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�-open sets were introduced and studied by Janković and Hamlett (1990) to generalize the
well-known Banach category theorem. Quasi-�-openness was introduced and studied by Abd
El-Monsef et al. (2000). These are∗-dense-in-itself sets of the ideal spaces. In this note, prop-
erties of these sets are further investigated and characterizations of these sets are given.
Also, their relation with �-dense sets and �-locally closed sets is discussed. Characteriza-
tions of completely codense ideals are given in terms of semi-preopen sets.
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1. Introduction and preliminaries. The subject of ideals in topological spaces has

been studied by Kuratowski [12] and Vaidyanathaswamy [20]. An ideal � on a topo-

logical space (X,τ) is a collection of subsets of X which satisfies that (i) A ∈ � and

B ⊂ A implies B ∈ � and (ii) A ∈ � and B ∈ � implies A∪B ∈ �. Given a topological

space (X,τ) with an ideal � on X and if ℘(X) is the set of all subsets of X, a set op-

erator (·)∗ : ℘(X) → ℘(X), called a local function [12] of A with respect to � and τ ,

is defined as follows: for A ⊂ X, A∗(�,τ) = {x ∈ X | U ∩A �∈ � for every U ∈ τ(x)},
where τ(x) = {U ∈ τ | x ∈ U}. We will make use of the basic facts concerning the lo-

cal functions [10, Theorem 2.3] without mentioning it explicitly. A Kuratowski closure

operator cl∗(·) for a topology τ∗(�,τ), called the ∗-topology, finer than τ , is defined

by cl∗(A) = A∪A∗(�,τ) [19]. When there is no chance for confusion, we will simply

write A∗ for A∗(�,τ) and τ∗ or τ∗(�) for τ∗(�,τ). If � is an ideal on X, then (X,τ,�)
is called an ideal space. By a space, we always mean a topological space (X,τ) with no

separation properties assumed. If A ⊂ X, cl(A) and int(A) will denote the closure and

interior of A in (X,τ), respectively, and cl∗(A) and int∗(A) will denote the closure and

interior of A in (X,τ∗), respectively. A subset A of a space (X,τ) is semiopen [13] if

there exists an open set G such that G ⊂A⊂ cl(G) or, equivalently, A⊂ cl(int(A)). The

complement of a semiopen set is semiclosed. The smallest semiclosed set containing

A is called the semiclosure of A and is denoted by scl(A). Also, scl(A)=A∪ int(cl(A))
[4, Theorem 1.5(a)]. The largest semiopen set contained in A is called the semi-interior

of A and is denoted by sint(A). A subset A of a space (X,τ) is an α-set [15] if A ⊂
int(cl(int(A))). The family of all α-sets in (X,τ) is denoted by τα. τα is a topology

on X which is finer than τ . The complement of an α-set is called an α-closed set.

The closure and interior of A in (X,τα) are denoted by clα(A) and intα(A), respec-

tively. If � is the ideal of all nowhere dense subsets in (X,τ), then τ∗(�,τ) = τα and

clα(A)=A∪A∗(�) [10]. An open subset A of a space (X,τ) is said to be regular open

http://dx.doi.org/10.1155/S0161171204403391
http://dx.doi.org/10.1155/S0161171204403391
http://dx.doi.org/10.1155/ijmms
http://www.hindawi.com


3990 V. RENUKA DEVI ET AL.

if A = int(cl(A)). The complement of a regular open set is regular closed. A subset A
of a space (X,τ) is said to be preopen [14] if A⊂ int(cl(A)). The family of all preopen

sets is denoted by PO(X,τ) or simply PO(X). The largest preopen set contained in A is

called the preinterior of A and is denoted by pint(A) and pint(A)=A∩int(cl(A)) [4]. A
is preopen if and only if there is a regular open set G such that A⊂G and cl(A)= cl(G)
[7, Proposition 2.1]. A subset A of a space (X,τ) is semi-preopen [4] if there exists a

preopen set G such that G ⊂ A ⊂ cl(G). The family of all semi-preopen sets in (X,τ)
is denoted by SPO(X,τ) or simply SPO(X). The complement of a semi-preopen set is

called semi-preclosed. The largest semi-preopen set contained in A is called the semi-

preinterior of A and is denoted by spint(A). Also, spint(A) = A∩ cl(int(cl(A))) for

every A of X [4]. Given a space (X,τ) and ideals � and � on X, the extension of � via �
[11], denoted by �∗�, is the ideal given by �∗� = {A ⊂ X | A∗(�) ∈ �}. In particular,

�∗� = {A ⊂ X | int(A∗(�)) = φ} is an ideal containing both � and � and �∗� is

usually denoted by �̃. The following lemmas will be useful in the sequel.

