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The concept of mixed-type duality has been extended to the class of multiobjective frac-
tional variational control problems. A number of duality relations are proved to relate
the efficient solutions of the primal and its mixed-type dual problems. The results are
obtained for ρ-convex (generalized ρ-convex) functions. The results generalize a num-
ber of duality results previously obtained for finite-dimensional nonlinear programming
problems under various convexity assumptions.

1. Introduction

Duality for multiobjective fractional variational problems has been of great interest in
recent years [6, 7, 19]. Under different assumptions of convexity (convexity, generalized
convexity, generalized ρ-convexity), Weir and Mond [16], Weir [15], and Egudo [4] have
used efficiency to establish some duality results, where Wolfe [17] and Mond-Weir [11]
duals are considered. Recently, Xu [18] introduced a mixed-type duality model, which
contains Wolfe and Mond-Weir duality models as special cases and established various
duality results by relating “efficient” solutions of his mixed-type dual pair of problems.

Preda [13] introduced the concept of generalized (F,ρ)-convexity, an extension of F-
convexity defined by Hanson and Mond [5], and generalized ρ-convexity defined by Vial
[14], and he used the concept to obtain some duality results. In [8], Mishra and Mukher-
jee discussed duality for multiobjective variational problems containing generalized (F,
ρ)-convex functions. Some duality results for a class of differentiable multiobjective vari-
ational problems were studied in [3]. Mond and Hanson [10] have obtained duality the-
orems for control problems. Mond and Hanson [9] considered a dual formulation for a
class of variational problems. Nahak and Nanda [12] used the concept of efficiency to for-
mulate Wolfe and Mond-Weir type duals for multiobjective variational control problems
and established weak and strong duality theorems under generalized (F,ρ)-convexity as-
sumptions.

In this paper, we introduce a continuous analog of the (static) mixed-type dual of Xu
[18] in a class of multiobjective fractional variational control problems and establish a
large number of duality results by relating efficient solutions between this mixed-type
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dual pair. The results are obtained for differentiable ρ-convex (generalized ρ-convex)
functions in their continuous version.

2. Definitions and preliminaries

We use the following notations for vector inequalities. For x, y ∈Rn,

x ≤ y⇐⇒ xi ≤ yi for i= 1,2, . . . ,n,

x < y⇐⇒ xi < yi for i= 1,2, . . . ,n.
(2.1)

Let I = [a,b] be a real interval and let K = {1,2, . . . ,k} and M = {1,2, . . . ,m}. Let
φ : I ×Rn×Rn×Rm×Rm→R be continuously differentiable function. In order to con-
sider φ(t,x(t), ẋ(t),u(t), u̇(t)), where x(t) : I → Rn, u(t) : I → Rm are differentiable with
derivatives ẋ(t) and u̇(t), respectively. For notational simplicity, we write x(t), ẋ(t), u(t),
u̇(t) as x, ẋ, u, u̇, respectively, as and when necessary. We denote the partial derivatives of
φ by φx and φẋ, where

φx =
[
∂φ

∂x1
,
∂φ

∂x1
, . . . ,

∂φ

∂xn

]
,

φẋ =
[
∂φ

∂ẋ1
,
∂φ

∂ẋ2
, . . . ,

∂φ

∂ẋn

]
.

(2.2)

The partial derivatives of other functions used will be written similarly. Let PS(I ,Rn)
denote the space of piecewise smooth functions x with norm ‖x‖ = ‖x‖∞ + ‖Dx‖∞,
where the differentiation operator D is given by

y =Dx⇐⇒ x(t)= α+
∫ b

a
y(s)ds (2.3)

in which α is a given boundary value. Therefore, D = d/dt except at discontinuities.
Consider the following multiobjective variational control programming problem.

Minimize
∫ b

a
f (t,x, ẋ,u, u̇)dt =

∫ b

a
f 1(t,x, ẋ,u, u̇)dt, . . . ,

∫ b

a
f k(t,x, ẋ,u, u̇)dt,

subject to x(a)= α, x(b)= β,∫ b

a
h(t,x, ẋ,u, u̇)dt ≤ 0, t ∈ [a,b], x ∈ PS

(
I ,Rn

)
, y ∈ PS

(
I ,Rm

)
,

f : [a,b]×Rn×Rn×Rm×Rm −→×Rk,

h : [a,b]×Rn×Rn×Rm×Rm −→×Rm

(2.4)

are assumed to be continuously differentiable vector functions.
Let X denote the set of feasible solutions of (2.4).
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Definition 2.1. A point (x0,u0) in X is said to be an efficient solution of (2.4) if for all
(x,u) in X ,

∫ b

a
f i
(
t,x0, ẋ0,u0, u̇0)dt ≥

∫ b

a
f i(t,x, ẋ,u, u̇)dt

=⇒
∫ b

a
f i
(
t,x0, ẋ0,u0, u̇0)dt =

∫ b

a
f i(t,x, ẋ,u, u̇)dt

∀i∈ {1,2, . . . ,k}.

