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The various concepts of open balls in D-metric spaces are studied in the case of certain
D-metric spaces and many results in the literature on such balls are shown to be false.

1. Introduction

Dhage [1, 2, 3] introduced the concept of open balls in a D-metric space in two different
ways and discussed at length the properties of the topologies generated by the family of
all open balls of each kind. Here we observe that many of his results are either false or of
doubtful validity. In some cases we give examples to show that either the results are false
or that the proofs given by him are not valid. With regard to one type of open balls we
observe that some of them may be empty and that the ball with a given center may not
increase as the radius increases. The latter is contrary to a remark made by Dhage based
on which he proves that the family of all open balls forms a base for a topology.

Definition 1.1 [1]. Let X be a nonempty set. A function ρ : X ×X ×X → [0,∞) is called a
D-metric on X if

(i) ρ(x, y,z)= 0 if and only if x = y = z (coincidence),
(ii) ρ(x, y,z) = ρ(p(x, y,z)) for all x, y,z ∈ X and for any permutation p(x, y,z) of x,

y, z (symmetry),
(iii) ρ(x, y,z) ≤ ρ(x, y,a) + ρ(x,a,z) + ρ(a, y,z) for all x, y,z,a ∈ X (tetrahedral in-

equality).

If X is a nonempty set and ρ is a D-metric on X , then the ordered pair (X ,ρ) is called
a D-metric space. When the D-metric ρ is understood, X itself is called a D-metric space.

Definition 1.2 [1]. A sequence {xn} in a D-metric space (X ,ρ) is said to be convergent (or
ρ-convergent) if there exists an element x of X with the following property: given ε > 0
there exists an N ∈N such that ρ(xm,xn,x) < ε for all m,n≥N .

In such a case, it is said that {xn} converges to x and x is a limit of {xn} and write
xn→ x.

Definition 1.3 [1]. A sequence {xn} in a D-metric space (X ,ρ) is said to be Cauchy (or ρ-
Cauchy) if given ε > 0 there exists an N ∈N such that ρ(xm,xn,xp) < ε for all m,n, p ≥N .
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Notation. Let (X ,ρ) be a D-metric space, x0 ∈ X , and r ∈ (0,∞). Let

B∗
(
x0,r

)= {x ∈ X : ρ
(
x0,x,x

)
< r
}

,

B
(
x0,r

)= {x ∈ B∗
(
x0,r

)
: ρ
(
x0,x, y

)
< r ∀y ∈ B∗

(
x0,r

)}
,

B̂
(
x0,r

)= {x0
}∪{x ∈ X : sup

y∈X
ρ
(
x0,x, y

)
< r
}
.

(1.1)

For a nonempty subset A of X , ρ(x0,x0,A)= inf{ρ(x0,x0,x) : x ∈A}.
Remark 1.4. Dhage referred to B∗(x0,r) as well as B(x0,r) as the open ball centered
at x0, and radius r. B∗(x0,r) defined above is denoted as B(x0,r) in Dhage [2] and as
B∗(x0,r) in Dhage [1, 3]. Dhage defined B(x0,r) in [3] as B(x0,r) = {y ∈ B∗(x0,r) :
if y,z ∈ B∗(x0,r) are any two points, then ρ(x0, y,z) < r}. This definition is meaningless.
The definition as given in the notation is the natural refinement of it. Dhage defined
B(x0,r) in [1] as

B
(
x0,r

)= ⋂
y∈X

{
x, y ∈ X : ρ

(
x0,x, y

)
< r
}
. (1.2)

Probably due to the fact that the above definition is not meaningful, Ume and Kim [5]
refined it and attributed it to Dhage. Their refined version reduces to the following:

B
(
x0,r

)= {x0
}∪{x ∈ X : sup

y∈X
ρ
(
x0,x, y

)
< r
}
. (1.3)

Here we have denoted it as B̂(x0,r).

Theorem 1.5. Let X be a normed linear space and p ∈ [1,∞]. Let ρp be defined on X ×
X ×X as

ρp(x, y,z)=

max

{‖x− y‖,‖y− z‖,‖z− x‖} if p = +∞,[‖x− y‖p +‖y− z‖p +‖z− x‖p]1/p
if 1≤ p < +∞ (1.4)

for all x, y,z ∈ X . Then ρp is a D-metric on X .
Let x0 ∈ X and r ∈ (0,∞). Then

B∗p
(
x0,r

)=


{
x ∈ X :

∥∥x0− x
∥∥ < r

}
if p = +∞,{

x ∈ X :
∥∥x0− x

∥∥ < r

21/p

}
if 1≤ p < +∞,

(1.5)

and Bp(x0,r)= {x0}, where

B∗p
(
x0,r

)= {x ∈ X : ρp
(
x0,x,x

)
< r
}

,

Bp
(
x0,r

)= {x ∈ B∗p
(
x0,r

)
: ρp

(
x0,x, y

)
< r ∀y ∈ B∗p

(
x0,r

)}
.

