ON SIMULTANEOUS APPROXIMATION FOR SOME MODIFIED BERNSTEIN-TYPE OPERATORS

VIJAY GUPTA and NURHAYAT ISPIR

Received 25 December 2003

We study the simultaneous approximation for a certain variant of Bernstein-type operators. 2000 Mathematics Subject Classification: 41A25, 41A30.

1. Introduction. To approximate Lebesgue integrable functions on the interval $I \equiv [0,1]$, the modified Bernstein operators are defined by

$$M_{n,\alpha,\beta}(f,x) = (n-\alpha+1) \sum_{k=\beta}^{n-\alpha+\beta} p_{n,k}(x) \int_0^1 p_{n-\alpha,k-\beta}(t)f(t)dt + \sum_{k\in I_n} p_{n,k}(x)f\left(\frac{k}{n}\right),$$
(1.1)

where

$$p_{n,k}(x) = \binom{n}{k} x^k (1-x)^{n-k}$$
(1.2)

for $n \ge \alpha$, where α , β are integers satisfying $\alpha \ge \beta \ge 0$ and $I_n \subseteq \{0, 1, 2, ..., n\}$ is a certain index set. For $\alpha = \beta = 0$, $I_n = \{0\}$, this definition reduces to the Bernstein-Durrmeyer operators, which were first studied by Derriennic [3]. Also if $\alpha = \beta = 1$, $I_n = \{0\}$, we obtain the recently introduced sequence of Gupta and Maheshwari [4], that is, $M_{n,1,1}(f, x) \equiv P_n(f, x)$ which is defined as

$$P_n(f,x) = \int_0^1 W_n(x,t)f(t)dt$$

$$= n \sum_{k=1}^n p_{n,k}(x) \int_0^1 p_{n-1,k-1}(t)f(t)dt + (1-x)^n f(0), \quad x \in I \equiv [0,1],$$
(1.3)

where $W_n(x,t) = n \sum_{k=1}^{n} p_{n,k}(x) p_{n-1,k-1}(t) + (1-x)^n \delta(t)$, $\delta(t)$ being a Dirac Delta function.

In [4] Gupta and Maheshwari have estimated the rate of convergence for functions of bounded variation for the operators P_n , $n \in \mathbb{N}$. The approximation properties for different values of α , β were studied by several researchers. Recently Abel [1] obtained the complete asymptotic expansion for the Bernstein-Durrmeyer operators ($\alpha = \beta = 0$, $I_n = \{0\}$) in a concise form in simultaneous approximation. The operators $M_{n,\alpha,\beta}(f, x)$ are

linear positive operators but their approximation properties are different with different values of α and β . In the present paper, we study the pointwise convergence and asymptotic formula in simultaneous approximation for the operators $M_{n,1,1}(f,x) \equiv P_n(f,x)$. In the end we give a remark that similar results can be obtained for different values of α and β , for example, we mention the asymptotic formula for another particular case, namely, $M_{n,0,1}(f,x) \equiv B_n(f,x)$. Our main theorems can be stated as follows.

THEOREM 1.1. Let $f \in C[0,1]$ and let $f^{(r)}$ exist at a point $x \in (0,1)$, then

$$P_n^{(r)}(f, x) = f^{(r)}(t) + o(1) \quad \text{as } n \to \infty.$$
(1.4)

THEOREM 1.2. Let $f \in C[0,1]$. If $f^{(r+2)}$ exists at a point $x \in (0,1)$, then

$$\lim_{n \to \infty} n [P_n^{(r)}(f, x) - f^{(r)}(x)] = x(1 - x) f^{(r+2)}(x) + [r - x(1 + 2r)] f^{(r+1)}(x) - r^2 f^{(r)}(x).$$
(1.5)