(2.5)

Definition 2.2. A point (x0,u0) in X is said to be a weak minimum for problem (2.4) if
there exists no other (x,u) in X for which

∫ b

a
f i
(
t,x0, ẋ0,u0, u̇0)dt >

∫ b

a
f i(t,x, ẋ,u, u̇)dt. (2.6)

From the above two definitions, it follows that if (x,u) in X is an efficient solution for
(2.4), then it is also a weak minimum for (2.4).

Definition 2.3. The functional F : I ×Rn ×Rn ×Rm ×Rm ×Rn ×Rn ×Rm ×Rm → R is
sublinear if for any x,x0 ∈Rn, ẋ, ẋ0 ∈Rn, u,u0 ∈Rm, u̇, u̇0 ∈Rm,

F
(
t,x, ẋ,u, u̇,x0, ẋ0,u0, u̇0;α1 +α2

)
≤ F

(
t,x, ẋ,u, u̇,x0, ẋ0,u0, u̇0;α1

)
+F

(
t,x, ẋ,u, u̇,x0, ẋ0,u0, u̇0;α2

)
,

F
(
t,x, ẋ,u, u̇,x0, ẋ0,u0, u̇0;αa

)= αF
(
t,x, ẋ,u, u̇,x0, ẋ0,u0, u̇0;a

) (2.7)

for any α1,α2 ∈Rn, α∈R, α≥ 0 and a∈Rn.

Definition 2.4. Let F[x,u] = ∫ ba f (t,x, ẋ,u, u̇)dt be Fréchet differentiable. Let ρ be a real
number. Then the functional F at a point (x0,u0) in X is said to be

(a) ρ-convex if there exists a real number ρ such that

∫ b

a
f i(t,x, ẋ,u, u̇)dt−

∫ b

a
f i
(
t,x0, ẋ0,u0, u̇0)dt

≥
∫ b

a

{(
x− x0) fx0

(
t,x0, ẋ0,u0, u̇0)+

(
D
(
x− x0)) fẋ0

(
t,x0, ẋ0,u0, u̇0)}dt+ ρ

∥∥x− x0
∥∥2

;

(2.8)

the function f is said to be strictly ρ-convex if strict inequality holds;
(b) ρ-pseudoconvex if there exists a real number ρ such that

∫ b

a

{(
x− x0) fx0

(
t,x0, ẋ0,u0, u̇0)+

(
D
(
x− x0)) fẋ0

(
t,x0, ẋ0,u0, u̇0)}dt ≥−ρ∥∥x− x0

∥∥2

=⇒
∫ b

a
f i(t,x, ẋ,u, u̇)dt ≥

∫ b

a
f i
(
t,x0, ẋ0,u0, u̇0)dt;

(2.9)
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the function f is said to be strictly ρ-pseudoconvex if strict inequality holds in the
right-hand inequality of the above implication;

(c) ρ-quasiconvex if there exists a real number ρ such that

∫ b

a
f i(t,x, ẋ,u, u̇)dt ≤

∫ b

a
f i
(
t,x0, ẋ0,u0, u̇0)dt

=⇒
∫ b

a

{(
x−x0) fx0

(
t,x0, ẋ0,u0, u̇0)+

(
D
(
x−x0)) fẋ0

(
t,x0, ẋ0,u0, u̇0)}dt ≤−ρ∥∥x− x0

∥∥2
.

(2.10)

Now we use the term “generalized ρ-convexity” to indicate ρ-pseudoconvexity, ρ-quas-
iconvexity, and so forth. Let l = (l1, l2, . . . , ln) be the n-dimensional vector function and let
each of its components be ρ-convex (generalized ρ-convex) at the same point (x0,u0).
Also let q = (q1,q2, . . . ,qn) be a vector constant such that qi ≥ 0 for all i = 1,2, . . . ,n.
Then

(a) ΣN li(t,·,·,·,·) is ΣNρi-convex at (x0,u0);
(b) each qi f i(t,·,·,·,·) is qiρi-convex at (x0,u0); and hence
(c) l(t,·,·,·,·) is ΣNρi-convex at (x0,u0).

