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A study is made of the propagation of time-harmonic plane thermoelastic waves of as-
signed frequency in an infinite rotating medium using Green-Naghdi model (1993) of
linear thermoelasticity without energy dissipation. A more general dispersion equation is
derived to examine the effect of rotation on the phase velocity of the modified coupled
thermal dilatational shear waves. It is observed that in thermoelasticity theory of type
II (Green-Naghdi model), the modified coupled dilatational thermal waves propagate
unattenuated in contrast to the classical thermoelasticity theory, where the thermoelastic
waves undergo attenuation (Parkus, Chadwick, and Sneddon). The solutions of the more
general dispersion equation are obtained for small thermoelastic coupling by perturba-
tion technique. Cases of high and low frequencies are also analyzed. The rotation of the
medium affects both quasielastic dilatational and shear wave speeds to the first order in
ω for low frequency, while the quasithermal wave speed is affected by rotation up to the
second power in ω. However, for large frequency, rotation influences both the quasidi-
latational and shear wave speeds to first order in ω and the quasithermal wave speed to
the second order in 1/ω.

1. Introduction

Study of plane thermoelastic and magnetothermoelastic wave propagation in a nonro-
tating medium is receiving considerable attention in recent years. The classical theory of
thermoelasticity is based on Fourier’s law which predicts an infinite speed of heat propa-
gation. In order to eliminate this paradox of infinite speed of thermal propagation, Lord
and Shulman [8] employed a modified generalized thermoelastic theory which is hy-
perbolic in nature. The Lord-Shulman theory with a thermal relaxation time has been
used by several authors, such as Puri [11] and Nayfeh and Nemat-Nasser [9], to study
plane thermoelastic waves in nonrotating infinite media. In generalized thermoelasticity,
Agarwal [1] has made an investigation of surface waves. Using Green-Lindsay theory
[6], Agarwal [2, 3] studied, respectively, thermoelastic and magnetothermoelastic plane
wave propagation in infinite nonrotating media. Schoenberg and Censor [15] studied the
propagation of plane harmonic waves in a rotating elastic medium without thermal field.
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It has been shown there that the rotation causes the elastic medium to be dispersive and
anisotropic. This study included some discussion on the free surface phenomenon in a
rotating half-space.

It appears that little attention has been paid to the study of propagation of plane ther-
moelastic waves in a rotating medium. Since most large bodies, like the earth, the moon,
and other planets, have an angular velocity, it appears more realistic to study the propa-
gation of plane thermoelastic or magnetothermoelastic waves in a rotating medium with
thermal relaxation.

Using Lord-Shulman theory, Puri [11] studied plane thermoelastic waves and
Roychoudhuri and Debnath [13] studied plane wave propagation in infinite rotating me-
dia in both thermoelastic and magnetothermoelastic media and also in thermoviscoelas-
ticity [14].

Recently, a theory of thermoelasticity (type II) without energy dissipation (Green-
Naghdi model [7]) is proposed, where in the theory of generalized thermoelasticity pos-
sesses several significant characteristics that differ from the traditional classical develop-
ment in thermoelastic material behavior: (i) it does not sustain energy dissipation, (ii)
the entropy flux vector (or equivalently the heat flow vector) in the theory is determined
in terms of the same potential that also determines the stress, (iii) it permits transmission
of heat flow as thermal waves at finite speed.

