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1. Introduction. To approximate Lebesgue integrable functions on the interval I ≡
[0,1], the modified Bernstein operators are defined by

Mn,α,β(f ,x)= (n−α+1)
n−α+β∑
k=β

pn,k(x)
∫ 1

0
pn−α,k−β(t)f (t)dt

+
∑
k∈In

pn,k(x)f
(
k
n

)
,

(1.1)

where

pn,k(x)=
(
n
k

)
xk(1−x)n−k (1.2)

for n ≥ α, where α, β are integers satisfying α ≥ β ≥ 0 and In ⊆ {0,1,2, . . . ,n} is a

certain index set. For α = β = 0, In = {0}, this definition reduces to the Bernstein-

Durrmeyer operators, which were first studied by Derriennic [3]. Also if α = β = 1,

In = {0}, we obtain the recently introduced sequence of Gupta and Maheshwari [4],

that is, Mn,1,1(f ,x)≡ Pn(f ,x) which is defined as

Pn(f ,x)=
∫ 1

0
Wn(x,t)f (t)dt

=n
n∑
k=1

pn,k(x)
∫ 1

0
pn−1,k−1(t)f (t)dt+(1−x)nf(0), x ∈ I ≡ [0,1],

(1.3)

where Wn(x,t) = n
∑n
k=1pn,k(x)pn−1,k−1(t)+ (1− x)nδ(t), δ(t) being a Dirac Delta

function.

In [4] Gupta and Maheshwari have estimated the rate of convergence for functions of

bounded variation for the operators Pn, n ∈ N. The approximation properties for dif-

ferent values of α, βwere studied by several researchers. Recently Abel [1] obtained the

complete asymptotic expansion for the Bernstein-Durrmeyer operators (α= β= 0, In =
{0}) in a concise form in simultaneous approximation. The operators Mn,α,β(f ,x) are
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linear positive operators but their approximation properties are different with different

values ofα and β. In the present paper, we study the pointwise convergence and asymp-

totic formula in simultaneous approximation for the operators Mn,1,1(f ,x)≡ Pn(f ,x).
In the end we give a remark that similar results can be obtained for different values of

α and β, for example, we mention the asymptotic formula for another particular case,

namely, Mn,0,1(f ,x)≡ Bn(f ,x). Our main theorems can be stated as follows.

Theorem 1.1. Let f ∈ C[0,1] and let f (r) exist at a point x ∈ (0,1), then

P(r)n (f ,x)= f (r)(t)+o(1) as n �→∞. (1.4)

Theorem 1.2. Let f ∈ C[0,1]. If f (r+2) exists at a point x ∈ (0,1), then

lim
n→∞n

[
P(r)n (f ,x)−f (r)(x)]= x(1−x)f (r+2)(x)

+[r −x(1+2r)
]
f (r+1)(x)−r 2f (r)(x).

(1.5)

2. Auxiliary results. In this section, we mention some results which are necessary

to prove the main theorem.

Lemma 2.1. For m ∈ N0 (the set of nonnegative integers), if the following definition

holds:

Pn
(
(t−x)m,x)≡ µn,m(x)=n

n∑
k=1

pn,k(x)
∫ 1

0
pn−1,k−1(t)(t−x)mdt

+(−x)m(1−x)n,
(2.1)

then

µn,0(x)= 1, µn,1(x)= −x
(n+1)

, µn,2(x)= x(1−x)(2n+1)−(1−3x)x
(n+1)(n+2)

(2.2)

and for m≥ 1 there holds the recurrence relation

[n+m+1]µn,m+1(x)= x(1−x)
[
µ(1)n,m(x)+2mµn,m−1(x)

]
+[m(1−2x)−x]µn,m(x). (2.3)

Proof. The values of µn,0(x) and µn,1(x) can easily follow from the definition. We

prove the recurrence relation as follows:

x(1−x)µ(1)n,m(x)=n
n∑
k=1

x(1−x)p(1)n,k(x)
∫ 1

0
pn−1,k−1(t)(t−x)mdt

−mn
n∑
k=1

x(1−x)pn,k(x)
∫ 1

0
pn−1,k−1(t)(t−x)m−1dt

−{n(−x)m(1−x)n−1+m(−x)m−1(1−x)n}x(1−x).