These properties will be used frequently throughout the paper. We state the continuous
version of [16, Theorem 3.2] in the form of the following proposition, which will be
needed in the proof of the strong duality theorem.

Proposition 2.5. Let (x̄, ū) be a weak minimum for (2.4) at which the Kuhn-Tucker con-
straint qualification is satisfied. Then there exists λ in Rk and a piecewise smooth β(·) : I →
Rk such that

[
λT fx̄

(
t, x̄, ¯̇x, ū, ¯̇u

)
+βThx̄

(
t, x̄, ¯̇x, ū, ¯̇u

)]=D
[
λT f ¯̇x

(
t, x̄, ¯̇x, ū, ¯̇x

)
+βTh ¯̇x

(
t, x̄, ¯̇x, ū, ¯̇u

)]
,∫ b

a
βTh

(
t, x̄, ¯̇x, ū, ¯̇u

)
dt = 0, β(t)≥ 0, λTe = 1, λ≥ 0,

(2.11)

where e is the vector of Rk, the components of which are all ones.

We divide the index set M of the constraint function of the problem (2.4) into two
distinct subsets, namely J and Q such that J ∪Q =M, and let

βTj h
j(t,x, ẋ,u, u̇)=

∑
j

β jh
j(t,x, ẋ,u, u̇),

βTQh
Q(t,x, ẋ,u, u̇)=

∑
Q

βQh
Q(t,x, ẋ,u, u̇).

(2.12)

We now consider the following multiobjective fractional variational control problem.
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(FP)

Minimize

∫ b
a f (t,x, ẋ,u, u̇)dt∫ b
a g(t,x, ẋ,u, u̇)dt

=
∫ b
a f 1(t,x, ẋ,u, u̇)dt∫ b
a g1(t,x, ẋ,u, u̇)dt

, . . . ,

∫ b
a f k(t,x, ẋ,u, u̇)dt∫ b
a gk(t,x, ẋ,u, u̇)dt

, (2.13)

subject to x(a)= α, x(b)= β,
∫ b

a
h(t,x, ẋ,u, u̇)dt ≤ 0, t ∈ [a,b], (2.14)

x ∈ PS
(
I ,Rn

)
, y ∈ PS(I ,Rm), (2.15)

f : [a,b]×Rn×Rn×Rm×Rm −→Rk, g : [a,b]×Rn×Rn×Rm×Rm −→Rk,
(2.16)

h : [a,b]×Rn×Rn×Rm×Rm −→Rm (2.17)

are assumed to be continuously differentiable vector functions. Also we assume that

∫ b

a
f (t,·,·,·,·)dt ≥ 0,

∫ b

a
g(t,·,·,·,·)dt > 0, i= 1,2, . . . ,k. (2.18)

Following Bector et al. [1], the problem (FP)v stated below is associated with the given
problem (FP) for v ∈Rk

+, where Rk
+ is the positive orthant of Rk.

(FP)v

Minimize
∫ b

a

[
f (t,x, ẋ,u, u̇)− vTg(t,x, ẋ,u, u̇)

]
dt,

subject to (2.14).
(2.19)

The following lemma connecting (FP) and (FP)v has been proved in [2].

Lemma 2.6. Let (x0,u0) be an efficient solution to (FP). Then there exists v0 ∈Rk
+ such that

(x0,u0) is efficient to the problem (FP)v, where Rk
+ is the positive orthant of Rk.

3. Duality

Now we introduce the continuous analog of the static mixed-type dual [8] for the primal
problem (2.4).