2. Auxiliary results. In this section, we mention some results which are necessary to prove the main theorem.

LEMMA 2.1. For $m \in \mathbb{N}^0$ (the set of nonnegative integers), if the following definition holds:

$$P_n((t-x)^m, x) \equiv \mu_{n,m}(x) = n \sum_{k=1}^n p_{n,k}(x) \int_0^1 p_{n-1,k-1}(t)(t-x)^m dt + (-x)^m (1-x)^n,$$
(2.1)

then

$$\mu_{n,0}(x) = 1, \qquad \mu_{n,1}(x) = \frac{-x}{(n+1)}, \qquad \mu_{n,2}(x) = \frac{x(1-x)(2n+1) - (1-3x)x}{(n+1)(n+2)}$$
(2.2)

and for $m \ge 1$ there holds the recurrence relation

$$[n+m+1]\mu_{n,m+1}(x) = x(1-x)[\mu_{n,m}^{(1)}(x) + 2m\mu_{n,m-1}(x)] + [m(1-2x) - x]\mu_{n,m}(x).$$
(2.3)

PROOF. The values of $\mu_{n,0}(x)$ and $\mu_{n,1}(x)$ can easily follow from the definition. We prove the recurrence relation as follows:

$$\begin{aligned} x(1-x)\mu_{n,m}^{(1)}(x) &= n\sum_{k=1}^{n} x(1-x)p_{n,k}^{(1)}(x)\int_{0}^{1} p_{n-1,k-1}(t)(t-x)^{m}dt \\ &- mn\sum_{k=1}^{n} x(1-x)p_{n,k}(x)\int_{0}^{1} p_{n-1,k-1}(t)(t-x)^{m-1}dt \\ &- \{n(-x)^{m}(1-x)^{n-1} + m(-x)^{m-1}(1-x)^{n}\}x(1-x). \end{aligned}$$

$$(2.4)$$

Now using the identity $x(1-x)p_{n,k}^{(1)}(x) = (k-nx)p_{n,k}(x)$, we obtain

This completes the proof of the recurrence relation.

The value of $\mu_{n,2}(x)$ can be easily obtained from the above recurrence relation. **REMARK 1.** For each fixed $x \in [0,1]$, it follows from the above lemma that

$$P_n(\psi_x^s, x) = O(n^{-[(s+1)/2]}), \quad n \to \infty,$$
(2.6)

where $\psi_x = t - x$.

LEMMA 2.2. For $m \in \mathbb{N} \cup \{0\}$, if the *m*th-order moment is defined as

$$U_{n,m}(x) = \sum_{k=0}^{n} p_{n,k}(x) \left(\frac{v}{n} - x\right)^{m},$$
(2.7)

then $U_{n,0}(x) = 1$, $U_{n,1}(x) = 0$, and

$$nU_{n,m+1}(x) = x(1-x) [U_{n,m}^{(1)}(x) + mU_{n,m-1}(x)].$$
(2.8)

Consequently,

$$U_{n,m}(x) = O(n^{-[(m+1)/2]}).$$
(2.9)

LEMMA 2.3 [5]. There exist the polynomials $Q_{i,j,r}(x)$ independent of n and v such that

$$\{x(1-x)\}^{r} D^{r}[p_{n,k}(x)] = \sum_{\substack{2i+j \le r\\i,j \ge 0}} n^{i} (k-nx)^{j} Q_{i,j,r}(x) p_{n,k}(x), \quad D \equiv \frac{d}{dx}.$$
 (2.10)

3. Proofs of theorems

PROOF OF THEOREM 1.1. By Taylor's expansion of f, we have

$$f(t) = \sum_{i=0}^{r} \frac{f^{(i)}(x)}{i!} (t-x)^{i} + \varepsilon(t,x) (t-x)^{r},$$
(3.1)

where $\varepsilon(t, x) \to 0$ as $t \to \infty$.

Hence

$$P_n^{(r)}(f,x) = \int_0^1 W_n^{(r)}(t,x) f(t) dt$$

= $\sum_{i=0}^r \frac{f^{(i)}(x)}{i!} \int_0^1 W_n^{(r)}(t,x) (t-x)^i dt + \int_0^1 W_n^{(r)}(t,x) \varepsilon(t,x) (t-x)^r dt$ (3.2)
= $R_1 + R_2$.