In the present paper, Green-Naghdi model [7] of linear thermoelasticity without en-
ergy dissipation is used to investigate the propagation of harmonically time-dependent
plane thermoelastic waves in an infinite rotating medium. A more general dispersion
equation for propagation of coupled thermal dilatational shear waves without energy
dissipation in a rotating medium incorporating the effect of rotation is obtained. The
solutions of the more general dispersion equation are obtained for small thermoelastic
coupling by a perturbation technique. Cases of low and high frequencies are also stud-
ied to examine the effects of rotation and the small thermoelastic coupling on the phase
velocity of the waves. It is observed that in the thermoelasticity theory of type II (Green-
Naghdi model), the modified coupled dilatational and shear waves propagate unatten-
uated in contrast to the classical thermoelasticity theory, where the thermoelastic waves
undergo attenuation (see [4, 5, 10]). It is also observed that rotation of the medium af-
fects shear waves. Rotation of the medium affects both quasielastic dilatational and shear
wave speeds to the first order in ω for low frequency, while the quasithermal wave speed
is affected by rotation up to the second power in ω. However, for large frequency, rota-
tion affects both quasidilatational and shear wave speeds to the first order in ω and the
quasithermal wave speed to the second order in 1/ω.

It may be mentioned that a similar problem of wave propagation in a thermoelastic
rotating medium was studied by Roychoudhuri [12] using Green-Lindsay model of gen-
eralized thermoelasticity with two relaxation times.

2. Problem formulation and basic equations

An infinite isotropic, homogeneous, thermally conducting elastic medium with density
ρ and Lame’ constants λ, µ is considered. The medium is rotating uniformly with an-

gular velocity �Ω =Ω�η, where �η is a unit vector representing the direction of the axis of
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rotation. The displacement equation of motion in the rotating frame of reference has two
additional terms:

(i) centripetal acceleration �Ω× (�Ω×�u) due to the time-varying motion only;

(ii) the Coriolis acceleration 2�Ω× �̇u.

Here, �u is the dynamic displacement vector measured form a steady-state deformed po-
sition and is supposed to be small. These two terms do not appear in the equations for
nonrotating media.

The stress equations of motion, in the absence of body forces, are

τi j, j = ρ
[
�̈ui +

{�Ω× (�Ω×�u)}i +
(
2�Ω× �̇u)i], (2.1)

where τi j = λ∆δi j + 2µei j − γθδi j with

2ei j = ui, j +uj,i, i, j = 1,2,3, (2.2)

λ, µ are Lame’ constants, γ = αt(3λ+ 2µ), αt is the coefficient of linear thermal expansion
of the material, ρ is the constant mass density, ∆ is the dilatational, θ is the temperature
above uniform reference temperature θ0, τi j is the stress tensor, ei j is the strain tensor, ui
are the displacement components.

Combining (2.1) and (2.2), we obtain the displacement equation of motion in the
rotating frame of reference as

ρ
[
�̈u+ �Ω× (�Ω×�u)+ 2�Ω× �̇u]= (λ+µ)�∇(�∇·�u)+µ∇2�u− γ�∇θ. (2.3)

Again, linearized form of the theory of thermoelasticity [type II] without energy dis-
sipation proposed by Green and Naghdi [7] consists of the following heat conduction
equation:

ρCvθ̈ + γθ0 div �̈u= K∗∇2θ, K∗ > 0, (2.4)

where K∗ is a material constant characteristic of the theory and Cv is the specific heat.
Using the dimensionless quantities

ui = c1

gω∗
Ui, t = η

ω∗
, xi = c1

ω∗
ξi, θ = θ0Θ, Ω= ω∗Ω′

ω∗ = ρCvc
2
1

K∗
, c2

1 =
λ+ 2µ
ρ

, g = γ

ρCv
,

β2 = λ+ 2µ
µ

, b = γθ0

µ
, εθ = bg

β2
,

(2.5)
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and writing

U1 =U , U2 =V , U3 =W ,

x1 = x, x2 = y, x3 = z,
(2.6)

(2.3) and (2.4) in nondimensional form reduce to

β2[Üi +
{�Ω′ × (�Ω′ × �U)}i +

{
2�Ω′ × �̇U}i]= (β2− 1

)
∆,i +∇2Ui−β2εθΘ,i i= 1,2,3

ω∗Θ̈+ω∗div �̈U =Θ,ii.