(FD)

Maximize
∫ b

a

{(
f
(
t,x0, ẋ0,u0, u̇0)− vTg

(
t,x0, ẋ0,u0, u̇0))+βTj (t)hj

(
t,x0, ẋ0,u0, u̇0)e}dt,

subject to x(a)= α, x(b)= β,
(3.1)[

λT
(
fx0

(
t,x0, ẋ0,u0, u̇0)− vTgx0

(
t,x0, ẋ0,u0, u̇0))+βThx0

(
t,x0, ẋ0,u0, u̇0)]

=D
[
λT
(
fẋ0

(
t,x0, ẋ0,u0, u̇0)− vTgẋ0

(
t,x0, ẋ0,u0, u̇0))+βThẋ0

(
t,x0, ẋ0,u0, u̇0)],

(3.2)∫ b

a

(
f (t,x, ẋ,u, u̇)− vTg(t,x, ẋ,u, u̇)

)
dt ≥ 0, (3.3)
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∫ b

a
βTQ(t)hQ

(
t,x0, ẋ0,u0, u̇0)dt ≥ 0, (3.4)

β(t)≥ 0, λTe = 1, λ≥ 0, (3.5)

where e is the vector of Rk, the components of which are all ones.
Here we present a number of duality results between (FP)v and (FD) by imposing var-

ious ρ-convexity (generalized ρ-convexity) conditions upon the objective and constraint
functions. We begin with a situation in which all of the functions are ρ-convex. Subse-
quently, we formulate more general duality criteria in which the generalized ρ-convexity
requirements are placed on certain combinations of the objective and constraint func-
tions.

Let Y denote the set of all feasible solutions of (FD).

Theorem 3.1. Assume that for all feasible (x,u) for (FP)v and for all feasible (x0,u0,λ,v,β)
for (FD),

(a) for each i∈ K , f i(t,·,·,·,·),−gi(t,·,·,·,·) is ρi-convex, and for each j ∈M, hj(t,·,·,
·,·) is γj-convex.

Further if either

(b) for each i∈ K , λi > 0 with ΣKλiρi +ΣMβjγj ≥ 0, or
(c) ΣKλiρi +ΣMβjγj > 0,

then

∫ b

a

(
f i(t,x, ẋ,u, u̇)− vigi(t,x, ẋ,u, u̇)

)
dt

≤
∫ b

a

{(
f i
(
t,x0, ẋ0,u0, u̇0)− vigi

(
t,x0, ẋ0,u0, u̇0))

+βTj h
j
(
t,x0, ẋ0,u0, u̇0)}dt, ∀i∈ {1,2, . . . ,k},∫ b

a

(
f i(t,x, ẋ,u, u̇)− vigi(t,x, ẋ,u, u̇)

)
dt

<
∫ b

a

{(
f i
(
t,x0, ẋ0,u0, u̇0)− vigi

(
t,x0, ẋ0,u0, u̇0))

+βTj h
j
(
t,x0, ẋ0,u0, u̇0)}dt, for some j ∈ {1,2, . . . ,k}

(3.6)

cannot hold.

Proof. If x = x0, then a weak duality theorem holds trivially, so we assume that x �= x0.
From (3.2), we have

∫ b

a

(
x− x0)[λT( fx0

(
t,x0, ẋ0,u0, u̇0)− vTgx0

(
t,x0, ẋ0,u0, u̇0))+βThx0

(
t,x0, ẋ0,u0, u̇0)]dt

=
∫ b

a

(
x− x0)D[λT( fẋ0

(
t,x0, ẋ0,u0, u̇0)− vTgẋ0

(
t,x0, ẋ0,u0, u̇0))

+βThẋ0

(
t,x0, ẋ0,u0, u̇0)]dt.

(3.7)
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Contrary to the result, we assume that (3.6) holds. Then in view of feasibility of (x,u)
for (FP)v, we have

∫ b

a

{(
f i(t,x, ẋ,u, u̇)− vigi(t,x, ẋ,u, u̇)

)
+βTj h

j
(
t,x, ẋ,u, u̇

)}
dt

≤
∫ b

a

{(
f i
(
t,x0, ẋ0,u0, u̇0)− vigi

(
t,x0, ẋ0,u0, u̇0))

+βTj h
j
(
t,x0, ẋ0,u0, u̇0)}dt, ∀i∈ K ,∫ b

a

{(
f i(t,x, ẋ,u, u̇)− vigi(t,x, ẋ,u, u̇)

)
+βTj h

j
(
t,x, ẋ,u, u̇

)}
dt

<
∫ b

a

{(
f i
(
t,x0, ẋ0,u0, u̇0)− vigi

(
t,x0, ẋ0,u0, u̇0))

+βTj h
j
(
t,x0, ẋ0,u0, u̇0)}dt, for some i∈ K.