(1.6)
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Proof. From Naidu et al. [4, Corollaries 1, 3, and 4], it follows that ρp is a D-metric on X .
We have

B∗∞
(
x0,r

)= {x ∈ X : ρ∞
(
x0,x,x

)
< r
}= {x ∈ X :

∥∥x0− x
∥∥ < r

}
. (1.7)

Clearly x0 ∈ B∗∞(x0,r) and ρ∞(x0,x0, y) = ‖x0 − y‖ < r for all y ∈ B∗∞(x0,r). Hence x0 ∈
B∞(x0,r). Let y0 ∈ B∗∞(x0,r) \ {x0}. Then 0 < ‖x0 − y0‖ < r. Hence (r/‖x0− y0‖)− 1 >
0. Let t0 ∈ {r/‖x0− y0‖− 1,r/‖x0− y0‖}. Let z0 = x0 + t0(x0 − y0). Then ‖z0 − x0‖ = t0
‖x0 − y0‖ < r. Hence z0 ∈ B∗∞(x0,r). We have ‖y0 − z0‖ = ‖(1 + t0)(x0 − y0)‖ = (1 + t0)
‖x0− y0‖ > r. Hence y0 
∈ B∞(x0,r). Hence B∞(x0,r)= {x0}.

Let p ∈ [1,∞). We have

B∗p
(
x0,r

)= {x ∈ X : ρp
(
x0,x,x

)
< r
}

=
{
x ∈ X :

[∥∥x0− x
∥∥p +‖x− x‖p +

∥∥x− x0
∥∥p]1/p

< r
}

= {x ∈ X : 21/p
∥∥x0− x

∥∥ < r
}

=
{
x ∈ X :

∥∥x0− x
∥∥ < r

21/p

}
,

Bp
(
x0,r

)= {x ∈ B∗p
(
x0,r

)
: ρp

(
x0,x, y

)
< r ∀y ∈ B∗p

(
x0,r

)}
=
{
x ∈ B∗p

(
x0,r

)
:
∥∥x0− x

∥∥p +‖x− y‖p +
∥∥y− x0

∥∥p < r p

whenever y ∈ X and
∥∥x0− y

∥∥ < r

21/p

}
.

(1.8)

Clearly x0 ∈ Bp(x0,r). Let y0 ∈ B∗p (x0,r) \ {x0}. Then 0 < ‖x0 − y0‖ < r/21/p. Hence
r/21/p‖x0− y0‖ > 1. Hence (r/21/p‖x0− y0‖)p > 1. Hence [(r/21/p‖x0− y0‖)p− 1] > 0.

We have

[(
r

21/p
∥∥x0− y0

∥∥
)p

− 1

]1/p

<
r

21/p
∥∥x0− y0

∥∥ . (1.9)

Let

t0 ∈
{[(

r

21/p
∥∥x0− y0

∥∥
)p

− 1

]1/p

,
r

21/p
∥∥x0− y0

∥∥
}
. (1.10)

Let z0 = x0 + t0(x0− y0). Then ‖z0− x0‖ = t0‖x0− y0‖ < r/21/p. Hence z0 ∈ B∗p (x0,r).
We have ∥∥x0− y0

∥∥p +
∥∥y0− z0

∥∥p +
∥∥z0− x0

∥∥p
= (1 + t

p
0

)∥∥x0− y0
∥∥p +

∥∥y0− z0
∥∥p

= [1 + t
p
0 +

(
1 + t0

)p]∥∥x0− y0
∥∥p

≥ 2
(
1 + t

p
0

)∥∥x0− y0
∥∥p > r p.

(1.11)

Hence y0 
∈ Bp(x0,r). Hence Bp(x0,r)= {x0}. �
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Remark 1.6. Theorem 1.5 shows that the conclusions about B(x0,r) in [3, Theorems 3.1,
3.2, 3.3, and 3.4] are false.

