

pletely F -regular topological spaces only.

Theorem 2.15. For any topological space X, there exists a completely F -regular topo-

logical space Y such that C(X,F) is isomorphic to C(Y ,F) as lattice-ordered commutative

rings with unity.

Furthermore, the restriction of this isomorphism to the subring B(X,F) or C∗(X,F)
define isomorphisms onto the corresponding subrings B(Y ,F) and C∗(Y ,F), respectively,

of C(Y ,F).

Proof. For x,y ∈ X, let x ≡ y if and only if, for all f ∈ C(X,F), f(x) = f(y).
Clearly this is an equivalence relation on X and partitions X. Let, for any x ∈ X, [x]
denote the ≡-equivalence class of X, and let Y be the set of all ≡-equivalence classes of

X. Let X ν
������→ Y be the quotient map defined by ν(x)= [x].

For any f ∈ C(X,F), x,x′ ∈X, if [x]= [x′], then f(x)= f(x′). Thus for f ∈ C(X,F)

one has a function Y
f̂
��������→ F defined by f̂ ([x])= f(x). Hence f = f̂◦ν .

Taking C′ = {f̂ : f ∈ C(X,F)}, we endow Y with the weak topology induced by C′.
ThenX ν

������→ Y is a continuous map, and if Y
g
�������→ F is any continuous map, then the equation

(̂g◦ν) = g implies that C′ = C(Y ,F). Hence, from Theorem 2.10(3) it follows that Y is

completely F -regular.

Finally, the map C(X,F) σ�������������→ C(Y ,F) defined by σ(f)= f̂ is the required isomorphism

of lattice-ordered commutative rings with unity.

From the definition of f̂ it is clear that f̂ is bounded or has a precompact range if and

only if f is bounded or has a precompact range, respectively. Hence the isomorphism

σ restricts to an isomorphism of B(X,F) and B(Y ,F) and an isomorphism of C∗(X,F)
and C∗(Y ,F), completing the proof.

Remark 2.16. In the case F = R, the last part of the statement was an obvious

consequence of the fact that the positive cone ofR consists precisely of perfect squares,

see [15, Theorems 1.6, 1.7, Corollary 1.8, Theorem 1.9, pages 12–14]. However, this is

not true in any arbitrary ordered field:

(1) for the field Q of the rationals, the positive cone contains many elements that

are not perfect squares, or

(2) in Example 2.8, x > 0 but is not a perfect square.

However, the proof of Theorem 2.15 does not require this specific property of the

reals, as exhibited in the argument.

Let k denote any of the three rings C(X,F), B(X,F), or C∗(X,F). An ideal I of k is said

to be fixed if and only if
⋂
f∈I �X,F (f ) ≠∅ and free otherwise. For the special case of
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k = C(X,F), we have a very special kind of an ideal which will be of much importance

in this paper.

Definition 2.17. An ideal I of C(X,F) is said to be a zF -ideal if and only if, for any

g ∈ C(X,F), �X,F (g)∈�X,F (I) implies that g ∈ I.
Remark 2.18. One can view �X,F as a function defined on the set C(X,F) and with

Z(X,F) as its range, taking f ∈ C(X,F) to its set of zeros, namely, �X,F (f ). Thus,

Definition 2.17 essentially says that an ideal I of C(X,F) is a zF -ideal if and only if

�X,F
←(�X,F (I))= I.

Since Z(X,F) is a lattice of subsets of X, one can define filters and ultrafilters, and

these are called zF -filters and zF -ultrafilters on X, respectively. We complete this section

with a list of properties for different kinds of ideals.

Theorem 2.19. (1) The class of zF -ideals is closed under arbitrary meets.

(2) Every zF -ideal is an intersection of prime ideals.

(3) For any ideal I of C(X,F), �X,F (I) is a zF -filter on X, and for any zF -filter � on

X, �X,F
←(�) is a zF -ideal of C(X,F). In particular, there is a one-to-one correspondence

between the zF -ideals of C(X,F) and the zF -filters on X.

(4) Every maximal ideal of C(X,F) is a zF -ideal of C(X,F).
(5) The correspondence stated in (3) restricts to a correspondence between the maximal

ideals of C(X,F) and the zF -ultrafilters on X.

