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We give an alternative proof of a theorem of Gustafson and Seddighin (1993) following the
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1. Introduction. Let H be a complex Hilbert space and let B(H) denote the Banach

algebra of all bounded linear operators on H. The concept of the angle of an operator

T was introduced by Gustafson [4, 5, 6] while studying perturbation theory of semi-

group generators. From this has developed what we call operator trigonometry, whose

theory and applications are still evolving. The properties are intimately associated with

the numerical range W(T) of an operator T and the numerical range W(TT∗). Some

relevant important results can be found in [3].

The cosine of an operator T in B(H) was originally defined as follows:

cosT = inf
Tf �=0

Re(Tf ,f )
‖Tf‖‖f‖ (1.1)

for arbitrary operators in a Banach semi-innerproduct space. Here we will restrict at-

tention primarily to the case of T ∈ B(H). Clearly, CosT is a real cosine defined for the

real part of the numerical range of T . The total cosine

|cos|T = inf
Tf �=0

∣∣(Tf ,f )∣∣
‖Tf‖‖f‖ (1.2)

is also defined.

The expression (1.1) also denoted as the angle φ(T) measures the maximum (real)

turning effect of T .

The quantity CosT has another interpretation as the first antieigenvalue of T , where

µ1(T)= inf
Tf �=0

Re(Tf ,f )
‖Tf‖‖f‖ . (1.3)

The terminology “antieigenvalue” and “antieigenvector” was introduced by Gustafson

[7] in the year 1972.

Krein [10] and Gustafson [7] have studied µ1(T) and indicated how the knowledge

of µ1(T) can be useful in the study of certain integral operators, initialvalue problems
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and some other areas. The upper bound for µ1(T) for T , a finite-dimensional, strongly

accretive (i.e., ReT > 0) normal operator was obtained by Davis [2] in the year 1980.

The exact value of µ1(T) can be found in [2, 7]. Mirman [11] gave a method of es-

timation of µn(T), the higher antieigenvalues of T , which is defined by Gustafson as

follows:

µn(T)=min
{

Re(Tf ,f )
‖Tf‖‖f‖ : f �= 0, f ⊥ f 1,f 2, . . . ,f n−1

}
, (1.4)

where fk is the kth antieigenvector. In the year 1989 Gustafson and Seddighin [8]

proved the following theorem.

Theorem 1.1. Let T be a normal accretive operator on a finite-dimensional Hilbert

space H with eigenvalues

λk = βk+iδk, k= 1,2,3, . . . ,n. (1.5)

Let

E =
{
βi∣∣λi∣∣ : 1< i < n

}
,

F =

2

√(
βj−βi

)(
βi
∣∣λj∣∣2+2βj

∣∣λi∣∣2)
∣∣λj∣∣2−∣∣λi∣∣2 : 0≤ βj

∣∣λj∣∣2−2βi
∣∣λj∣∣2+2βj

∣∣λi∣∣2

(∣∣λi∣∣2−∣∣λj∣∣2)(βi−βj) ≤ 1


.
(1.6)

Then µ1(T) is exactly equal to the smallest number in E∪F . Furthermore, if T is diagonal

and

µ1(T)= 2

√(
βj−βi

)(
βi
∣∣λj∣∣2+2βj

∣∣λi∣∣2)
∣∣λj∣∣2−|λi|2

, (1.7)

then, µ1(T)= (Tz,z)/‖Tz‖, for some z with

∣∣zi∣∣2 = βj
∣∣λj∣∣2−2βi

∣∣λj∣∣2+βj
∣∣λi∣∣2

(∣∣λi∣∣2−∣∣λj∣∣2)(βi−βj) ,

∣∣zj∣∣2 = βi
∣∣λi∣∣2−2βj

∣∣λi∣∣2+βi
∣∣λj∣∣2

(∣∣λi∣∣2−∣∣λj∣∣2)(βi−βj) ,

(1.8)

and zk = 0 for k �= i, k �= j.
Das et al. [1] also proved the above theorem in a different form which seems to be

much simpler. They used the concept of stationary vectors and the result holds even

if the space is not finite dimensional for operators with complete orthonormal set of

eigenvectors.

Gustafson and Seddighin [9] also obtained the bounds for total antieigenvalues of a

normal operator on a finite-dimensional Hilbert space.