Lemma 1.1. Let (X,τ,�) be an ideal space and A⊂X. If A ⊂A∗, then

(a) A∗ = cl(A)= cl∗(A),
(b) A∗(�̃)=A∗(�).

Proof. Clearly, for every subset A of X, cl∗(A)⊂ cl(A). Let x �∈ cl∗(A). Then there

exists a τ∗-open set G containing x such that G∩A=φ. There exists V ∈ τ and I ∈ �

such that x ∈ V−I ⊂G. G∩A=φ⇒ (V−I)∩A=φ⇒ (V∩A)−I =φ⇒ ((V∩A)−I)∗ =
φ ⇒ (V ∩A)∗ − I∗ = φ ⇒ (V ∩A)∗ = φ ⇒ V ∩A∗ = φ ⇒ V ∩A = φ. Since V is an

open set containing x, x �∈ cl(A) and so cl(A) ⊂ cl∗(A). Hence cl(A) = cl∗(A). Since

A⊂A∗ ⊂ cl(A), cl(A)=A∗. This proves (a).

(b) By [11, Theorem 3.2], A∗(�̃)= cl(int(A∗)) and so by (a), A∗(�̃)= cl(int(cl(A)))=
A∗(�).

Lemma 1.2. Let (X,τ) be a space and A ⊂ X. If A is semiopen, then cl(A) = clα(A)
and if A is semiclosed, then int(A)= intα(A) [18, Lemma 2.1].

Lemma 1.3. If (X,τ,�) is an ideal space, then the following are equivalent.

(a) For every A∈ τ , A⊂A∗.

(b) For every A∈ SO(X,τ), A⊂A∗.

Proof. Since τ ⊂ SO(X,τ), it is enough to prove that (a)⇒(b). Suppose A ∈
SO(X,τ). Then there exists an open set H such that H ⊂ A ⊂ cl(H). Since H is open,

H ⊂H∗ and so, by Lemma 1.1, A⊂ cl(H)=H∗ ⊂A∗. Hence A⊂A∗.

2. Completely codense ideal. An ideal � on a space (X,τ) is said to be codense [6]

if τ ∩� = {φ} or, equivalently, X = X∗ [10]. � is said to be completely codense [6] if

PO(X)∩� = {φ} or, equivalently, � ⊂ � [6, Theorem 4.13]. Every completely codense

ideal is codense. The converse implication is not true, since in R, the set of all real

numbers with the usual topology, the ideal � of all countable subsets is codense but

not completely codense [6]. The following theorem characterizes completely codense

ideals.
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Theorem 2.1. Let (X,τ,�) be an ideal space. Then the following are equivalent.

(a) � is completely codense.

(b) SPO(X)∩�= {φ}.
(c) A⊂A∗ for every A∈ SPO(X).
(d) spint(A)=φ for every A∈ �.

Proof. (a)⇒(b). Suppose A ∈ SPO(X)∩�. A ∈ � ⇒ A ∈ � and so int(cl(A)) = φ.

A∈ SPO(X)⇒A⊂ cl(int(cl(A)))⇒A=φ. Therefore, SPO(X)∩�= {φ}.
(b)⇒(c). Suppose A∈ SPO(X) and x �∈A∗. Then there exists an open set G containing

x such that G∩A ∈ �. Since A ∈ SPO(X), G∩A ∈ SPO(X), by [4, Theorem 2.7] and so

by hypothesis, G∩A=φ which implies that x �∈A.

(c)⇒(d). LetA∈ � such that spint(A) �=φ. Then there exists a nonempty semi-preopen

setG such thatG ⊂A and soG∗ ⊂A∗ =φ. SinceG ⊂G∗,G =φwhich is a contradiction.

Therefore, spint(A)=φ.

(d)⇒(a). Let A ∈ PO(X)∩�. Then A ∈ PO(X) ⇒ A ⊂ int(cl(A)) ⊂ cl(int(cl(A))). A ∈
�⇒ spint(A)=φ⇒A∩cl(int(cl(A)))=φ⇒A=φ.

Corollary 2.2. Let (X,τ,�) be an ideal space with a completely codense ideal �.