(6) An ideal M of C(X,F) is maximal if and only if, for any f ∈ C(X,F), if �X,F (f )∩
�X,F (g)≠∅ for any g ∈M , then f ∈M .

(7) Let k∈ {C(X,F),B(X,F),C∗(X,F)}. Then the fixed maximal ideals of k are precisely

given by Mx = {f ∈ k : f(x)= 0}, x ∈X.

Furthermore, if the space X is completely F -regular, then the map x �Mx is one-to-

one.

(8) For f ,g ∈ C(X,F), if f belongs to every maximal ideal of C(X,F) to whichg belongs,

then �X,F (g)⊆�X,F (f ).
(9) An ideal I of C(X,F) is a zF -ideal if and only if, for any f ∈ C(X,F), if f belongs to

every maximal ideal of C(X,F) to which some member of I belongs, then f ∈ I.
(10) Let F and G be ordered fields, let C(X,F) σ�������������→ C(Y ,G) be an isomorphism of com-

mutative lattice-ordered rings with unity, and let I be a zF -ideal of C(X,F). Then σ(I) is

a zG-ideal of C(Y ,G).
(11) The following are equivalent for a zF -ideal I of C(X,F):

(a) I is a prime ideal;

(b) I contains a prime ideal;

(c) for all f ∈ C(X,F) and g ∈ C(X,F), fg = 0 implies f ∈ I or g ∈ I,
(d) for any f ∈ C(X,F), there exists a Z ∈�X,F (I) such that f does not change its

sign on Z .

(12) If X is a compact topological space, then C(X,F) cannot have any free ideals.

The converse is true under the additional hypothesis of complete F -regularity.

Proof. (1) Follows immediately from the definition.

(2) In any commutative ring R with unity, given an ideal I, the intersection of all prime

ideals that contain I is {a ∈ R : (∃n ∈ N)(an ∈ I)}; see [15, Theorem 0.18, page 7].
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Applying this fact to the case of C(X,F) and using the observation that for any f ∈
C(X,F) and n ∈ N, �X,F (f ) = �X,F (fn), one concludes that a zF -ideal in C(X,F) is an

intersection of prime ideals containing it.

(3) Since �X,F (f 2+g2) = �X,F (f )∩�X,F (g) and �X,F (fg) = �X,F (f )∪�X,F (g), it fol-

lows that the image of any ideal I under the map �X,F is a zF -filter. The converse that

given any zF -filter the inverse image is a zF -ideal follows from the observation made in

Remark 2.18. The same observation helps in concluding the one-to-one correspondence

between the zF -ideals and the zF -filters.

(4) Let M be a maximal ideal and f ∈ C(X,F). Then �X,F (f )∈ �X,F (M) if and only if

f ∈ �X,F
←(�X,F (M)). Thus �X,F

←(�X,F (M)) is a zF -ideal containing M , from (3). There-

fore, from the maximality of M , M =�X,F
←(�X,F (M)). Hence M is a zF -ideal.

(5) Immediate from (3) and (4).

(6) Let M be a maximal ideal and f ∈ C(X,F) such that for any g ∈ M , �X,F (f )∩
�X,F (g)≠∅. Then �X,F (M)∪{�X,F (f )} is a zF -filter-base on X. Hence from (5), �X,F (f )
∈�X,F (M). Therefore from (4), f ∈M .

Conversely, ifN is another ideal of C(X,F) containingM , then for any f ∈N, �X,F (f )∩
�X,F (g) ≠∅, for any g ∈M . Hence from the hypothesis, f ∈M implying N =M . This

proves the maximality of M .

(7) Choose and fix any x ∈ X and consider the function k
σx������������������������������������→ F defined by σx(f) =

f(x). Clearly this is an onto ring homomorphism with ker(σx) = {f ∈ k : f(x) = 0} =
Mx . Since F is a field, it follows that Mx is a maximal ideal of k, and indeed a fixed

maximal ideal of k.

If N is any fixed ideal of k, then there exists an x ∈ X such that x ∈ ⋂f∈N �X,F (f ),
and thus N ⊆Mx . Thus, if N is a fixed maximal ideal, then N =Mx , for some x ∈X.