We have proved the result following the idea used by Das et al. [1]. The result holds

even if the space is infinite dimensional for operators with complete orthonormal set

of eigenvectors.
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2. Total antieigenvectors. Let A be a strictly accretive operator on H and let C =
A∗A, and let |φA(f)| = |(Af ,f )|/‖Af‖‖f‖ represent the modulus of the cosine of

largest angle through which an arbitrary nonzero vector f can be rotated by the action

of A. Now |φA(f)| is said to have a stationary value at a vector f �= 0 if the function

wg(t) of real variable t defined by

wg(t)=
∣∣φA(f +tg)∣∣2 =

∣∣(A(f +tg),f +tg)∣∣2(
C(f +tg),f +tg)(f +tg,f +tg) (2.1)

has a stationary value at t = 0 for an arbitrary but fixed vector g ∈H. In other words we

must havew′
g(0)= 0 for all g ∈H. For ‖f‖ = 1, set AX = (A+A∗)/2, AY = (A−A∗)/2i,

C =A∗A, b = (Af ,f ), bX = Re(Af ,f ), bY = Im(Af ,f ), and c2 = (Cf ,f ).
With these notations, we see that |φA(f)| is stationary at f if and only if

2c2 Re
(
bXAXf +bYAYf ,g

)−|b|2 Re(Cf ,g)−|b|2c2 Re(f ,g)= 0. (2.2)

Since g ∈H is arbitrary, we have the following theorem.

Theorem 2.1. Let |φA(f)|, b, c2, C , bX , bY , AX , and AY be defined as above. A unit

vector f is a stationary vector of |φA(f)| if and only if

2c2(bXAX+bYAY )f −|b|2Cf −|b|2c2f = 0. (2.3)

The above equation obviously characterizes the vectors for which |φA(f)| is stationary,

in particular, a minimum or a maximum.

We next prove the following theorem.

Theorem 2.2. If for a stationary vector f , Af =A∗f , then f is a linear combination

of two eigenvectors of A∗. If further, A is normal, then f is a linear combination of two

eigenvectors of A.

Proof. Suppose f is a stationary vector and Af = A∗f . Then, we have by the nec-

essary and sufficient condition for a vector to be stationary

2c2bA∗f −|b|2A∗Af −|b|2c2f = 0, (2.4)

that is, (2.4) becomes

2c2 b
|b|2A

∗f −A∗Af −c2f = 0

�⇒A∗Af − c
2

b
A∗f = c

2

b
A∗f −c2f

�⇒A∗
{
Af − c

2

b
f ± c

b

√
c2−b2f

}
=
{
c2

b
± c
b

√
c2−b2

}{
Af − c

2

b
f ± c

b

√
c2−b2f

}
.

(2.5)
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Let

g1 =Af − c
2

b
f + c

b

√
c2−b2f ,

β1 = c
2

b
+ c
b

√
c2−b2,

g2 =Af − c
2

b
f − c

b

√
c2−b2f ,

β2 = c
2

b
− c
b

√
c2−b2.

(2.6)

Then A∗g1 = β1g1 and A∗g2 = β2g2. Also, 2(c/b)
√
c2−b2f = g1−g2. Thus f is a linear

combination of the eigenvectors g1 and g2 of A∗ with corresponding eigenvalues β1

and β2.

If further, A is normal, then proceeding as above, we get

A
{
Af − c

2

b
f ± c

b

√
c2−b2f

}
=
{
c2

b
± c
b

√
c2−b2

}{
Af − c

2

b
f ± c

b

√
c2−b2f

}
(2.7)

as before; A∗g1 = β1g1, A∗g2 = β2g2, and 2(c/b)
√
c2−b2f = g1−g2.

This completes the proof.

Theorem 2.3. A unit vector f is a total antieigenvector of a selfadjoint operator A
if and only if there exist two eigenvectors whose appropriate linear combination (in the

sense given below) yields f .

Proof. If f is a stationary vector, in particular, a total antieigenvector, then it sat-

isfies (2.3).

As A is selfadjoint, (2.3) reduces to

2‖Af‖2(Af ,f )Af −∣∣(Af ,f )∣∣2A2f −∣∣(Af ,f )∣∣2‖Af‖2f = 0

�⇒ 2‖Af‖2Af −∣∣(Af ,f )∣∣A2f −∣∣(Af ,f )∣∣‖Af‖2f = 0

�⇒A2f − ‖Af‖∣∣φA(f)∣∣Af =
‖Af‖∣∣φA(f)∣∣Af −‖Af‖2f

�⇒A
{
Af− ‖Af‖∣∣φA(f)∣∣f ±

‖h‖∣∣φA(f)∣∣f
}
= ‖Af‖±‖h‖∣∣φA(f)∣∣

{
Af − ‖Af‖∣∣φA(f)∣∣f ±

‖h‖∣∣φA(f)∣∣f
}
,

(2.8)

where h=Af −(Af ,f )f , and ‖h‖2 = ‖Af‖2−(Af ,f )2.