(a) If A ∈ SPO(X), then A∗(�) is regular closed, A∗(�) = A∗(�), and cl(A) = cl∗(A)
= clα(A).

(b) If A is semi-preclosed, then int(A)= int∗(A)= intα(A).

Proof. (a) If A ∈ SPO(X), by Theorem 2.1(c), A ⊂ A∗ ⊂ cl(A) and so A∗ = cl(A)
which implies thatA∗ is regular closed, since the closure of a semi-preopen set is regular

closed [4, Theorem 2.4]. Therefore, A∗ = cl(int(A∗)) = cl(int(cl(A)))= A∗(�). cl(A) =
cl∗(A) by Theorem 2.1(c) and Lemma 1.1. Also, cl∗(A) = A∪A∗(�) = A∪A∗(�) =
clα(A). This proves (a).

(b) The proof follows from (a).

3. �-open sets. A subsetA of an ideal space (X,τ,�) is τ∗-closed [10] (resp.,∗-dense

in itself [9], ∗-perfect [9]) if A∗ ⊂ A (resp., A ⊂ A∗, A = A∗). Clearly, A is ∗-perfect if

and only if A is τ∗-closed and ∗-dense in itself. The following Theorem 3.1 is useful in

the sequel.

Theorem 3.1. Let (X,τ,�) be an ideal space and let U and A be subsets of X such

that A⊂U ⊂A∗. Then U is ∗-dense in itself, and U∗ and A∗ are ∗-perfect.

Proof. A⊂U ⊂A∗ implies thatU∗ =A∗ and soU is∗-dense in itself. Since (A∗)∗ ⊂
A∗, A⊂A∗ implies that A∗ is ∗- perfect and so U∗ is ∗-perfect.

A subset A of an ideal space (X,τ,�) is �-locally closed, [5] if A=G∩V , where G is

open and V is ∗-perfect. Clearly, every ∗-perfect set is �-locally closed. The following

theorem gives a characterization of �-locally closed sets.

Theorem 3.2. Let (X,τ,�) be an ideal space. A subset A of X is �-locally closed if

and only if A=G∩A∗ for some open set G.
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Proof. Suppose A is �-locally closed. Then A = G∩V where G is open and V is

∗-perfect. Now A∗ = (G∩V)∗ ⊃ G∩V∗ = G∩V = A. Also, A ⊂ V implies that A∗ ⊂
V∗ = V . Therefore, G∩A∗ = G∩ (A∗∩V) = (G∩V)∩A∗ = A∩A∗ = A. Conversely, if

A = G∩A∗ where G is open, then A ⊂ A∗ and so by Theorem 3.1, A∗ is ∗-perfect and

so A is �-locally closed.

The following corollary follows from [10, Theorems 2.1 and 2.2 and Theorem 6.1(d)].

Corollary 3.3. Let (X,τ,�) be an ideal space.

(a) Every �-locally closed set is ∗-dense in itself.

(b) Every open, ∗-dense-in-itself subset of X is �-locally closed.

(c) If � is codense, then every open set is �-locally closed.

A subset A of an ideal space (X,τ,�) is �-open [11] if A ⊂ int(A∗). The family of

all �-open sets is denoted by IO(X,τ,�), IO(X,τ), or IO(X). The complement of an

�-open set is said to be �-closed. The largest �-open set contained in A is called the

�-interior of A and is denoted by Iint(A) and Iint(A)=A∩int(A∗) [11, Theorem 4.1(3)].

The following theorem gives some properties of �-open sets.

Theorem 3.4. If A is an �-open subset of an ideal space (X,τ,�), then

(a) A is ∗-dense in itself,

(b) A∗ = cl(A)= cl∗(A) and cl(A) and A∗ are regular closed,

(c) A∗ is ∗-perfect and �-locally closed,

(d) int(A∗) is ∗-dense in itself and �-locally closed,

(e) cl(int(A∗))=A∗(�̃) is ∗-dense in itself,

(f) A∗ = (int(A∗))∗ = (cl(int(A∗)))∗ = (A∗(�̃))∗(�),
(g) (int(A∗))∗ and (cl(int(A∗)))∗ are �-locally closed,

(h) int(A∗) is �-open.