If X is completely F -regular and x,y ∈ X are two distinct points of X, then there

exists an f ∈ k such that f(x)= 0≠ 1= f(y), and thus f ∈Mx \My , showingMx ≠My .

Thus, in the case when X is completely F -regular, the map x�Mx is one-to-one.

(8) If f ,g ∈ C(X,F) such that for any maximal ideal M of C(X,F), f ∈M whenever

g ∈ M , then for any x ∈ �X,F (g), one has g ∈ Mx , which is a maximal ideal from (7).

Hence, from our assumption, f ∈Mx if and only if f(x)= 0 and x ∈ �X,F (f ), proving

�X,F (g)⊆�X,F (f ).
(9) Let I be a zF -ideal and let f ∈ C(X,F) be such that for any maximal idealM , f ∈M

whenever there exists a g ∈ I such that g ∈M . Hence, �X,F (g)⊆�X,F (f ), from (8), and

hence �X,F (f )∈�X,F (I), from (3). Therefore f ∈ I.
Conversely, if f ∈ C(X,F) such that �X,F (f )∈�X,F (I), then there exists a g ∈ I such

that �X,F (f )= �X,F (g), and thus for any maximal ideal M of C(X,F), f ∈M whenever

g ∈M . Hence from the hypothesis, f ∈ I. Hence I is a zF -ideal.

(10) Follows from (9) and the fact that maximal ideals of a ring are algebraic invari-

ants.

(11) The implications (a)⇒(b)⇒(c) are immediate, and we only prove (c)⇒(d)⇒(a).

(c)⇒(d). For any f ∈ C(X,F), (f ∧0)(f ∨0)= 0, implying either f ∧0∈ I or f ∨0∈ I.
Hence (d) follows.

(d)⇒(a). Let f ,g ∈ C(X,F) such that fg ∈ I. Let h= |f |−|g|. By the hypothesis, there

exists a Z ∈�X,F (I) such that h does not change sign on Z . Let h be nonnegative on Z .



BANASCHEWSKI COMPACTIFICATION AND DEDEKIND COMPLETENESS 3809

Then Z∩�X,F (f )⊆�X,F (g) implies Z∩�X,F (fg) ⊆ �X,F (g) which implies �X,F (g)∈
�X,F (I), using (3). Hence g ∈ I.

(12) If I is a free ideal of C(X,F), then �X,F (I) is a family of closed subsets of X with

the finite intersection property and having an empty intersection. Hence X cannot be

compact.

Conversely, let X be completely F -regular and noncompact. Then, there exists a fam-

ily � of closed subsets of X with the finite intersection property and having an empty

intersection. By complete F -regularity, from Theorem 2.10(2) it follows that we might

as well consider � to be a family of zero sets in X with respect to F . Then � is a

zF -filter-base for a free zF -filter.

Note that it follows from Theorem 2.19(11) that any prime ideal P of C(X,F) can be

extended to a unique maximal ideal, so that each of the rings C(X,F)/P is a local ring.

3. Compactifications. Given a commutative ring K with unity, let the set of all its

maximal ideals be denoted by M, and let, for any a ∈ K, Ma = {M ∈ M : a ∈ M}. It

is easy to see that {Ma : a ∈ K} yields a base for the closed subsets of some unique

topology on M, often referred to as the Stone topology or as the hull-kernel topology. M
equipped with the hull-kernel topology is called the structure space of the commutative

ring K. The following facts are true for the structure space.

(1) For any x ⊆ M, clM(x) = {M ∈ M : M ⊇ ⋂x}(the name hull-kernel topology is

derived from this property).

(2) For any x⊆M, x is dense in M if and only if
⋂

x=⋂M.

(3) M is a compact T1 space.

(4) M is Hausdorff if and only if, for every pair of distinct maximal idealsM and N of

K, there exist points a,b ∈K such that a �∈M , b �∈N, and ab ∈⋂M. Thus, the structure

space of Z is not Hausdorff, while if X is completely F -regular, then the structure space

of C(X,F) is Hausdorff.

For a much more detailed account of structure spaces, see [15, Example 7A, page

108, Examples M and N, page 111].