Let

µ1 = ‖Af‖+‖h‖∣∣φA(f)∣∣ , µ2 = ‖Af‖−‖h‖∣∣φA(f)∣∣ ,

g1 =Af −µ2f , g2 =Af −µ1f .
(2.9)

Then, Ag1 = µ1g1, Ag2 = µ2g2, and f = (1/(µ1−µ2))(g1−g2), so f is a linear combi-

nation of two eigenvectors.
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Conversely, let f = αiei +αjej with |αi|2 = λj/(λi+λj) and |αj|2 = λi/(λi+λj),
where ei, ej are any two eigenvectors of A corresponding to the eigenvalues λj , λj .

So (Af ,f )= λi|αi|2+λj|αj|2 = 2λiλj/(λi+λj) and c2 = λ2
i |αi|2+λ2

j |αj|2. With these

values, we can see that (2.8) is satisfied by f . This completes the proof.

Before we discuss the structure of the stationary vectors in the normal-operator case,

we give a few examples to show how the situation arises in this case. In the examples,

ek’s are eigenvectors of A corresponding to the eigenvalues λk’s, the values of which

are clear from the context.

Example 2.4. LetAf = (1+i)(f ,e1)e1+(1+2i)(f ,e2)e2, where i=√−1 and ‖f‖ = 1.

So c2 = 2+3k and |b|2 = 2+2k+k2, where k= |(f ,e2)|2.

Hence, |b|2/c2 = (2+2k+k2)/(2+3k).
For a minimum or a maximum, we must have k = (−2+√10)/3 or (−2−√10)/3.

The case (−2−√10)/3 must be ruled out as k < 0. For k = (−2+√10)/3, |b|2 = (20+
2
√

10)/9, and c2 =√10. Hence, |φA(f)| = (20+2
√

10)/9
√

10. Here, both of (f ,e1) and

(f ,e2) are not zero. Thus, an antieigenvector may be a linear combination of two eigen-

vectors.

Example 2.5. This is the most important example in this section. It shows that a

linear combination of more than two eigenvectors may exist for the attainment of the

minimum of |φA(f)|. We consider the normal operator A such that

Af = (1+2i)
(
f ,e1

)
e1+(1−i)

(
f ,e2

)
e2+(1−i)

(
f ,e3

)
e3 (2.10)

with ‖f‖ = 1, where i=√−1. Clearly,

(Af ,f )= ∣∣(f ,e1
)∣∣2+∣∣(f ,e2

)∣∣2+∣∣(f ,e3
)∣∣2

+i2∣∣(f ,e1
)∣∣2−∣∣(f ,e2

)∣∣2−∣∣(f ,e3
)∣∣2

= 1+i(2−3k),

(2.11)

where k= |(f ,e2)|2+|(f ,e3)|2, and

c2 = 5
∣∣(f ,e1

)∣∣2+2
∣∣(f ,e2

)∣∣2+2
∣∣(f ,e3

)∣∣2 = (5−3k). (2.12)

Hence,

|b|2
c2

= 5−12k+9k2

5−3k
. (2.13)

For a minimum or a maximum, we must have k= (5+√10)/3 or (5−√10)/3.

The case k= (5+√10)/3 must be ruled out as in that case k > 1.



3882 SK. M. HOSSEIN ET AL.

For k = (5−√10)/3, we have |φA(f)|2 = (20−6
√

10)/
√

10. Let |(f ,e1)|2 = (−2+√
10)/3, |(f ,e2)|2 = 1/3, and |(f ,e3)|2 = (4−√10)/3, so that the unit vector f =√
(−2+√10)/3e1+

√
1/3e2+

√
(4−√10)/3e3 will be the first antieigenvector of A. How-

ever, it is possible to have a combination of only two eigenvectors corresponding to

two eigenvalues for which the minimum, in question, is attained. Set |(f ,e1)|2 =
√

2/
(
√

2+√5), |(f ,e2)|2 =
√

5/(
√

2+√5), and |(f ,e3)|2 = 0. Clearly, f =
√√

2/(
√

2+√5)e1+√√
5/(

√
2+√5)e2 will be the required vector.

We now prove the main theorem.