(3.8)

From the strict positivity of each component λi of λ and the fact that λTe = 1, it follows
that

∫ b

a

{
λT
(
f i(t,x, ẋ,u, u̇)− vigi(t,x, ẋ,u, u̇)

)
+βTj h

j(t,x, ẋ,u, u̇)
}
dt

<
∫ b

a

{
λT
(
f i
(
t,x0, ẋ0,u0, u̇0)− vigi

(
t,x0, ẋ0,u0, u̇0))+βTj h

j
(
t,x0, ẋ0,u0, u̇0)}dt.

(3.9)

Using the definitions of ρi-convexity of ( f i(t,·,·,·,·)− vigi(t,·,·,·,·)), i∈ K , and γj-
convexity of hj(t,·,·,·,·), j ∈M, we have

∫ b

a

{(
f i(t,x, ẋ,u, u̇)− vigi(t,x, ẋ,u, u̇)

)− ( f i(t,x0, ẋ0,u0, u̇0)− vigi
(
t,x0, ẋ0,u0, u̇0))}dt

≥
∫ b

a

{(
x− x0)( f ix0

(
t,x0, ẋ0,u0, u̇0)− vigix0

(
t,x0, ẋ0,u0, u̇0))

+
(
D
(
x− x0))( f iẋ0

(
t,x0, ẋ0,u0, u̇0)− vigiẋ0

(
t,x0, ẋ0,u0, u̇0))}dt

+ ρi
∥∥x− x0

∥∥2
, ∀i∈ K ,

(3.10)∫ b

a

{
hj(t,x, ẋ,u, u̇)−hj

(
t,x0, ẋ0,u0, u̇0)}dt

≥
∫ b

a

{(
x− x0)hj

x0

(
t,x0, ẋ0,u0, u̇0)+

(
D
(
x− x0))hj

ẋ0

(
t,x0, ẋ0,u0, u̇0)}dt

+ γ
∥∥x− x0

∥∥2
, ∀ j ∈M.

(3.11)
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Now multiplying (3.10) by λi, (3.11) by βj and adding the resulting inequalities, we get

∫ b

a

{
λT
(
f (t,x, ẋ,u, u̇)− vTg(t,x, ẋ,u, u̇)

)
+βThj(t,x, ẋ,u, u̇)

− λT
(
f
(
t,x0, ẋ0,u0, u̇0)− vTg

(
t,x0, ẋ0,u0, u̇0))+βThj

(
t,x0, ẋ0,u0, u̇0)}dt

≥
∫ b

a

{(
x−x0)[λT( fx0

(
t,x0, ẋ0,u0, u̇0)−vTgx0

(
t,x0, ẋ0,u0, u̇0))+βThx0

(
t,x0, ẋ0,u0, u̇0)]

+
(
D
(
x− x0))[λT( fẋ0

(
t,x0, ẋ0,u0, u̇0)− vTgẋ0

(
t,x0, ẋ0,u0, u̇0))

+βThẋ0

(
t,x0, ẋ0,u0, u̇0)]}dt+

(∑
K

αiρi +
∑
M

βjγj

)∥∥x− x0
∥∥2
.

(3.12)

By integration by parts, the right-hand side reduces to the following via (b):

∫ b

a

{(
x− x0)[λT( fx0

(
t,x0, ẋ0,u0, u̇0)− vTgx0

(
t,x0, ẋ0,u0, u̇0))+βThx0

(
t,x0, ẋ0,u0, u̇0)]}dt

+
{[
λT
(
fẋ0

(
t,x0, ẋ0,u0, u̇0)−vigẋ0

(
t,x0, ẋ0,u0, u̇0))+βThẋ0

(
t,x0, ẋ0,u0, u̇0)](x−x0)}t=β

t=α

−
∫ b

a

(
x− x0)D[λT( fẋ0

(
t,x0, ẋ0,u0, u̇0)− vTgẋ0

(
t,x0, ẋ0,u0, u̇0))

+βThẋ0

(
t,x0, ẋ0,u0, u̇0)]dt.

(3.13)

On using the boundary conditions (3.7), it yields

∫ b

a

{
λT
(
f (t,x, ẋ,u, u̇

)− vTg
(
t,x, ẋ,u, u̇

))
+βTh

(
t,x, ẋ,u, u̇

)
− λT

(
f
(
t,x0, ẋ0,u0, u̇0)− vTg

(
t,x0, ẋ0,u0, u̇0))−βTh

(
t,x0, ẋ0,u0, u̇0)}dt ≥ 0.