(2.7)

3. Plane harmonic waves in infinite rotating medium

We are concerned with isotropic solid medium, where we may consider waves propagat-
ing in the x1 direction. So, all the field variables are functions of the coordinate x1 and
time t. We concentrate our attention on the time-dependent stresses and displacement
only that are caused by centripetal force and possible body forces. As such, we consider
time-varying dynamic solutions and the time-independent part of the centripetal accel-
eration is neglected. To examine the effect of rotation and thermoelastic couplings on the

coupled elastic dilatational, shear, and thermal waves, we set �Ω = (0,0,Ω), where Ω is a
constant. In view of these assumptions, (2.7) reduce to

Ü −Ω′2U − 2Ω′V̇ =U ′′ − εθΘ
′, (3.1)

β2[V̈ −Ω′2V + 2Ω′U̇
]=V ′′, (3.2)

ω∗Θ̈−Θ′′ +ω∗Ü ′ = 0, (3.3)

β2Ẅ =W ′′. (3.4)

Equations (3.1), (3.2), and (3.3) constitute a coupled system and represent coupled
thermal dilatational shear waves, while (3.4) uncouples from the system. The thermal
field affects shear motion due to rotation. This coupling disappears when rotation van-
ishes.

We set

(U ,V ,Θ)= (a1,a2,a3
)

exp
{
i(qx− tω)

}
, (3.5)

where ai’s (i= 1,2,3) are all constants. Here, ω is the prescribed frequency; q is the wave
number to be determined. The phase velocity is c = ω/Req and attenuation coefficient is
S=−Im(q).

Substituting (3.5) into (3.1), (3.2), and (3.3), we obtain

(
q2−ω2−Ω′2)a1− 2iωΩ′a2 + iqεθa3 = 0,

2iωΩ′β2a1 +
(
q2−β2ω2−β2Ω′2)a2 = 0,

−iqω∗ω2a1 +
(
q2−ω∗ω2)a3 = 0.

(3.6)
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For nontrivial solutions of the system (3.6), we arrive at the dispersion equation for the
coupled waves as

∣∣∣∣∣∣∣
q2−ω2−Ω′2 −2iΩ′ω iqεθ

2iΩ′ωβ2 q2−β2ω2−β2Ω′2 0
−iqω∗ω2 0 q2−ω∗ω2

∣∣∣∣∣∣∣= 0. (3.7)

When expanded, (3.7) becomes

(
q2−ω∗ω2)[(q2−ω2−Ω′2){q2−β2(ω2 +Ω′2)}− 4ω2Ω′2β2]

−εθω∗ω2q2[q2−β2(ω2 +Ω′2)]= 0.
(3.8)

If Ω′ = 0, this reduces to

(
q2−β2ω2)[(q2−ω∗ω2)(q2−ω2)− εθω

∗ω2q2]= 0, (3.9)

leading to (q2 − β2ω2) = 0, which corresponds to the uncoupled elastic shear wave in a
nonrotating medium as expected and

q4−ω2(1 +ω∗ + εθω
∗)q2 +ω∗ω4 = 0. (3.10)

The roots of (3.10) are all real, showing that the thermoelastic waves do not undergo
attenuation in thermoelasticity of type II without energy dissipation.

For εθ = 0,

q1 = ω (taking +ve sign)

=⇒ ω

Req
= 1 (nondimensional dilatational wave speed),

q2 = ω
√
ω∗ (taking −ve sign)

=⇒ ω

Req
= 1√

ω∗
=
√

K∗

ρCvc
2
1
=
√
K∗/ρCv

c1
= CT

c1
,

(nondimensional thermal wave speed),

(3.11)

where CT = finite thermal wave speed=
√
K∗/ρCv as is expected.

Equation (3.10) corresponds to the dispersion equation of the coupled thermal di-
latational waves without energy dissipation in a thermoelastic nonrotating medium in
contrast to the corresponding dispersion equation q4− q2{ω2− iω(1 + εθ)}− iω3 = 0 for
plane wave propagation in classical thermoelasticity [4, 5, 10], where waves undergo at-
tenuation.