Theorem 2.6. Let A be a normal operator on an infinite-dimensional Hilbert spaceH
with a complete orthonormal set of eigenvectors ek and the corresponding eigenvalues

λk = βk+iδk such that for any unit vector f ∈H, Af =∑λk(f ,ek)ek. If |φA(f)| is sta-

tionary at f and f is not an eigenvector of A, then either f is a linear combination of two

eigenvectors, or there exists a suitable linear combination g of two eigenvectors corre-

sponding to two distinct eigenvalues such that |φA(f)| = |φA(g)| and |φA| is stationary

at g. Further, the relation

∣∣φA(f)∣∣=
{(
βk
∣∣λj∣∣+βj∣∣λk∣∣)2+(δk∣∣λj∣∣+δj∣∣λk∣∣)2

(|λk|+∣∣λj∣∣)2∣∣λk∣∣∣∣λj∣∣
}

(2.14)

holds if λk = βk+iδk and λj = βj+iδj are the distinct eigenvalues referred to as above.

Proof. If |φA(f)| is stationary at f , then we have (2.3), where AX = (A+A∗)/2,

AY = (A−A∗)/2i, C = A∗A, b = (Af ,f ), bX = Re(Af ,f ), bY = Im(Af ,f ), and c2 =
(Cf ,f ). Substituting f =∑λk(f ,ek)ek in (2.3), we get

2c2bX Reλk+2c2bY Imλk−|b|2
∣∣λk∣∣2−|b|2c2 = 0 (2.15)

if (f ,ek) �= 0.

Now it is easy to show that (2.15) is satisfied by Af = λf , bX = Reλ, bY = Imλ, b = λ,

and c2 = |λ|2.

If f is not an eigenvector, then f may be a linear combination of two eigenvectors

corresponding to two eigenvalues λk which satisfies (2.3). If, however, f is a linear

combination of more than two eigenvectors, then we show that there always exists a

linear combination g of two eigenvectors corresponding to two eigenvalues such that

|φA(f)| = |φA(g)| and |φA| is stationary at g.

Let Aek = λkek and Aej = λjej , where λk, λj satisfy (2.15). We find αk and αj such

that g =αkek+αjej , |αk|2+|αj|2 = 1, |(Af ,f )| = |(Ag,g)|, and ‖Af‖ = ‖Ag‖. We now

show that |φA| is stationary at g.

Choose |αi|2 = |λj|/(|λi|+|λj|) and |αj|2 = |λi|/(|λi|+|λj|) such that |(Af ,f )| =
|(Ag,g)| and ‖Af‖ = ‖Ag‖. We first show that g is a stationary vector.
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We have

bX =
(
βk
∣∣λj∣∣+βj∣∣λk∣∣)(∣∣λk∣∣+∣∣λj∣∣) ,

bY =
(
δk
∣∣λj∣∣+δj∣∣λk∣∣)(∣∣λk∣∣+∣∣λj∣∣) ,

c2 = ∣∣λk∣∣∣∣λj∣∣,
(2.16)

and so

2c2bX Reλk+2c2bY Imλk−|b|2
∣∣λk∣∣2−|b|2c2

= 2c2βk

(
βk
∣∣λj∣∣+βj∣∣λk∣∣)(∣∣λk∣∣+∣∣λj∣∣)

+2c2δk

(
δk
∣∣λj∣∣+δj∣∣λk∣∣)(∣∣λk∣∣+∣∣λj∣∣) −|b|2∣∣λk∣∣2−|b|2c2

= 2
∣∣λk∣∣2∣∣λj∣∣(∣∣λk∣∣+∣∣λj∣∣)

(∣∣λk∣∣∣∣λj∣∣+βkβj+δkδj)
−|b|2(∣∣λk∣∣2+∣∣λk∣∣∣∣λj∣∣)= 0,

(2.17)

where

|b|2 = b2
X+b2

Y =
2
∣∣λk∣∣2∣∣λj∣∣(∣∣λk∣∣+∣∣λj∣∣)2

(∣∣λk∣∣∣∣λj∣∣+βkβj+δkδj), (2.18)

and so

|b|2(∣∣λk∣∣2+∣∣λk∣∣∣∣λj∣∣)= 2
∣∣λk∣∣2∣∣λj∣∣(∣∣λk∣∣+∣∣λj∣∣)

(∣∣λk∣∣∣∣λj∣∣+βkβj+δkδj). (2.19)

So, g is a stationary vector as it satisfies the necessary and sufficient condition.

Also we have,

∣∣φA(f)∣∣2 = |b|
2

c2
=
{(
βk
∣∣λj∣∣+βj∣∣λk∣∣)2+(δk∣∣λj∣∣+δj∣∣λk∣∣)2

(∣∣λk∣∣+∣∣λj∣∣)2∣∣λk∣∣∣∣λj∣∣
}
. (2.20)

Hence, the proof of the theorem is complete.
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