(3.14)

Since M = J ∪Q, so

βTh(t,·,·,·,·)= βTj h
j(t,·,·,·,·) +βTQh

j(t,·,·,·,·), (3.15)

and hence the above inequality implies, along with (3.9), that

∫ b

a

{
βTQ(t)hQ(t,x, ẋ,u, u̇)−βTQ(t)hQ

(
t,x0, ẋ0,u0, u̇0)}dt > 0. (3.16)

Now since
(
x0,u0,λ,v,β

)∈ Y , from (3.4),

∫ b

a
βTQ(t)hQ(t,x, ẋ,u, u̇)dt > 0, (3.17)

which is a contradiction to the fact that (x,u) is feasible for (FP)v, and therefore (3.6)
cannot hold.
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(c) In this case, the multipliers λi of the objective function ( f i(t,·,·,·,·)− vigi(t,·,·,
·,·)) need not be strictly positive, and it gives ≤ in place of < of (3.9). If we assume the
condition in (c), we get > in place of ≥ of (3.14). So, we get (3.16) and we conclude the
theorem as in the case of (b). And it completes the proof. �

The above theorem has a number of important special cases, which can be identified
by the properties of ρ-convex functions. Here we state some of them as corollaries.

Corollary 3.2. Assume that for all feasible (x,u) for (FP)v and for all feasible (x0,u0,λ,
v,β) for (FD),

(a) for each i∈ K , f i(t,·,·,·,·),−gi(t,·,·,·,·) is ρi-convex, and for each j∈M, βTj h
j(t,·,

·,·,·) is γj-convex.

Further if either

(b) for each i∈ K , λi > 0 with ΣKλiρi +ΣMγj ≥ 0, or
(c) ΣKλiρi +ΣMγj > 0,

then (3.6) cannot hold.

Proof. Since hj(t,·,·,·,·) is γj-convex, whenever βTj h
j(t,·,·,·,·) is βjγj-convex and βj ≥

0, the proof is similar to Theorem 3.1. �

Corollary 3.3. For all feasible (x,u) for (FP)v and for all feasible (x0,u0,λ,v,β) for (FD),
assume that Corollary 3.2 holds, except that instead of βTj h

j(t,·,·,·,·) being γj-convex, the

function (t,x0, ẋ0,u0, u̇0) → ΣMβ
T
j h

j(t,x0, ẋ0,u0, u̇0) is γ-convex, and instead of Corollary
3.2(b) and (c), the following conditions hold, respectively,

(b) for each i∈ K , λi > 0 with ΣKλiρi + γ ≥ 0,
(c) ΣKλiρi + γ > 0.

Then (3.6) cannot hold.

We note that, in Theorem 3.1, each constraint function hj(t,·,·,·,·) is assumed to be
γj-convex whereas, in Corollary 3.3, all constraint functions are aggregated into one γ-
convex function. So, it is possible to consider a situation intermediate between these two
extreme cases (keeping in view the partition of the constraint function in the objective
function of the dual problem (FD)) in which some of the constraint functions can be
combined into γ-convex function while the rest are individually γ-convex. Situations of
this type are presented in the next two corollaries.

Corollary 3.4. Assume that for all feasible (x,u) for (FP)v and for all feasible (x0,u0,λ,
v,β) for (FD),

(a) for each i ∈ K , f i(t,·,·,·,·), −gi(t,·,·,·,·) is ρi-convex and βTj h
j(t,·,·,·,·) is γj-

convex, whereas βTQh
j(t,·,·,·,·) is γQ-convex.

Further if either

(b) for each i∈ K , λi > 0 with ΣKλiρi + γj +ΣQγj ≥ 0, or
(c) ΣKλiρi + γj +ΣQγj > 0,

then (3.6) cannot hold.
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Corollary 3.5. Assume that for all feasible (x,u) for (FP)v and for all feasible (x0,u0,λ,
v,β) for (FD),

(a) for each i ∈ K , f i(t,·,·,·,·), −gi(t,·,·,·,·) is ρi-convex and βTj h
j(t,·,·,·,·) is γj-

convex whereas βTQh
j(t,·,·,·,·) is γQ-convex.

Further if either

(b) for each i∈ K , λi > 0 with ΣKλiρi + γj + γQ ≥ 0, or
(c) ΣKλiρi + γj + γQ > 0,

then (3.6) cannot hold.

Corollary 3.6. Assume that for all feasible (x,u) for (FP)v and for all feasible (x0,u0,λ,
v,β) for (FD),

(a) λT[ f (t,·,·,·,·)− vTg(t,·,·,·,·)] +βTh(t,·,·,·,·) is γ-convex.