(2.4)
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Now using the identity x(1−x)p(1)n,k(x)= (k−nx)pn,k(x), we obtain

x(1−x)[µ(1)n,m(x)+mµn,m−1(x)
]

=n
n∑
k=1

(k−nx)pn,k(x)
∫ 1

0
pn−1,k−1(t)(t−x)mdt+n(−x)m+1(1−x)n

=n
n∑
k=1

pn,k(x)
∫ 1

0

[
k−1−(n−1)t+(n−1)(t−x)

+(1−x)]pn−1,k−1(t)(t−x)mdt
+n(−x)m+1(1−x)n

=n
n∑
k=1

pn,k(x)
∫ 1

0
t(1−t)p(1)n−1,k−1(t)(t−x)mdt

+(n−1)µn,m+1(x)+(1−x)µn,m(x)−(−x)m(1−x)n

=n
n∑
k=1

pn,k(x)
∫ 1

0

[
(1−2x)(t−x)+(t−x)2+x(1−x)]

×p(1)n−1,k−1(t)(t−x)mdt

+(n−1)µn,m+1(x)+(1−x)µn,m(x)−(−x)m(1−x)n

=−(m+1)(1−2x)
[
µn,m(x)−(−x)m(1−x)n

]

+(m+2)
[
µn,m+1(x)−(−x)m+1(1−x)n]

−x(1−x)m[µn,m−1(x)−(−x)m−1(1−x)n]+(n−1)µn,m+1(x)

+(1−x)µn,m(x)−(−x)m(1−x)n

= [(1−x)−(m+1)(1−2x)
]
µn,m(x)+(n+m+1)µn,m+1(x)

−mx(1−x)µn,m−1(x).

(2.5)

This completes the proof of the recurrence relation.

The value of µn,2(x) can be easily obtained from the above recurrence relation.

Remark 1. For each fixed x ∈ [0,1], it follows from the above lemma that

Pn
(
ψsx,x

)=O(n−[(s+1)/2]), n �→∞, (2.6)

where ψx = t−x.
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Lemma 2.2. For m∈N∪{0}, if the mth-order moment is defined as

Un,m(x)=
n∑
k=0

pn,k(x)
(
v
n
−x

)m
, (2.7)

then Un,0(x)= 1, Un,1(x)= 0, and

nUn,m+1(x)= x(1−x)
[
U(1)n,m(x)+mUn,m−1(x)

]
. (2.8)

Consequently,

Un,m(x)=O
(
n−[(m+1)/2]). (2.9)

Lemma 2.3 [5]. There exist the polynomials Qi,j,r (x) independent of n and v such

that

{
x(1−x)}rDr [pn,k(x)]= ∑

2i+j≤r
i,j≥0

ni(k−nx)jQi,j,r (x)pn,k(x), D ≡ d
dx
. (2.10)

3. Proofs of theorems

Proof of Theorem 1.1. By Taylor’s expansion of f , we have

f(t)=
r∑
i=0

f (i)(x)
i!

(t−x)i+ε(t,x)(t−x)r , (3.1)

where ε(t,x)→ 0 as t→∞.

Hence

P(r)n (f ,x)=
∫ 1

0
W(r)
n (t,x)f(t)dt

=
r∑
i=0

f (i)(x)
i!

∫ 1

0
W(r)
n (t,x)(t−x)idt+

∫ 1

0
W(r)
n (t,x)ε(t,x)(t−x)rdt

= R1+R2.

(3.2)

First to estimate R1, using binomial expansion of (t−x)m and Lemma 2.1, we have

R1 =
r∑
i=0

f (i)(x)
i!

i∑
v=0

(
i
v

)
(−x)i−v ∂

r

∂xr

∫ 1

0
Wn(t,x)tvdt

= f
(r)(x)
r !