Thus, (3.8) is a more general dispersion equation for propagation of coupled thermal
dilatational shear waves without energy dissipation in a rotating medium in the sense that
it incorporates the effect of rotation and thermoelastic coupling εθ .
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To explore and delineate the thermal, dilatational, and shearing effects, we look for
solutions for small εθ .

Equation (3.8) for εθ = 0 admits the following solutions: q2 = ω∗ω2,

2q2
2,1 =

(
β2 + 1

)
Ω2

0±
{(
β2 + 1

)2
Ω4

0− 4β2(ω2−Ω′2)2}1/2 = 2J2
2,1, (3.12)

where Ω2
0 = ω2 +Ω′2.

Since for Ω′ = 0, q1 = ω, q2 = βω, we conclude that q1 is the modified elastic dilata-
tional wave speed and q2 is the modified shear wave speed, both modified by rotation.

For small εθ , we set

q2 = q2
u = J2

1 +ηuεθ +O
(
εθ
)2

,

q2 = q2
v = J2

2 +ηvεθ +O
(
εθ
)2

,

q2 = q2
θ = ω∗ω2 +ηθεθ +O

(
εθ
)2
.

(3.13)

Substituting into (3.8) and equating coefficients of like powers of εθ , we obtain

ηu =
[−ω∗ω2J2

1

(
J2
1 −β2ω2−β2Ω′2)]

× [(J2
1 −ω∗ω2)(2J2

1 −ω2−Ω′2−β2ω2−β2Ω′2)
+
(
J2
1−ω2−Ω′2)(J2

1 −β2ω2−β2Ω′2)− 4β2ω2Ω′2]−1
,

ηv =
[−ω∗ω2J2

2

(
J2
2 −β2ω2−β2Ω′2)]

× [(J2
2 −ω∗ω2)(2J2

2 −ω2−Ω′2−β2ω2−β2Ω′2)
+
(
J2
2−ω2−Ω′2)(J2

2 −β2ω2−β2Ω′2)− 4β2ω2Ω′2]−1
,

ηθ =
[−ω∗

2
ω4(ω∗ω2−β2ω2−β2Ω′2)]

× [(ω∗ω2−ω2−Ω′2)(ω∗ω2−β2ω2−β2Ω′2)− 4β2ω2Ω′2]−1
.

(3.14)

Following Puri [11] and Agarwal [2], we may call qu, qv, qθ the speeds of modified
quasielastic, quasishear, and quasithermal waves, respectively.

If Ω′ = 0,

ηu = −ω
∗ω2

1−ω∗
, ηv = 0, ηθ = −ω

∗2
ω2

ω∗ − 1
. (3.15)

Dilatational, shear, and thermal wave speed solutions (without rotation) then reduce to

q2
u = ω2

(
1− ω∗εθ

1−ω∗

)
, q2

v = β2ω2, q2
θ = ω∗ω2

(
1− ω∗εθ

ω∗ − 1

)
, (3.16)

which are the results similar to those reported by Nayfeh and Nemat-Nasser [9] in the
nonrotating case.
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4. Case of large frequency

For large frequency ω,

ηu ∼= K1 +K2
1
ω2

, ηv ∼= K ′1 +K ′2
1
ω2

, ηθ ∼= K3 +K4ω
2 +K5

1
ω2

, (4.1)

where

K1 = ω∗J2
1β

2

a2
, K ′1 =

ω∗J2
2β

2

a2
,

K2 = ω∗J2
1β

2

a2

(
β2Ω′2− J2

1

β2
− a1− 4β2Ω′2

a2

)
,

K ′2 =
ω∗J2

2β
2

a2

(
β2Ω′2− J2

2

β2
− a′1− 4β2Ω′2

a2

)
,

K3 = ω∗2(
ω∗ −β2

)
L0

{
L1− 4β2Ω′2

L0
+

β2Ω′2

ω∗ −β2

}
,

K4 =−ω∗2(
ω∗ −β2

)
L0

,

K5 =−ω∗2(
ω∗ −β2

)
L0

{(
L1− 4β2Ω′2

L0

)2

− β2Ω′4

L0
+
β2Ω′2(L1− 4β2Ω′2)