Proof. (a) follows from the definition. (b) follows from (a), Lemma 1.1, and the

fact that every �-open set is preopen [1] and the closure of a preopen set is regular

closed [7, Proposition 2.1(ii)]. (c) follows from Theorem 3.1 and from the fact that every

∗-perfect set is �-locally closed. (d) follows from Theorem 3.1 and Corollary 3.3(b). (e)

cl(int(A∗))=A∗(�̃) by [11, Theorem 3.2] and since A⊂ int(A∗)⊂ cl(int(A∗))⊂A∗, by

Theorem 3.1, cl(int(A∗)) is ∗-dense in itself. (f) From the inequality in the proof of (e),

we have A∗ = (int(A∗))∗ = (cl(int(A∗)))∗. Each is equal to (A∗(�̃))∗(�) by (e). (g) and

(h) follow from (c) and (f), respectively.

Theorem 3.5. Let (X,τ,�) be an ideal space. If A is �-open and V is semiopen, then

(a) V ∩A is ∗-dense in itself,

(b) (V ∩A)∗ is ∗-perfect and �-locally closed,

(c) cl(V)∩A is ∗-dense in itself,

(d) (cl(V)∩A)∗ is ∗-perfect and �-locally closed.

Proof. Since V∩A⊂ cl(V)∩A⊂ (V∩A)∗ by [1, Theorem 2.10], V∩A is ∗-dense in

itself and by Theorem 3.1, cl(V)∩A is∗-dense in itself and so by Theorem 3.1, (V∩A)∗
and (cl(V)∩A)∗ are ∗-perfect and so are �-locally closed.
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The following theorem shows that (X,τ) and (X,τα) have the same collection of

�-open sets.

Theorem 3.6. If (X,τ,�) is an ideal space, then IO(X,τ,�)= IO(X,τα,�).

Proof. A ∈ IO(X,τ) if and only if A ⊂ int(A∗) if and only if A ⊂ intα(A∗), by

Lemma 1.2 if and only if A∈ IO(X,τα).

Corollary 3.7. If (X,τ,�) is an ideal space where � is completely codense, then

IO(X,τ)= IO(X,τ∗)= IO(X,τα).

Proof. Follows from Corollary 2.2(b).

The following theorem and corollary are generalizations of [1, Theorem 2.6(iii) and

Corollary 2.1(ii)], respectively.

Theorem 3.8. Let (X,τ,�) be an ideal space. If A∈ IO(X) and B ∈ τα, then A∩B ∈
IO(X).

Proof. A∈ IO(X,τ)⇒A∈ IO(X,τα) and so by [1, Theorem 2.6(ii)],A∩B ∈ IO(X,τα)
which implies that A∩B ∈ IO(X,τ).

Corollary 3.9. Let (X,τ,�) be an ideal space. IfA is �-closed and B is α-closed, then

A∪B is �-closed.

Every �-open set is preopen but the converse need not be true [1, Example 2.3]. The

following theorem characterizes �-open sets in terms of preopen sets.

Theorem 3.10. Let (X,τ,�) be an ideal space and A ⊂ X. Then the following are

equivalent.

(a) A is �-open.

(b) A⊂A∗ and scl(A)= int(cl(A)).
(c) A⊂A∗ and A is preopen.

Proof. A ∈ IO(X) if and only if A ⊂ A∗ and A ⊂ int(A∗) if and only if A ⊂ A∗ and

A⊂ int(cl(A)), since cl(A)=A∗ if and only if A⊂A∗ and A∪ int(cl(A))= int(cl(A)) if

and only if A ⊂ A∗ and scl(A) = int(cl(A)). Therefore, (a) and (b) are equivalent. It is

clear that (a) and (c) are equivalent.

Corollary 3.11. Let (X,τ,�) be an ideal space and A⊂X.

(a) If A is semiclosed and �-open, then A is regular open.

(b) If A is semiopen and �-closed, then A is regular closed.

(c) If A is �-open, then sint(scl(A))= int(scl(A))= int(cl(A)).

For subsets of any ideal space (X,τ,�), openness and �-openness are independent

concepts [1, Examples 2.1 and 2.2]. The following Theorem 3.12 shows that the two

concepts coincide for ∗-perfect sets. Corollary 3.13 follows from the fact that every

τ∗-closed, �-open set is ∗-perfect.

Theorem 3.12. Let (X,τ,�) be an ideal space and A⊂X.

(a) If A is ∗-dense in itself, then Iint(A∗)= int(A∗).
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(b) If A is ∗-perfect, then Iint(A)= int(A) and so, for ∗-perfect sets, the concepts open

and �-open coincide.