First to estimate R_1 , using binomial expansion of $(t - x)^m$ and Lemma 2.1, we have

$$R_{1} = \sum_{i=0}^{r} \frac{f^{(i)}(x)}{i!} \sum_{\nu=0}^{i} {i \choose \nu} (-x)^{i-\nu} \frac{\partial^{r}}{\partial x^{r}} \int_{0}^{1} W_{n}(t,x) t^{\nu} dt$$

$$= \frac{f^{(r)}(x)}{r!} \frac{\partial^{r}}{\partial x^{r}} \int_{0}^{1} W_{n}(t,x) t^{r} dt = f^{(r)}(x) + o(1), \quad n \to \infty.$$
(3.3)

3954

Next using Lemma 2.3 we obtain

$$|R_{2}| \leq n \sum_{\substack{2i+j \leq r\\i,j \geq 0}} n^{i} \frac{|Q_{i,j,r}(x)|}{\{x(1-x)\}^{r}} \sum_{k=1}^{n} |k-nx|^{j} p_{n,k}(x)$$

$$\times \int_{0}^{1} p_{n-1,k-1}(t) |\varepsilon(t,x)| (t-x)^{r} dt + \frac{n!}{(n-r)!} (1-x)^{n-r} |\varepsilon(0,x)| x^{r}$$

$$= R_{3} + R_{4}.$$
(3.4)

Since $\varepsilon(t, x) \to 0$ as $t \to x$ for a given $\varepsilon > 0$, there exists a $\delta > 0$ such that $|\varepsilon(t, x)| < \varepsilon$ whenever $0 < |t - x| < \delta$. Thus for some $M_1 > 0$, we can write

$$R_{3} \leq nM_{1} \sum_{\substack{2i+j \leq r \\ i,j \geq 0}} n^{i} \sum_{k=1}^{n} p_{n,k}(x) |k-nx|^{j} \\ \times \left\{ \varepsilon \int_{|t-x| < \delta} p_{n-1,k-1}(t) |t-x|^{r} \\ + \int_{|t-x| \geq \delta} p_{n-1,k-1}(t) M_{2} |t-x|^{r} dt \right\} = R_{5} + R_{6},$$

$$(3.5)$$

where

$$M_{1} = \sup_{\substack{2i+j \le r\\i,j \ge 0}} \frac{|Q_{i,j,r}(x)|}{\{x(1-x)\}^{r}}.$$
(3.6)

and M_2 is independent of t. Applying the Schwarz inequality for integration and summation respectively, we obtain

$$R_{5} \leq \varepsilon \cdot M_{1}n \sum_{\substack{2i+j \leq r\\i,j \geq 0}} n^{i} \sum_{k=1}^{n} p_{n,k}(x) |k-nx|^{j} \left(\int_{0}^{1} p_{n-1,k-1}(t) dt \right)^{1/2} \\ \times \left(\int_{0}^{1} p_{n-1,k-1}(t) (t-x)^{2r} dt \right)^{1/2} \\ \leq \varepsilon \cdot M_{1}n \sum_{\substack{2i+j \leq r\\i,j \geq 0}} n^{i} \sum_{k=1}^{n} p_{n,k}(x) \left(\sum_{k=1}^{n} p_{n,k}(x) (k-nx)^{2j} \right)^{1/2} \\ \times \left(\sum_{k=1}^{n} p_{n,k}(x) \int_{0}^{1} p_{n-1,k-1}(t) (t-x)^{2r} dt \right)^{1/2}.$$

$$(3.7)$$

Using Lemmas 2.2 and 2.1, we get

$$R_5 \le \varepsilon \cdot M_1 \sum_{\substack{2i+j \le r\\i,j \ge 0}} n^i O(n^{j/2}) O(n^{-r/2}) = O(1).$$
(3.8)

Again using the Schwarz inequality and Lemmas 2.2 and 2.1, we get

$$R_{6} \leq nM_{2} \sum_{\substack{2i+j \leq r\\i,j \geq 0}} n^{i} \sum_{k=1}^{n} p_{n,k}(x) |k - nx|^{j} \int_{|t-x| \geq \delta} p_{n-1,k-1}(t) |t - x|^{r} dt$$

$$\leq nM_{2} \sum_{\substack{2i+j \leq r\\i,j \geq 0}} n^{i} \sum_{k=1}^{k} p_{n,k}(x) |k - nx|^{j} \left(\int_{|t-x| \geq \delta} p_{n-1,k-1}(t) dt \right)^{1/2} \\ \times \left(\int_{|t-x| \geq \delta} p_{n-1,k-1}(t) (t - x)^{2r} dt \right)^{1/2}$$

$$\leq nM_{2} \sum_{\substack{2i+j \leq r\\i,j \geq 0}} n^{i} \left(\sum_{k=1}^{n} p_{n,k}(x) (k - nx)^{2j} \right)^{1/2} \\ \times \left(\sum_{k=1}^{n} p_{n,k}(x) \int_{0}^{1} p_{n-1,k-1}(t) (t - x)^{2r} dt \right)^{1/2}$$

$$= \sum_{\substack{2i+j \leq r\\i,j \geq 0}} n^{i} O(n^{j/2}) O(n^{-r/2}) = O(n^{(j-r)/2}) = O(1).$$
(3.9)