We will denote by MX,F , Mb
X,F , and M∗

X,F the structure spaces of the rings C(X,F),

B(X,F), and C∗(X,F), respectively. Also, we will have the mapsX
pX,F
����������������������������������������������������������������→MX,F ,X

pb
X,F
����������������������������������������������������������������→Mb

X,F ,

and X
p∗X,F
����������������������������������������������������������������→M∗

X,F defined by similar rules, x �Mx . It is clear that if X is completely F -

regular, then each of these maps are embeddings of X into a compact T1 space.

Theorem 3.1. If X is a completely F -regular topological space, then MX,F is a Haus-

dorff compactification of X with X
pX,F
����������������������������������������������������������������→MX,F as the embedding.

Furthermore, if Y is any compact completely F -regular topological space and X
f
��������→ Y is

a continuous map, then there exists a unique map MX,F
fMX,F
�������������������������������������������������������������������������������������������������������������→ Y such that f = fMX,F ◦pX,F .

Proof. The first part follows easily from the properties of a structure space and

complete F -regularity of X.

For the latter, let for any maximal ideal M of C(X,F), M̂ = {g ∈ C(Y ,F) : g◦f ∈M}. It

is clear that M̂ is a prime ideal of C(Y ,F), and hence from Theorem 2.19(11) it follows

that it is contained within a unique maximal ideal; also, as Y is compact, it follows that
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each of the maximal ideals is fixed. Hence there exists a uniquey ∈ Y such that M̂ ⊆My .

Define fMX,F (M) = y . The continuity of fMX,F and the proof of the factorization of f
through pX,F follow from a routine verification.

Thus, MX,F enjoys a similar extension property as satisfied by the Stone-Čech com-

pactification βX of X. We will come back to this property after we have settled some

other small issues related to structure spaces.

Remark 3.2. (1) In the classical case when F = R, one immediately concludes that

MX,R is completely R-regular, that is, Tychonoff, because any compact Hausdorff space

is known to be normal and hence Tychonoff. In the case when F ≠R, M∗
X,F will be shown

to be completely F -regular; see Theorem 3.12. The complete F -regularity of MX,F or

Mb
X,F is yet to be decided and remains open.

(2) Since the rings C(X,F), B(X,F), and C∗(X,F) are examples of f -rings with

bounded inversion, it follows from [4, Proposition 3.3 and Remark 3.5] that the struc-

ture spaces of these rings are Hausdorff (the last author is thankful to Professor Ba-

naschewski for showing him during a conversation that the maximal l-ideals of an

f -ring with bounded inversion are precisely the maximal ideals, and/or drawing his

attention to one of his papers where this spectrum has been investigated).

From Theorem 2.15 it follows that there exists a compact completely F -regular topo-

logical space Y such that the rings C(MX,F ,F) and C(Y ,F) are isomorphic as lattice-

ordered commutative rings with unity. Indeed the following theorem tells us that there

cannot exist more than one such space, up to homeomorphism.

Theorem 3.3. If

(1) F , G are ordered fields,

(2) X is a compact completely F -regular topological space,

(3) Y is a compact completely G-regular topological space,

(4) the rings C(X,F) and C(Y ,F) are isomorphic as lattice-ordered commutative rings

with unity,

then the spaces X and Y are homeomorphic.

Proof. Since isomorphic rings have homeomorphic structure spaces, it follows that

the spaces MX,F and MY ,G are homeomorphic. Since X is compact and completely F -

regular, X and MX,F are homeomorphic; similarly, the spaces Y and MY ,G are homeo-

morphic. Hence X and Y are homeomorphic.

Remark 3.4. This is a two-fold generalization of the classical Banach-Stone theorem:

on the one hand, it generalizes from the special case of real-valued continuous functions

and, on the other hand, the assumed hypothesis does not depend on the range field.

One can also obtain the familiar Gelfand-Kolmogoroff theorem in much the same

way as in the classical case as illustrated in the following.

Theorem 3.5. For any completely F -regular topological space X, the maximal ideals

of C(X,F) are precisely Mp , where

Mp = {f ∈ C(X,F) : p ∈ clMX,F

(
pX,F

(
�X,F (f )

))}
, p ∈MX,F . (3.1)

Going back to the extension property, we give the following definition.
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Definition 3.6. A Hausdorff compactification αX is said to satisfy the F -extension

property if and only if, for any compact completely F -regular topological space Y and

any continuous map X
f
��������→ Y , there exists a map αX

fα
�������������������������������������→ Y such that f = fα◦α.