Proof. Since A is∗-dense in itself, A∗ is∗-perfect, by Theorem 3.1. Now Iint(A∗)=
A∗∩ int((A∗)∗)=A∗∩ int(A∗)= int(A∗). This proves (a). (b) follows from (a).

Corollary 3.13. Let (X,τ,�) be an ideal space and A ⊂ X. If A is τ∗-closed and

�-open, then A is open.

In [17, Remark 4], it was stated that � is codense if and only if τ ⊂ IO(X). The fol-

lowing Theorem 3.14(a) follows from the above result. Theorem 3.14(b) follows from

Theorem 3.6 and the fact that SO(X)∩�= {φ} if and only if τ∩�= {φ}. Theorem 3.15

is a characterization of completely codense ideals.

Theorem 3.14. Let (X,τ,�) be an ideal space.

(a) If SO(X)⊂ IO(X), then � is codense.

(b) � is codense if and only if τα ⊂ IO(X).

Theorem 3.15. Let (X,τ,�) be an ideal space. Then � is completely codense if and

only if PO(X)= IO(X).

Proof. Suppose � is completely codense and G ∈ PO(X). Then G ⊂G∗, by Theorem

2.1(c) and so cl(G)=G∗.G ∈ PO(X) implies G ⊂ int(cl(G))= int(G∗) and soG ∈ IO(X).
Therefore, PO(X) ⊂ IO(X). Clearly, IO(X) ⊂ PO(X). Conversely, if G ∈ SPO(X), then

there exists V ∈ PO(X) such that V ⊂ G ⊂ cl(V) and by hypothesis, V ⊂ V∗ and so

by Lemma 1.1, cl(V) = V∗. Hence by Theorem 3.1, G is ∗-dense in itself and so by

Theorem 2.1, � is completely codense.

In the following Theorem 3.16, we show that if A is �-open, then sint(A∗) is regular

closed.

Theorem 3.16. Let (X,τ,�) be an ideal space and A⊂X.

(a) For every subset A of X, cl(Iint(A))= cl(int(A∗))= sint(A∗).
(b) If A is �-open, then A∗ = cl(A)= cl(int(A∗))= sint(A∗) and so sint(A∗) is regular

closed.

Proof. IfA is a subset ofX, then sint(A∗)=A∗∩cl(int(A∗))= cl(int(A∗)). To prove

the other equality, since Iint(A) = A∩ int(A∗), cl(Iint(A)) = cl(A∩ int(A∗)) ⊃ cl(A)∩
int(A∗)= int(A∗) and so cl(Iint(A))⊃ cl(int(A∗)). To prove the reverse direction, note

that Iint(A)⊂ int(A∗) and so cl(Iint(A))⊂ cl(int(A∗)). This completes the proof of (a).

(b) follows from (a) and Theorem 3.4(b).

A subset A of an ideal space (X,τ,�) is �-dense [6] if A∗ =X. Clearly, every �-dense

set is dense but the converse is not true. IfG is any proper dense subset of an ideal space

(X,τ,�) where � is the maximal ideal ℘(X), then G is not �-dense. In particular, if � is

not codense, then X is not �-dense and hence no subset of X is �-dense [6]. Therefore,

the existence of an �-dense set implies that the ideal is codense. The following theorem

characterizes �-open sets in terms of �-dense sets.
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Theorem 3.17. Let (X,τ,�) be an ideal space with a codense ideal � and A ⊂ X.

Then the following are equivalent.

(a) A is �-open.

(b) There is a regular open set G such that A⊂G and A∗ =G∗.

(c) A=G∩D where G is regular open and D is �-dense.

(d) A=G∩D where G is open and D is �-dense.

Proof. (a)⇒(b). That A is �-open implies A ⊂ int(A∗) ⊂ A∗. Let G = int(A∗). Then

A⊂G and int(cl(G))= int(cl(int(A∗)))= int(cl(int(cl(A))))= int(cl(A))= int(A∗)=G
and so G is regular open. G∗ = (int(A∗))∗ =A∗, by Theorem 3.4(f).

(b)⇒(c). Let G be a regular open set such that A⊂G and A∗ =G∗. LetD =A∪(X−G).
Then A = G∩D where G is regular open. Now D∗ = (A∪(X−G))∗ = A∗∪(X−G)∗ =
G∗∪ (X−G)∗ = (G∪ (X−G))∗ = X∗ = X, since � is codense. Therefore, D is �-dense

which proves (c).

(c)⇒(d) is clear.