We now give an example of a D-metric space (X ,ρ) in which

(i) the family {B(x,r) : x ∈ X and r ∈ (0,∞)} does not form a base for any topology
on X ,

(ii) for each x ∈ X , there exists an rx ∈ (0,∞) such that B(x,rx)= φ,
(iii) there exist z0 ∈ X and r1,r2 ∈ (0,∞) such that r1 < r2 and B(z0,r1) � B(z0,r2).

Example 1.7 (Naidu et al. [4, Example 1]). Let X =A∪B∪{0}, where

A=
{

1
2n

: n∈N
}

, B = {2n : n∈N}. (1.12)

Define ρ : X ×X ×X → [0,∞) as follows:

ρ(x, y,z)=




0 if x = y = z,

if x, y,z ∈A∪{0}, 0

min
{

max{x, y},max{y,z}, does not occur more

max{z,x}} than once among x, y, z

and at least two among

x, y, z are distinct,

if 0 and at least one

1 element of B occur among

x, y, z or 0 occurs exactly

twice among x, y, z,

if x, y,z ∈A∪B and exactly

min{x, y,z} one element of B occurs

exactly once among x, y,z,

min
{

max
{

1
x

,
1
y

}
,max

{
1
y

,
1
z

}
, if x, y,z ∈A∪B and exactly

max
{

1
z

,
1
x

}}
one element of A occurs

exactly once among x, y, z,

∣∣∣∣1
x
− 1

y

∣∣∣∣+
∣∣∣∣ 1
y
− 1
z

∣∣∣∣+
∣∣∣∣1
z
− 1
x

∣∣∣∣ if x, y,z ∈ B.

(1.13)

Then (X ,ρ) is a D-metric space and ρ(x, y,z)≤ 1 for all x, y,z ∈ X .
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Let r ∈ (0,∞). We have

B∗(0,r)=

{0}∪{x ∈A : x < r} if r ≤ 1,

X if r > 1.
(1.14)

For x0 ∈ A, we have

B∗
(
x0,r

)=


{
x0
}∪{x ∈ A : x < r}∪

{
x ∈ B : x >

1
r

}
if r ≤ 1,

X if r > 1.
(1.15)

For x0 ∈ B, we have

B∗
(
x0,r

)=


{x ∈ A : x < r}∪

{
x ∈ B :

∣∣∣∣ 1
x0
− 1
x

∣∣∣∣ < r

2

}
if r ≤ 1,

X if r > 1.
(1.16)

We note that for x0 ∈ B,

B∗
(
x0,r

)=




{
x0
}∪{x ∈A : x < r

}
if r ≤ 1

x0
,

{x ∈ A : x < r}∪ {x ∈ B : x ≥ x0
}

if
1
x0

< r ≤min
{

1,
2
x0

}
,

{x ∈ A : x < r}∪
{
x ∈ B : x ≥ x0

2

}
if

2
x0

< r ≤min
{

1,
6
x0

}
.

(1.17)

We have

B(0,r)=

φ if r ≤ 1,

X if r > 1.
(1.18)

For x0 ∈ A, we have

B
(
x0,r

)=


φ if r ≤ x0,

B∗
(
x0,r

)
if x0 < r ≤ 1,

X if r > 1.

(1.19)

For x0 ∈ B, we have

B
(
x0,r

)=




X if r > 1,

φ if r ≤ 1
x0

,

B∗
(
x0,r

)
if

1
x0

< r ≤min
{

1,
2
x0

}
,

{
x0
}∪{x ∈ A : x < r} if

2
x0

< r ≤min
{

1,
3
x0

}
.

(1.20)
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We have

B∗
(
4,r
)=




{x ∈A : x < r}
if n∈N and

1
2
− 1

2n
< r ≤ 1

2
− 1

2n+1
,

∪{x ∈ B : 4≤ x ≤ 2n+1
}

{x ∈A : x < r}∪{x ∈ B : x ≥ 4} if r = 1
2

,

A∪B if
1
2
< r ≤ 1,

X if r > 1,

B
(
4,r
)=




φ if r ≤ 1
4

,

B∗
(
4,r
)

if
1
4
< r ≤ 1

2
,

{x ∈A : x < r} if n∈N and 1− 1
2n

< r ≤ 1− 1
2n+1

,
∪{x ∈ B : 4≤ x ≤ 2n+1

}
A∪B if r = 1,

X if r > 1.
(1.21)

We have

B
(

4,
3
4

)
= A∪{4},

B
(

1
4

,
1
2

)
= B∗

(
1
4

,
1
2

)
=
{
x ∈ A : x <

1
2

}
∪{x ∈ B : x > 2}.