Since X is densely embedded in αX, it follows that the map fα is unique. Let K(X,F)
denote the class of all those Hausdorff compactifications of X which satisfy the F -

extension property. Also, the uniqueness of the extension forces an isomorphism C∗(X,
F) tα��������������������������→ C(αX,F) of lattice-ordered commutative rings with unity, defined by tα : f � fα.

This provides an alternative proof of the Hausdorffness of M∗
X,F .

The set K(X,F) contains MX,F and βX. Also, if γX ≥αX ∈ K(X,F), then there exists a

γX h
�������→αX such thatα= h◦γ. Further, if Y is a compact completely F -regular topological

space and X
f
��������→ Y is continuous, then, from the extension property enjoyed by αX,

one has f = fα◦α. Hence f = fα◦h◦γ, implying thereby that γX also enjoys a similar

extension property and fγ = fα◦h. Thus we have proved the following.

Theorem 3.7. K(X,F) is a complete upper sub-semilattice of the complete join semi-

lattice K(X) of all Hausdorff compactifications of X.

We will now provide methods to construct completely F -regular members of K(X),
where X is a completely F -regular topological space. For any B ⊆ C∗(X,F) which sepa-

rates points and closed subsets of X, let X eB��������������������������→∏f∈B clF (f (X)) be the evaluation map,

that is, eB(x) = {f(x)}f∈B , and let eBX be the closure of eB(X) in the space∏
f∈B clF (f (X)). Clearly then eBX is a completely F -regular member of K(X). Indeed, if

K0(X) is the collection of all completely F -regular members of K(X), then we have the

following.

Theorem 3.8. αX ∈ K0(X) if and only if there exists a B ⊆ C∗(X,F) separating points

and closed subsets of X such that αX and eBX are equivalent as compactifications.

Proof. It is clear from the definition that if B ⊆ C∗(X,F) such that B separates

points and closed subsets of X, then eBX is a member of K0(X). For the other part of

the proof we will require Lemma 3.9, which is an extension of a similar result in [10].

Lemma 3.9. Let X be a completely F -regular topological space, B1,B2 ⊆ C∗(X,F), both

separating points and closed subsets of X, and αX, γX ∈ K0(X); also let Cα = {f ∈
C(X,F) : (∃αX f̂

��������→ F)(f = f̂◦α)}. Then the following statements are true.

(1) B1 ⊆ B2 implies eB1X ≤ eB2X.

(2) B1 ⊆ CeB1
.

(3) αX ≤ γX implies Cα ⊆ Cγ .

(4) αX and eCαX are equivalent compactifications.

Proof. It is clear that Cα ⊆ C∗(X,F) and it separates points and closed subsets ofX.

The proofs of (1) and (3) are simple computations.

For (2), let eBX
πf �eBX����������������������������������������������������������������������������������������������������������������������������������→ clF (f (X)) be the restriction of the projection map to eBX. Then

for any f ∈ B it is clear that f =πf �eBX◦eB .
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For (4), it is enough to prove that eCαX ≤ αX. Since, for any f ∈ Cα, f̂◦α = f =
(πf �eCαX)◦eCα , where πf �eCαX is the restriction of the projection map to eCαX, it fol-

lows that there exists a unique map αX
f̃
��������→∏f∈Cα clF (f (X)) such that for each projec-

tion πf ,πf ◦f̃ = f̂ . Clearly then f̃ (αX)⊆ eCαX, so that the required inequality follows.

The proof of the theorem immediately follows from Lemma 3.9(4). The proof of

Lemma 3.9 suggests an intimate connection between the poset of the subrings of

C∗(X,F) that separate points and closed subsets of X and the poset of all completely

F -regular members of K(X), namely, K0(X); and the map αX � Cα turns out to be an

isomorphism. Hence, if F ≠R, K0(X) is precisely the class of all zero-dimensional Haus-

dorff compactifications of X, (K0(X) is a complete upper sub-semilattice of K(X), and

the greatest member of K0(X) is β0X, the Banaschewski compactification of X. It is de-

fined up to homeomorphism by an extension property similar to βX: every continuous

function on X to a compact zero-dimensional Hausdorff topological space has a unique

extension to β0X.) So that we must have the following.