(d)⇒(a). Suppose A = G∩D where G is open and D is �-dense. Now G = G∩X =
G∩D∗ ⊂ (G∩D)∗ and so G ⊂ int((G∩D)∗) = int(A∗). Therefore, A ⊂ G ⊂ int(A∗)
which implies that A is �-open.

The following theorem is a generalization of [1, Theorem 2.14(ii)].

Theorem 3.18. Let (X,τ,�) be an ideal space and A ⊂ X. If A is �-closed and α-

open, then A= cl(A)= int(cl(A))= cl(int(A)) and so A is both regular open and regular

closed.

Proof. A is �-closed ⇒ X−A is �-open⇒ X−A⊂ int(X−A)∗ ⇒ X−A⊂ int(cl(X−
A)) ⇒ X −A ⊂ X − cl(int(A)) ⇒ cl(int(A)) ⊂ A. A is α-open ⇒ A is semiopen and

preopen [16] ⇒ cl(A) = cl(int(A)) and A ⊂ int(cl(A)). Therefore, int(cl(A)) ⊂ cl(A) =
cl(int(A))⊂A⊂ int(cl(A)) and so A= cl(A)= cl(int(A))= int(cl(A)).

4. Quasi-�-open sets. A subset A of an ideal space (X,τ,�) is quasi-�-open [2] if

A ⊂ cl(int(A∗)). Every �-open set is quasi-�-open and every quasi-�-open set is semi-

preopen but the converse implications need not be true [2, Examples 1 and 2]. Also,

quasi-�-openness and semiopenness (resp., preopenness) are independent concepts [2,

Examples 1 and 2]. The family of all quasi-�-open sets is denoted by Q�O(X,τ). The

following theorem gives some of the properties of quasi-�-open sets, the proof of which

is similar to the proof of Theorem 3.4.

Theorem 4.1. Let (X,τ,�) be an ideal space and A a quasi-�-open subset of X. Then

(a) A is ∗-dense in itself,

(b) A∗ = cl(A)= cl∗(A),
(c) A∗ is ∗-perfect, regular closed, and �-locally closed,

(d) cl(int(A∗))=A∗(�̃) is ∗-dense in itself,

(e) A∗ = (cl(int(A∗)))∗ = (A∗(�̃))∗(�),
(f) (cl(int(A∗)))∗ is ∗-perfect and �-locally closed.
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Corollary 4.2. Let (X,τ,�) be an ideal space. A subset A of X is quasi-�-open if

and only if A⊂A∗(�̃) [2, Theorem 3].

Theorem 4.3. Let (X,τ,�) be an ideal space and let U and A be subsets of X such

that A⊂ U ⊂A∗. Then U∗ is ∗-perfect, and if A is quasi-�-open, then U is quasi-�-open

and so cl(int(A∗)) is quasi-�-open.

Proof. By Theorem 3.1, U∗ = A∗ and U∗ is ∗-perfect. A is quasi-�-open ⇒ A ⊂
cl(int(A∗)) = cl(int(U∗)). Now U ⊂ A∗ ⇒ U ⊂ (cl(int(U∗)))∗ ⇒ U ⊂ cl(cl(int(U∗))) =
cl(int(U∗)). Therefore, U is quasi-�-open. Since A ⊂ cl(int(A∗)) ⊂ A∗, cl(int(A∗)) is

quasi-�-open.

Every quasi-�-open set is semi-preopen but the converse is not true [2]. [2, Proposi-

tion 3(iii)] says that every semiopen set which is ∗-dense in itself is quasi-�-open. The

following Theorem 4.4 is a generalization of this result and shows that for ∗-dense

in itself, the concepts quasi-�-open and semi-preopen are equivalent. Theorem 4.5(a)

gives a characterization of codense ideals and Theorem 4.5(b) gives a characterization

of completely codense ideals.

Theorem 4.4. Let (X,τ,�) be an ideal space. If A is semi-preopen and ∗-dense in

itself, then A is quasi-�-open.

Proof. A⊂A∗ ⇒ cl(A)=A∗, by Lemma 1.1.A is semi-preopen⇒A⊂ cl(int(cl(A)))
= cl(int(A∗)) and so A is quasi-�-open.

Theorem 4.5. Let (X,τ,�) be an ideal space. Then

(a) � is codense if and only if SO(X)⊂Q�O(X),
(b) � is completely codense if and only if SPO(X)=Q�O(X).