(1.22)

Hence

B
(

4,
3
4

)
∩B

(
1
4

,
1
2

)
=
{
x ∈ A : x <

1
2

}
∪{4}. (1.23)

Suppose that there exist z0 ∈ X and r0 ∈ (0,∞) such that 4∈ B(z0,r0) and

B
(
z0,r0

)⊆ B
(

4,
3
4

)
∩B

(
1
4

,
1
2

)
. (1.24)

Then B(z0,r0)∩B = {4}.
If x0 ∈ A∪ {0}, s ∈ (0,∞) and B(x0,s) 
= φ, then B(x0,s)∩ B is infinite. Hence z0 
∈

A∪ {0}. Hence z0 ∈ B. We note that for any x0 ∈ B, x0 ∈ B(x0,s) if s ∈ (1/x0,∞) and
that B(x0,s) = φ if s ∈ (0,1/x0]. Since B(z0,r0) is nonempty, it follows that r0 > 1/z0 and
z0 ∈ B(z0,r0). Thus z0 ∈ B(z0,r0)∩B = {4}. Hence z0 = 4 and r0 > 1/4. Since B(z0,r0)∩
B = {4} and z0 = {4}, we have B(4,r0)∩B = {4}. Hence 1/2 < r0 ≤ 3/4.
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We have

A= {x ∈ A : x < r0
}⊆ B

(
4,r0

)= B
(
z0,r0

)
. (1.25)

Since B(z0,r0) ⊆ B(4,3/4)∩ B(1/4,1/2), it follows that A ⊆ {x ∈ A : x < 1/2}. This is a
contradiction since 1/2∈ A. Hence there is no ball of the form B(x,r) containing 4 and
contained in B(4,3/4)∩B(1/4,1/2). Hence {B(x,r) : x ∈ X and r ∈ (0,∞)} does not form
a base for any topology on X .

Let x0 ∈ B \ {2}. Then we have

B
(
x0,

2
x0

)
= B∗

(
x0,

2
x0

)
=
{
x ∈A : x <

2
x0

}
∪ {x ∈ B : x ≥ x0

}
,

B
(
x0,

3
x0

)
=
{
x ∈ A : x <

3
x0

}
∪ {x0

}
.

(1.26)

Hence 2x0 ∈ B(x0,2/x0) but 2x0 
∈ B(x0,3/x0). Hence B(x0,2/x0) � B(x0,3/x0). Let y0

∈ A∩B(x0,3/x0). Then B∗(y0,s)∩B is infinite for any s ∈ (0,∞). But B(x0,3/x0)∩B =
{x0}. Hence B∗(y0,s) � B(x0,3/x0) for any s∈ (0,∞).

Remark 1.8. Dhage asserted in [3, Theorem 4.1] that if (X ,ρ) is a D-metric space, then
{B(x,r) : x ∈ X and r ∈ (0,∞)} is a base for a topology on X and called it the D-metric
topology on X . Example 1.7 shows that Dhage [3, Theorem 4.1] is false. So we may in-
terpret the D-metric topology on a D-metric space (X ,ρ) as the topology generated by
{B(x,r) : x ∈ X and r ∈ (0,∞)}. In [3, Theorem 4.2] it is stated that the topology of D-
metric convergence and the D-metric topology on a D-metric space are equivalent. Naidu
et al. [4] proved that in the D-metric space of Example 1.7, D-metric convergence does
not define a topology. In [3, Theorems 4.3 and 4.4] it is stated that the D-metric function
ρ(x, y,z) is continuous in one variable and also in all the three variables. Naidu et al. [4]
gave examples to show that the D-metric need not be sequentially continuous even in a
single variable even when D-metric convergence defines a metrizable topology.

Remark 1.9. Dhage stated that if (X ,ρ) is a D-metric space, x0 ∈ X , and 0 < r1 < r2 <
+∞, then B(x0,r1) ⊆ B(x0,r2) (see [3, Remark 3.2(ii)]). Example 1.7 shows that Dhage
[3, Remark 3.2(ii)] is false.

Remark 1.10. Dhage asserted in [3, Theorem 3.5] that if (X ,ρ) is aD-metric space, x0 ∈ X ,
r ∈ (0,∞), and y0 ∈ B(x0,r), then there exists s ∈ (0,∞) such that B(y0,s) ⊆ B(x0,r). In
proving this statement he concluded that if y0 ∈ B(x0,r), there exists s∈ (0,∞) such that
B∗(y0,s)⊆ B(x0,r). Example 1.7 shows that such a conclusion is false. Hence the validity
of Dhage [3, Theorem 3.5] is doubtful.