Further if either

(b) for each i∈ K , λi > 0 with ρ ≥ 0, or
(c) ρ > 0,

then (3.6) cannot hold.

In the rest of this section, we use the generalized ρ-convexity. So, we restrict ourselves
in most of the cases to situations in which only scalarizations of the objective and con-
straint functions are considered. The related corollaries can also be seen as in the case of
Theorem 3.1. Therefore, we do not state these corollaries explicitly.

Theorem 3.7. Assume that for all feasible (x,u) for (FP)v and for all feasible (x0,u0,λ,v,β)
for (FD),

(a) βTQh
Q(t,·,·,·,·) is ρ-quasiconvex,

(b) for i ∈ K , λi > 0 and ( f i(t,·,·,·,·)− vigi(t,·,·,·,·)) + βTj h
j(t,·,·,·,·) is both γi-

quasiconvex and γi-pseudoconvex with ΣKλiγi + ρ≥ 0.

Then (3.6) cannot hold.

Proof. If x = x0, then a weak duality theorem holds trivially, so we assume that x �= x0.
Since (x,u)∈ X and (x0,u0,λ,v,β)∈ Y , we have

∫ b

a
βTQh

Q(t,x, ẋ,u, u̇)dt ≤ 0≤
∫ b

a
βTQ(t)hQ

(
t,x0, ẋ0,u0, u̇0)dt. (3.18)

ρ-quasiconvexity in (a), in view of the above theorem, implies that

∫ b

a

{(
x− x0)βTQhQx0

(
t,x0, ẋ0,u0, u̇0)+

[
D
(
x− x0)βTQhQẋ0

(
t,x0, ẋ0,u0, u̇0)]}dt

≤−ρ∥∥x− x0
∥∥2
.

(3.19)
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The substitution of the duality constraint (3.2) in the first term of the above implication
gives us, along with (3.15),

∫ b

a

[(
x− x0){D[λT( fẋ0

(
t,x0, ẋ0,u0, u̇0)− vTgẋ0

(
t,x0, ẋ0,u0, u̇0))+βTj h

j
ẋ0

(
t,x0, ẋ0,u0, u̇0)

+βTQh
Q
ẋ0

(
t,x0, ẋ0,u0, u̇0)]−λT( fx0

(
t,x0, ẋ0,u0, u̇0)−vTgx0

(
t,x0, ẋ0,u0, u̇0))

+βTj h
j
ẋ0

(
t,x0, ẋ0,u0, u̇0)}]dt+

∫ b

a

{
D
(
x− x0)βTQhQẋ0

(
t,x0, ẋ0,u0, u̇0)}dt

≤−ρ∥∥x− x0
∥∥2
.

(3.20)

By integration by parts and making use of boundary conditions, we get

∫ b

a

(
x− x0){λT( fx0

(
t,x0, ẋ0,u0, u̇0)− vTgx0

(
t,x0, ẋ0,u0, u̇0))+βTj h

j
x0

(
t,x0, ẋ0,u0, u̇0)

+
(
D
(
x− x0))[λT( fẋ0

(
t,x0, ẋ0,u0, u̇0)− vTgẋ0

(
t,x0, ẋ0,u0, u̇0))

+βTj h
j
ẋ0

(
t,x0, ẋ0,u0, u̇0)]}dt

≥ ρ
∥∥x− x0

∥∥2
.

(3.21)

So making use of the condition ΣKλiγi + ρ≥ 0 and as λTe = 1, we get

∑
K

λi

∫ b

a

{(
x−x0)[( f ix0

(
t,x0, ẋ0,u0, u̇0)−vigix0

(
t,x0, ẋ0,u0, u̇0))+βTj h

j
x0

(
t,x0, ẋ0,u0, u̇0)]

+
[
D
(
x− x0)]λi[( f iẋ0

(
t,x0, ẋ0,u0, u̇0)− vigiẋ0

(
t,x0, ẋ0,u0, u̇0))

+βTj h
j
ẋ0

(
t,x0, ẋ0,u0, u̇0)]}dt ≥−

(∑
K

λiγi

)∥∥x− x0
∥∥2
.