L0
(
ω∗ −β2

) }
,

a1 =−J2
1

(
1 +β2)−ω∗

(
2J2

1 −Ω′2−β2Ω′2)−β2(J2
1 −Ω′2)− (J2

1 −β2Ω′2),
a′1 =−J2

2

(
1 +β2)−ω∗

(
2J2

2 −Ω′2−β2Ω′2)−β2(J2
2 −Ω′2)− (J2

2 −β2Ω′2),
a2 = ω∗

(
1 +β2)+β2, L0 =

(
ω∗ − 1

)(
ω∗ −β2),

L1 =−β2Ω′2(ω∗ − 1
)−Ω′2(ω∗ −β2).

(4.2)

Therefore,

q2
u = J2

1 +
(
K1 +K2

1
ω2

)
εθ ,

q2
v = J2

2 +
(
K ′1 +K ′2

1
ω2

)
εθ ,

q2
θ = ω∗ω2 +

(
K3 +K4ω

2 +K5
1
ω2

)
εθ.

(4.3)

Quasielastic dilatational wave speed modified by both rotation and thermoelastic cou-
pling εθ equals ω/qu ∼= (ω/J1)[1− (1/2J2

1 )(K1 +K2(1/ω2))εθ].
Modified quasielastic shear wave speed=ω/qv ∼= (ω/J2)[1−(1/2J2

2 )(K ′1 +K ′2(1/ω2))εθ].
Thus, rotation affects both quasidilatational and shear wave speeds to the first power

in 1/ω for large frequency, since Ki, K ′i is independent of Ω′.
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Modified quasithermal wave speed= ω/qθ ∼= (1/
√
ω∗)[1−K3εθ/2ω∗ω2−K4εθ/2ω∗].

Rotation affects quasithermal wave speed to the second order in 1/ω for large fre-
quency.

5. Case of low frequency

For small ω,

ηu ∼=D1ω
2, ηv ∼=D2ω

2, ηθ ∼=D3ω
4, (5.1)

where

D1 =−ω∗J2
1

(
J2
1 −β2Ω′2)
a0

, D2 =−ω∗J2
2

(
J2
2 −β2Ω′2)
a′0

, D3 = ω∗2

Ω′2 ,

a′0 = J2
2

(
2J2

2 −Ω′2−β2Ω′2)+
(
J2
2 −Ω′2)(J2

2 −β2Ω′2).
(5.2)

Therefore, q2
u = J2

1 +D1ω2εθ , q2
v = J2

2 +D2ω2εθ , q2
θ = ω∗ω2 +D3ω4εθ .

Modified dilatational wave speed= ω/qu ∼= (ω/J1)[1−D1ω2εθ/2J2
1 ], corresponding to

the modified quasielastic dilatational wave speed influenced by rotation and thermal field.
Modified elastic shear wave speed= ω/qv ∼= (ω/J2)[1−D2ω2εθ/2J2

2 ], corresponding to
the modified quasielastic shear wave influenced by rotation and thermal field.

Modified thermal wave speed= ω/qθ ∼= (1/
√
ω∗)[1−D3ω2εθ/2ω∗], corresponding to

the modified quasithermal wave influenced by rotation and thermoelastic coupling εθ .
It is observed that the rotation of the medium affects both quasielastic dilatational and

shear wave speeds to the first power in ω for low frequency, while the thermal wave speed
is affected by rotation up to the second power of ω.
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