We now give an example of a D-metric space (X ,ρ) in which

(i) {B(x,r) : x ∈ X and r ∈ (0,∞)} forms a base for a topology on X which is T0 but
not T1,

(ii) {B∗(x,r) : x ∈ X and r ∈ (0,∞)} forms a base for a topology τ on X which is T1

but not Hausdorff.
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Example 1.11. Let X = {1/2n : n∈N}. Define ρ : X ×X ×X → [0,∞) as follows:

ρ(x, y,z)=

0 if x = y = z,

min
{

max{x, y},max{y,z},max{z,x}} otherwise.
(1.27)

Then (X ,ρ) is a D-metric space, ρ(x, y, y) = y for all x, y ∈ X , and ρ satisfies condition
(v) of Dhage [2] on D-metric, that is, ρ(x, y, y)≤ ρ(x,z,z) + ρ(z, y, y) for all x, y,z ∈ X .

Let x0 ∈ X and r ∈ (0,∞).
We have

B∗
(
x0,r

)= {x0
}∪{x ∈ X : x < r},

B
(
x0,r

)=

{x ∈ X : x < r} if r > x0,

φ if r ≤ x0,

B̂
(
x0,r

)=


{
x0
}

if r ≤ x0,

{x ∈ X : x < r} if r > x0.

(1.28)

Obviously {B(x,r) : x ∈ X and r ∈ (0,∞)} forms a base for a topology, say, τ1 on X . If
x1,x2 ∈ X and x1 < x2, then any neighbourhood of x2 contains x1. Hence τ1 is not T1. In
particular, it is not Hausdorff. If x1,x2 ∈ X and x1 < r < x2, then x1 ∈ B(x1,r) but x2 
∈
B(x1,r). Hence τ1 is T0.

Clearly {B̂(x,r) : x ∈ X and r ∈ (0,∞)} forms a base for the discrete topology, say, τ2

on X . A sequence {xn} in X converges to an element x0 of X with respect to τ2 if and
only if xn = x0 for all sufficiently large n (since {x0} is a τ2-open set). However, {1/2n}
converges to zero with respect to the D-metric ρ. Thus for sequences in X τ2-convergence
and convergence with respect to the D-metric ρ are not equivalent.

Evidently, {B∗(x,r) : x ∈ X and r ∈ (0,∞)} forms a base for a topology, say, τ on X .
A nonempty subset U of X is τ-open if and only if U = {x ∈ X : x < r} ∪ S for some
r ∈ (0,∞) and for some subset S of X . If x1,x2 ∈ X , r1,r2 ∈ (0,∞), and r3 =min{r1,r2},
then φ 
= {y ∈ X : y < r3} ⊆ B∗(x1,r1)∩ B∗(x2,r2). Hence τ is not Hausdorff. A subset
A of X is τ-closed if and only if there exists an r ∈ (0,∞) such that A⊆ {x ∈ X : x ≥ r}.
Since each element of X is positive, it follows that {x} is τ-closed for each x in X . Hence
X is T1. Since τ is T1 and not Hausdorff, it is not regular.

For x0 ∈ X and a nonempty subset A of X \ {x0}, we have ρ(x0,x0,A)= x0. A sequence
{xn} in X converges to an element x0 of X with respect to τ if and only if given ε > 0
there exists n∈N such that for any integer n≥N either xn < ε or xn = x0. Hence {1/22n}
converges to 1/2 with respect to τ. It can be seen that {1/22n} converges to 1/2 with
respect to τ1 also. Let A be a nonempty subset of X \ ({1/22n : n ∈ N∪ {1/2}}). Then
{ρ(1/22n,1/22n,A)} = {1/22n} converges to zero with respect to the usual topology of the
real line. But ρ(1/2,1/2,A)= 1/2 
= 0. Hence the function x → ρ(x,x,A) is not continuous
when X is equipped with the topology τ or τ1 and the real line with the usual topology.

Since {1/22n} converges to 1/2 with respect to τ and ρ(1/22n,1/2,1/2) = 1/2 for all
n∈N, {ρ(1/22n,1/2,1/2)} does not converge to ρ(1/2,1/2,1/2)= 0. Hence the D-metric
ρ is not sequentially continuous with respect to τ even in a single variable.
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Remark 1.12. Example 1.11 shows that [2, Lemma 1.2, Theorems 2.1 and 2.2, and Corol-
laries 2.1 and 2.2] are false.
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