Proof. (a) Suppose � is codense. Let G ∈ SO(X). By [10, Theorem 6.1] and Lemma

1.3,G is∗-dense in itself and so by [2, Proposition 3(iii)],G ∈Q�O(X). Conversely, sup-

pose that SO(X)⊂Q�O(X). If G ∈ SO(X), then G ∈Q�O(X) and so G ⊂G∗. Therefore,

� is codense by [10, Theorem 6.1] and Lemma 1.3.

(b) Suppose � is completely codense andG ∈ SPO(X). ThenG ⊂G∗, by Theorem 2.1(c)

and so cl(G)=G∗. G ∈ SPO(X)⇒G ⊂ cl(int(cl(G)))= cl(int(G∗)) and so G ∈Q�O(X).
Therefore, SPO(X) ⊂Q�O(X). Clearly, Q�O(X) ⊂ SPO(X). Conversely, if G ∈ SPO(X),
then G ∈Q�O(X), by hypothesis, and so G ⊂G∗, and so by Theorem 2.1(c), � is com-

pletely codense.

In [2], it was established that the intersection of a quasi-�-open set with an α-set is

semi-preopen. The following theorem is a generalization of the above result.

Theorem 4.6. Let (X,τ,�) be an ideal space. Then (a)Q�O(X,τ)=Q�O(X,τα) and

(b) A∈Q�O(X,τ) and B ∈ τα implies A∩B ∈Q�O(X,τ).

Proof. A∈Q�O(X,τ) if and only ifA⊂ cl(int(A∗)) if and only ifA⊂ clα(intα(A∗))
[3] if and only if A ∈Q�O(X,τα) which proves (a). A ∈Q�O(X,τ) and B ∈ τα ⇒ A ∈
Q�O(X,τα) and B ∈ τα ⇒ A∩B ∈ Q�O(X,τα); by [2, Proposition 2] implies A∩B ∈
Q�O(X,τ).
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[2, Lemma 2] states that W∗(�) ⊂ W for every subset W of X in the ideal space

(X,τ,�). That is, every subset of X is τ∗-closed and so τ∗ is the discrete topology.

This is not always the case. For example, if we consider R with the usual topology τ
and the ideal � of nowhere dense subsets of R, thenQ∗ =R and soQ is not τ∗-closed.

Therefore, [2, Proposition 4] is no longer valid. Also, it was established that every τ∗-

closed, quasi-�-open set is semiopen [2, Proposition 3(iii)]. The following Theorem 4.7(a)

is a generalization of the above result and also shows that the condition preclosed is

not necessary in [2, Proposition 5(i)], and Theorem 4.7(b) shows that [2, Proposition

3(iii)] is also true if we replace the condition τ∗-closed by semiclosed.

Theorem 4.7. Let (X,τ,�) be an ideal space and A⊂X.

(a) If A is τ∗-closed and quasi-�-open, then A is regular closed.

(b) If A is semiclosed and quasi-�-open, then A is semiopen and A∗ =A∗(�).

Proof. (a) That A is τ∗-closed and quasi-�-open implies A=A∗. Also, A∈Q�O(X)
⇒ A ⊂ cl(int(A∗)) ⇒ int(A∗) ⊂ A∗ ⊂ cl(int(A∗)) ⇒ cl(int(A∗)) ⊂ A∗ ⊂ cl(int(A∗)).
Therefore, A=A∗ = cl(int(A∗))= cl(int(A)) and so A and A∗ are regular closed. (b) A
is semiclosed⇒ int(A)= int(cl(A)) by [8, Proposition 1]. ThatA is quasi-�-open implies

A⊂ cl(int(A∗))= cl(int(cl(A)))= cl(int(A)) and so A is semiopen. By Theorem 4.1(b),

cl(A) = A∗. Since int(cl(A)) ⊂ A ⊂ cl(int(A∗)) = cl(int(cl(A))), cl(int(cl(A))) ⊂ cl(A)
⊂ cl(int(A∗))= cl(int(cl(A))) and so A∗ = cl(A)= cl(int(A∗))=A∗(�).

The following theorem gives a characterization of quasi-�-open sets.

Theorem 4.8. Let (X,τ,�) be an ideal space and A ⊂ X. A is quasi-�-open if and

only if A⊂A∗ and clα(A)= cl(int(A∗)).