Thus, due to arbitrariness of $\varepsilon > 0$, it follows that $R_3 = o(1)$. Also $R_4 \to 0$ as $n \to \infty$ and hence $R_2 = o(1)$. Collecting the estimates of R_1 and R_2 , we get the required result.

PROOF OF THEOREM 1.2. Using Taylor's expansion of f, we have

$$f(t) = \sum_{i=0}^{r+2} \frac{f^{(i)}(x)}{i!} (t-x)^i + \varepsilon(t,x) (t-x)^{r+2},$$
(3.10)

where $\varepsilon(t, x) \to 0$ as $t \to x$. Applying Lemma 2.1, we have

$$n[P_n^{(r)}(f(t),x) - f^{(r)}(x)] = n\left[\sum_{i=0}^{r+2} \frac{f^{(i)}(x)}{i!} \int_0^1 W_n^{(r)}(t,x)(t-x)^i dt - f^{(r)}(x)\right] \\ + \left[n \int_0^1 W_n^{(r)}(t,x)\varepsilon(t,x)(t-x)^{r+2} dt\right] \\ = E_1 + E_2,$$

$$E_{1} = n \sum_{i=0}^{r+2} \frac{f^{(i)}(x)}{i!} \sum_{j=0}^{i} {i \choose j} (-x)^{i-j} \int_{0}^{1} W_{n}^{(r)}(t,x) t^{j} dt - n f^{(r)}(x)$$

$$= \frac{f^{(r)}(x)}{r!} n [P_{n}^{(r)}(t^{r},x) - (r!)] + \frac{f^{(r+1)}(x)}{(r+1)!} \times n [(r+1)(-x)P_{n}^{(r)}(t^{r},x) + P_{n}^{(r)}(t^{r+1},x)]$$

$$+ \frac{f^{(r+2)}(x)}{(r+2)!} n \Big[\frac{(r+2)(r+1)}{2} x^{2} P_{n}^{(r)}(t^{r},x) + P_{n}^{(r)}(t^{r+2},x) \Big] .$$
(3.11)

It is easily verified from Lemma 2.1 that for each $x \in (0, 1)$,

$$P_n(t^{\nu}, x) = \frac{(n!)^2}{(n-\nu)!(n+\nu)!} x^{\nu} + \nu(\nu-1) \frac{(n!)^2}{(n-\nu+1)!(n+\nu)!} x^{\nu-1} + O(n^{-2}).$$
(3.12)

Therefore

$$\begin{split} E_{1} &= nf^{(r)}(x) \left[\frac{(n!)^{2}}{(n-r)!(n+r)!} - 1 \right] \\ &+ n \frac{f^{(r+1)}(x)}{(r+1)!} \left[(r+1)(-x)(r!) \left\{ \frac{(n!)^{2}}{(n-r)!(n+r)!} \right\} \right] \\ &+ \left\{ \frac{(n!)^{2}}{(n-r-1)!(n+r+1)!} (r+1)!x \right. \\ &+ r(r+1) \frac{(n!)^{2}}{(n-r)!(n+r+1)!} (r!) \right\} \right] \\ &+ n \frac{f^{(r+2)}(x)}{(r+2)!} \left[\frac{(r+2)(r+1)x^{2}}{2} (r!) \frac{(n!)^{2}}{(n-r)!(n+r)!} \\ &+ (r+2)(-x) \left\{ \frac{(n!)^{2}}{(n-r-1)!(n+r+1)!} (r+1)!x \right. \\ &+ r(r+1) \frac{(n!)^{2}}{(n-r)!(n+r+1)!} (r!) \right\} \\ &+ \left\{ \frac{(n!)^{2}}{(n-r-2)!(n+r+2)!} \right\} \frac{(r+2)!}{2} x^{2} \\ &+ (r+1)(r+2) \frac{(n!)^{2}}{(n-r-1)!(n+r+2)!} \\ &\times (r+1)!x + O(n^{-2}) \right]. \end{split}$$

In order to complete the proof of the theorem, it is sufficient to show that $\{x(1 + x)\}^r E_2 \to 0$ as $n \to \infty$, which can easily be proved along the lines of the proof of Theorem 1.1 and by using Lemmas 2.1, 2.2, and 2.3.