∂r

∂xr

∫ 1

0
Wn(t,x)trdt = f (r)(x)+o(1), n �→∞.

(3.3)
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Next using Lemma 2.3 we obtain

∣∣R2

∣∣≤n ∑
2i+j≤r
i,j≥0

ni
∣∣Qi,j,r (x)∣∣{
x(1−x)}r

n∑
k=1

|k−nx|jpn,k(x)

×
∫ 1

0
pn−1,k−1(t)

∣∣ε(t,x)∣∣(t−x)rdt+ n!
(n−r)! (1−x)

n−r∣∣ε(0,x)∣∣xr
= R3+R4.

(3.4)

Since ε(t,x)→ 0 as t → x for a given ε > 0, there exists a δ > 0 such that |ε(t,x)| < ε
whenever 0< |t−x|< δ. Thus for some M1 > 0, we can write

R3 ≤nM1

∑
2i+j≤r
i,j≥0

ni
n∑
k=1

pn,k(x)|k−nx|j

×
{
ε
∫
|t−x|<δ

pn−1,k−1(t)|t−x|r

+
∫
|t−x|≥δ

pn−1,k−1(t)M2|t−x|rdt
}
= R5+R6,

(3.5)

where

M1 = sup
2i+j≤r
i,j≥0

∣∣Qi,j,r (x)∣∣{
x(1−x)}r . (3.6)

and M2 is independent of t. Applying the Schwarz inequality for integration and sum-

mation respectively, we obtain

R5 ≤ ε ·M1n
∑

2i+j≤r
i,j≥0

ni
n∑
k=1

pn,k(x)|k−nx|j
(∫ 1

0
pn−1,k−1(t)dt

)1/2

×
(∫ 1

0
pn−1,k−1(t)(t−x)2rdt

)1/2

≤ ε ·M1n
∑

2i+j≤r
i,j≥0

ni
n∑
k=1

pn,k(x)
( n∑
k=1

pn,k(x)(k−nx)2j
)1/2

×
( n∑
k=1

pn,k(x)
∫ 1

0
pn−1,k−1(t)(t−x)2rdt

)1/2

.

(3.7)

Using Lemmas 2.2 and 2.1, we get

R5 ≤ ε ·M1

∑
2i+j≤r
i,j≥0

niO
(
nj/2

)
O
(
n−r/2

)=O(1). (3.8)
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Again using the Schwarz inequality and Lemmas 2.2 and 2.1, we get

R6 ≤nM2

∑
2i+j≤r
i,j≥0

ni
n∑
k=1

pn,k(x)|k−nx|j
∫
|t−x|≥δ

pn−1,k−1(t)|t−x|rdt

≤nM2

∑
2i+j≤r
i,j≥0

ni
k∑
k=1

pn,k(x)|k−nx|j
(∫

|t−x|≥δ
pn−1,k−1(t)dt

)1/2

×
(∫

|t−x|≥δ
pn−1,k−1(t)(t−x)2rdt

)1/2

≤nM2

∑
2i+j≤r
i,j≥0

ni
( n∑
k=1

pn,k(x)(k−nx)2j
)1/2

×
( n∑
k=1

pn,k(x)
∫ 1

0
pn−1,k−1(t)(t−x)2rdt

)1/2

=
∑

2i+j≤r
i,j≥0

niO
(
nj/2

)
O
(
n−r/2

)=O(n(j−r)/2)=O(1).

(3.9)

Thus, due to arbitrariness of ε > 0, it follows that R3 = o(1). Also R4 → 0 as n → ∞
and hence R2 = o(1). Collecting the estimates of R1 and R2, we get the required result.

Proof of Theorem 1.2. Using Taylor’s expansion of f , we have

f(t)=
r+2∑
i=0

f (i)(x)
i!

(t−x)i+ε(t,x)(t−x)r+2, (3.10)

where ε(t,x)→ 0 as t→ x. Applying Lemma 2.1, we have

n
[
P(r)n

(
f(t),x

)−f (r)(x)]=n
[r+2∑
i=0

f (i)(x)
i!