Proof. Suppose A∈Q�O(X). Then A⊂A∗ and cl(A)=A∗. Also A⊂ cl(int(A∗))⇒
A ⊂ cl(int(cl(A))) ⇒ A∪ cl(int(cl(A))) = cl(int(cl(A))) ⇒ clα(A) = cl(int(A∗)), since

clα(A)=A∪cl(int(cl(A))) [3]. Conversely, suppose the conditions hold. Then clα(A)=
cl(int(cl(A))) and so A ⊂ cl(int(cl(A))) = cl(int(A∗)). Therefore, A is quasi-�-open.

The quasi-�-interior of a subset A in an ideal space (X,τ,�) is the largest quasi-�-

open set contained in A and is denoted by qIint(A). The following theorem deals with

the properties of the quasi-�-interior of subsets of ideal spaces. In [11], it was estab-

lished that Iint(A) = φ if and only if A ∈ �̃. Theorem 4.9(c) is a partial generalization

of this result.

Theorem 4.9. Let (X,τ,�) be an ideal space and A⊂X. Then

(a) qIint(A)=A∩cl(int(A∗)) for every subset A of X,

(b) if A is α-closed, then qIint(A)= cl(int(A∗)) and the converse holds if A⊂A∗,

(c) qIint(A)=φ if and only if A∈ �̃.

Proof. (a)A∩cl(int(A∗))⊂ cl(int(A∗))= cl(int(int(A∗)))= cl(int(A∗∩(intA∗)))⊂
cl(int((A∩ int(A∗))∗)) ⊂ cl(int((A∩ cl(int(A∗)))∗)). Therefore, A∩ cl(int(A∗)) is a

quasi-�-open set contained in A and so A∩ cl(int(A∗)) ⊂ qIint(A). Since qIint(A) is
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quasi-�-open, qIint(A) ⊂ cl(int(qIint(A))∗) ⊂ cl(int(A∗)) and so A∩ qIint(A) ⊂ A∩
cl(int(A∗)) which implies that qIint(A) ⊂ A ∩ cl(int(A∗)). Hence qIint(A) = A ∩
cl(int(A∗)).

(b) A is α-closed ⇒ cl(int(cl(A))) ⊂ A ⇒ cl(int(A∗)) ⊂ A ⇒ qIint(A) = cl(int(A∗)).
Conversely, if A ⊂ A∗, then A∗ = cl(A). qIint(A) = cl(int(A∗)) ⇒ cl(int(A∗)) ⊂ A and

so cl(int(cl(A)))⊂A and so A is α-closed.

(c) qIint(A)=φ⇒A∩cl(int(A∗))=φ⇒A∩int(A∗)=φ⇒ Iint(A)=φ⇒A∈ �̃. Con-

versely, A∈ �̃⇒ int(A∗)=φ⇒ cl(int(A∗))=φ⇒A∩cl(int(A∗))=φ⇒ qIint(A)=φ.
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[15] O. Njȧstad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961–970.
[16] I. L. Reilly and M. K. Vamanamurthy, On α-continuity in topological spaces, Acta Math.

Hungar. 45 (1985), no. 1-2, 27–32.
[17] D. A. Rose and D. Jankovíc, On functions having the property of Baire, Real Anal. Exchange

19 (1993/1994), no. 2, 589–597.
[18] D. Sivaraj, A note on S-closed spaces, Acta Math. Hungar. 44 (1984), no. 3-4, 207–213.
[19] R. Vaidyanathaswamy, The localisation theory in set-topology, Proc. Indian Acad. Sci. Sect.

A 20 (1944), 51–61.
[20] , Set Topology, 2nd ed., Chelsea Publishing, New York, 1960.

V. Renuka Devi: Department of Mathematics, Govindammal Aditanar College for Women,
Tiruchendur 628 215, Tamil Nadu, India

E-mail address: renu_siva2003@yahoo.com

mailto:renu_siva2003@yahoo.com
mailto:protect �egingroup catcode ` active def  { }catcode `%active let %%let %%catcode `#active def 


PROPERTIES OF SOME ∗-DENSE-IN-ITSELF SUBSETS 3999

D. Sivaraj: Department of Mathematics, Aditanar College of Arts and Science, Tiruchendur 628
216, Tamil Nadu, India

E-mail address: ttn_sivaraj@sancharnet.in

T. Tamizh Chelvam: Department of Mathematics, Manonmaniam Sundaranar University,
Tirunelveli 627 012, Tamil Nadu, India

E-mail address: tamche_59@yahoo.co.in

mailto:ttn_sivaraj@sancharnet.in
mailto:tamche_59@yahoo.co.in