REMARK 2. Just like the operators in (1.3), very recently Abel and Gupta [2] considered the following operators:

$$B_n(f,x) = (n+1)\sum_{k=1}^n p_{n,k}(x) \int_0^1 p_{n,k-1}(t)f(t)dt + (1-x)^n f(0), \quad x \in I \equiv [0,1],$$
(3.14)

where $p_{n,k}(x)$ is as defined by (1.3). These operators are $M_{n,0,1}(f,x) \equiv B_n(f,x)$.

For these operators, we can easily verify the following: for $m \in \mathbb{N}^0$ (the set of nonnegative integers), if we define

$$B_n((t-x)^m, x) \equiv \phi_{n,m}(x) = (n+1) \sum_{k=1}^n p_{n,k}(x) \int_0^1 p_{n,k-1}(t) (t-x)^m dt + (-x)^m (1-x)^n,$$
(3.15)

then for $m \ge 1$ there holds the recurrence relation

$$[n+m+2]\phi_{n,m+1}(x) = x(1-x)[\phi_{n,m}^{(1)}(x) + 2m\phi_{n,m-1}(x)] + [m(1-2x)-2x]\phi_{n,m}(x).$$
(3.16)

Also, it is easily verified that

$$B_{n}(t^{\nu}, x) = \frac{n!(n+1)!}{(n-\nu)!(n+\nu+1)!} x^{\nu} + \nu(\nu-1) \frac{n!(n+1)!}{(n-\nu+1)!(n+\nu+1)!} x^{\nu-1} + O(n^{-2}).$$
(3.17)

Thus we have the following asymptotic formula for the operators B_n .

THEOREM 3.1. Let $f \in C[0,1]$. If $f^{(r+2)}$ exists at a point $x \in (0,1)$, then

$$\lim_{n \to \infty} n \left[B_n^{(r)}(f, x) - f^{(r)}(x) \right] = x(1-x) f^{(r+2)}(x) + \left[r - 2x(1+r) \right] f^{(r+1)}(x) - r(r+1) f^{(r)}(x).$$
(3.18)

The proof of Theorem 3.1 is parallel to that of Theorem 1.2; we just have to use the above estimates for the operators.

ACKNOWLEDGMENT. The authors are extremely grateful to the referee for making valuable suggestions, leading to better presentation of the paper.

REFERENCES

- [1] U. Abel, *Asymptotic approximation by Bernstein-Durrmeyer operators and their derivatives*, Approx. Theory Appl. (N.S.) **16** (2000), no. 2, 1–12.
- U. Abel and V. Gupta, On the approximation of bounded variation functions by a variant of Bernstein-Durrmeyer operators, submitted to Math. Comput. Modelling.
- [3] M. M. Derriennic, Sur l'approximation de fonctions intégrables sur [0,1] par des polynômes de Bernstein modifiés, J. Approx. Theory 31 (1981), no. 4, 325-343 (French).
- [4] V. Gupta and P. Maheshwari, *Bézier variant of a new Durrmeyer type operators*, Riv. Mat. Univ. Parma (7) 2 (2003), 9–21.
- [5] G. G. Lorentz, *Bernstein Polynomials*, Mathematical Expositions, vol. 8, University of Toronto Press, Toronto, 1953.

Vijay Gupta: School of Applied Sciences, Netaji Subhas Institute of Technology, Azad Hind Fauj Marg, Sector 3, Dwarka, New Delhi-110045, India *E-mail address*: vijay@nsit.ac.in

Nurhayat Ispir: Department of Mathematics, Faculty of Arts and Sciences, Gazi University, 06500 Teknikokullar, Ankara, Turkey

E-mail address: nispir@gazi.edu.tr