∫ 1

0
W(r)
n (t,x)(t−x)idt−f (r)(x)

]

+
[
n
∫ 1

0
W(r)
n (t,x)ε(t,x)(t−x)r+2dt

]

= E1+E2,

E1 =n
r+2∑
i=0

f (i)(x)
i!

i∑
j=0

(
i
j

)
(−x)i−j

∫ 1

0
W(r)
n (t,x)tjdt−nf(r)(x)

= f
(r)(x)
r !

n
[
P(r)n

(
tr ,x

)−(r !)
]+ f (r+1)(x)

(r +1)!
×n[(r +1)(−x)P(r)n

(
tr ,x

)+P(r)n (
tr+1,x

)]
+ f

(r+2)(x)
(r +2)!

n
[
(r +2)(r +1)

2
x2P(r)n

(
tr ,x

)

+(r +2)(−x)P(r)n
(
tr+1,x

)+P(r)n (
tr+2,x

)]
.

(3.11)
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It is easily verified from Lemma 2.1 that for each x ∈ (0,1),

Pn
(
tv ,x

)= (n!)2

(n−v)!(n+v)!x
v+v(v−1)

(n!)2

(n−v+1)!(n+v)!x
v−1+O(n−2). (3.12)

Therefore

E1 =nf(r)(x)
[

(n!)2

(n−r)!(n+r)! −1
]

+nf
(r+1)(x)
(r +1)!

[
(r +1)(−x)(r !)

{
(n!)2

(n−r)!(n+r)!
}

+
{

(n!)2

(n−r −1)!(n+r +1)!
(r +1)!x

+r(r +1)
(n!)2

(n−r)!(n+r +1)!
(r !)

}]

+nf
(r+2)(x)
(r +2)!

[
(r +2)(r +1)x2

2
(r !)

(n!)2

(n−r)!(n+r)!

+(r +2)(−x)
{

(n!)2

(n−r −1)!(n+r +1)!
(r +1)!x

+r(r +1)
(n!)2

(n−r)!(n+r +1)!
(r !)

}

+
{

(n!)2

(n−r −2)!(n+r +2)!

}
(r +2)!

2
x2

+(r +1)(r +2)
(n!)2

(n−r −1)!(n+r +2)!

×(r +1)!x+O(n−2)].

(3.13)

In order to complete the proof of the theorem, it is sufficient to show that {x(1+
x)}r E2 → 0 asn→∞, which can easily be proved along the lines of the proof of Theorem

1.1 and by using Lemmas 2.1, 2.2, and 2.3.

Remark 2. Just like the operators in (1.3), very recently Abel and Gupta [2] consid-

ered the following operators:

Bn(f ,x)= (n+1)
n∑
k=1

pn,k(x)
∫ 1

0
pn,k−1(t)f (t)dt+(1−x)nf(0), x ∈ I ≡ [0,1],

(3.14)

where pn,k(x) is as defined by (1.3). These operators are Mn,0,1(f ,x)≡ Bn(f ,x).
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For these operators, we can easily verify the following: for m ∈ N0 (the set of

nonnegative integers), if we define

Bn
(
(t−x)m,x)≡φn,m(x)= (n+1)

n∑
k=1

pn,k(x)
∫ 1

0
pn,k−1(t)(t−x)mdt

+(−x)m(1−x)n,
(3.15)

then for m≥ 1 there holds the recurrence relation

[n+m+2]φn,m+1(x)= x(1−x)
[
φ(1)n,m(x)+2mφn,m−1(x)

]
+[m(1−2x)−2x

]
φn,m(x).

(3.16)

Also, it is easily verified that

Bn
(
tv ,x

)= n!(n+1)!
(n−v)!(n+v+1)!

xv+v(v−1)
n!(n+1)!

(n−v+1)!(n+v+1)!
xv−1

+O(n−2). (3.17)

Thus we have the following asymptotic formula for the operators Bn.

Theorem 3.1. Let f ∈ C[0,1]. If f (r+2) exists at a point x ∈ (0,1), then

lim
n→∞n

[
B(r)n (f ,x)−f (r)(x)

]
= x(1−x)f (r+2)(x)+[r −2x(1+r)]f (r+1)(x)−r(r +1)f (r)(x).

(3.18)

The proof of Theorem 3.1 is parallel to that of Theorem 1.2; we just have to use the

above estimates for the operators.
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