Theorem 3.10. If F ≠ R, the compactifications eC∗(X,F)X and β0X are equivalent

compactifications.

It is clear that β0X also has the F -extension property, if F ≠ R, so that we also have

β0X ∈ K(X,F). But then, as any two members of K(X,F) have isomorphic function

rings, it follows from Theorem 3.3 that there cannot be more than one member in

K0(X)∩K(X,F). Furthermore, from the definition of the F -extension property it fol-

lows that for any αX ∈ K(X,F), β0 = βα0 ◦α, implying β0X ≤ αX. Hence we have the

following.

Theorem 3.11. Let F ≠R. Then the following are true.

(1) K0(X)∩K(X,F)= {β0X}.
(2) β0X is the smallest member of K(X,F).
(3) K(X,F) is a complete lattice in K(X).

Thus, if F ≠ R, the rings C∗(X,F) and C(β0X,F) are isomorphic as rings and hence

M∗
X,F is homeomorphic to β0X, yielding the following.

Theorem 3.12. For any F ≠ R, M∗
X,F is homeomorphic to β0X and hence M∗

X,F is

completely F -regular.

Remark 3.13. For F =R, M∗
X,F is simply βX, and thus completely F -regular, so that,

for any ordered field F , M∗
X,F is always completely F -regular.

4. Conclusion. We recall that a topological space X is said to be strongly zero di-

mensional if and only if X is a nonempty Tychonoff space and every open cover of X
by cozero sets in X with respect to R has a finite open refinement of mutually disjoint

sets (see [12, Chapter 6, page 360]). Clearly, the refinement is also a cover by cozero

sets in X with respect to F , for any ordered field F , as each of the sets in the refine-

ment is a clopen set. The definition entails that every strongly zero-dimensional space
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Table 4.1. List of properties of the pair (X,F).

List of Properties

P C(X,F)= B(X,F)

P C∗(X,F) and C(X,F) determine the same family of zero sets in X with respect to F

P MX,F is completely F -regular

P Mb
X,F is completely F -regular

P K(X,F) has exactly two points

P Given one αX ∈ K(X), αX ≡MX,F as compactifications

is zero dimensional, but the converse need not be true (see [12, Section 6.2.20, page

365]) and it is known that the Stone-Čech compactification of a Tychonoff space X is

zero dimensional if and only if X is strongly zero dimensional (see [12, Theorem 6.2.12,

page 362]).

Thus we have the following classification of a Tychonoff topological space X.

(1) X is not zero dimensional.

(2) X is strongly zero dimensional.

(3) X is zero dimensional and not strongly zero dimensional, and for any ordered

field F other than R, exactly one of the following conditions is satisfied:

(a) β0X =MX,F < βX;

(b) β0X <MX,F < βX;

(c) β0X <MX,F = βX.

Thus it follows that K(X,F) is exactly a singleton if and only if either F = R or X is

strongly zero dimensional, and in all other cases it has at least two elements. No cardinal

estimates for K(X,F) could be ascertained, and none of the known examples of zero-

dimensional but not strongly zero-dimensional spaces (see [9, 21, 22, 23, 25, 26]) could

be classified in the exhibited three classes.

Before we complete this paper, we propose some questions that seem to be new. The

questions concern certain properties of the pair (X,F), where X is a topological space,

preferably a completely F -regular topological space, and F is an ordered field. For in-

stance, one such property is “K(X,F) is a singleton”, and it was shown that this property

holds if and only if either F = R or X is strongly zero dimensional. The properties are

listed in Table 4.1, and the questions for a property P are as follows.

Question 4.1. Given a topological space X, is it possible to provide a construction

of an ordered field F such that P is satisfied?

Question 4.2. Given an ordered field F , is it possible to provide a construction of

a topological space X such that P is fulfilled?

Question 4.3. Is it possible to characterize all the pairs (X,F) such that P holds?
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Apart from these, another question remains unanswered.

Question 4.4. To which of the classes of zero-dimensional but not strongly zero-

dimensional spaces discussed above do the spaces discussed in [9, 21, 22, 25] belong?
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