(3.22)

Since λi > 0, i∈ K , it follows from the above that

∫ b

a

{(
x− x0)[( f ix0

(
t,x0, ẋ0,u0, u̇0)− vigix0

(
t,x0, ẋ0,u0, u̇0))+βTj h

j
x0

(
t,x0, ẋ0,u0, u̇0)]

+
[
D
(
x− x0)][( f iẋ0

(
t,x0, ẋ0,u0, u̇0)−vigiẋ0

(
t,x0, ẋ0,u0, u̇0))+βTj hj

ẋ0

(
t,x0, ẋ0,u0, u̇0)]}dt

≥−γi
∥∥x− x0

∥∥2
, ∀i∈ K ,

(3.23)∫ b

a

{(
x− x0)[( f ix0

(
t,x0, ẋ0,u0, u̇0)− vigix0

(
t,x0, ẋ0,u0, u̇0))+βTj h

j
x0

(
t,x0, ẋ0,u0, u̇0)]

+
[
D
(
x− x0)][( f iẋ0

(
t,x0, ẋ0,u0, u̇0)−vigiẋ0

(
t,x0, ẋ0,u0, u̇0))+βTj hj

ẋ0

(
t,x0, ẋ0,u0, u̇0)]}dt

>−γi
∥∥x− x0

∥∥2
, for some i∈ K.

(3.24)
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Suppose (3.23) holds, then the γi-pseudoconvexity assumption in (b) gives along with
the feasibility of (x,u) for (FP)v, for all i∈ K ,

∫ b

a

(
f i(t,x, ẋ,u, u̇)− vigi(t,x, ẋ,u, u̇)

)
dt

≥
∫ b

a

{(
f i
(
t,x0, ẋ0,u0, u̇0)− vigi

(
t,x0, ẋ0,u0, u̇0))+βTj h

j
(
t,x0, ẋ0,u0, u̇0)}dt.

(3.25)

Now, suppose (3.24) holds, then the equivalent form of the γi-quasiconvexity assumption
in (b) gives, along with the feasibility of (x,u) for (FP)v, for some i∈ K ,

∫ b

a

(
f i(t,x, ẋ,u, u̇)− vigi(t,x, ẋ,u, u̇)

)
dt

>
∫ b

a

{(
f i
(
t,x0, ẋ0,u0, u̇0)− vigi

(
t,x0, ẋ0,u0, u̇0))+βTj h

j
(
t,x0, ẋ0,u0, u̇0)}dt.

(3.26)

So (3.25) and (3.26) show that (3.6) cannot hold, and this completes the proof. �

The following Theorem 3.8 is stated without proof.

Theorem 3.8. Assume that for all feasible (x,u) for (FP)v and for all feasible (x0,u0,λ,v,β)
for (FD),

(a) βTQh
Q(t,·,·,·,·) is ρ-quasiconvex,

(b) for each i ∈ K , λi > 0 and ( f i(t,·,·,·,·)− vigi(t,·,·,·,·)) + βTj h
j(t,·,·,·,·) is γi-

quasiconvex and there exists some q ∈ K such that it is strictly γq-pseudoconvex (with
the corresponding component λq of λ positive) with ΣKλiγi + ρ ≥ 0.

Then (3.6) cannot hold.

Theorem 3.9. Assume that for all feasible (x,u) for (FP)v and for all feasible (x0,u0,λ,v,β)
for (FD),

(a) βTQh
Q(t,·,·,·,·) is ρ-quasiconvex,

(b) for each i ∈ K , λi > 0 and λT( f (t,·,·,·,·)− vTg(t,·,·,·,·)) + βTj h
j(t,·,·,·,·) is γ-

pseudoconvex with ρ+ γ ≥ 0.

Then (3.6) cannot hold.

Proof. As in the case of Theorem 3.7, we assume that x �= x0 and get (3.21). Now using
the condition ρ+ γ ≥ 0 and by our ρ-pseudoconvexity assumption in (b), we get

∫ b

a

{
λT
(
f (t,x, ẋ,u, u̇)− vTg(t,x, ẋ,u, u̇)

)
dt+βTj h

j
(
t,x, ẋ,u, u̇

)}
dt

≥
∫ b

a

{
λT
(
f
(
t,x0, ẋ0,u0, u̇0)− vTg

(
t,x0, ẋ0,u0, u̇0))+βTj h

j
(
t,x0, ẋ0,u0, u̇0)}dt.

(3.27)
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The feasibility of (x,u) for (FP)v and the fact that λTe = 1 imply

λT
∫ b

a

(
f (t,x, ẋ,u, u̇)− vTg(t,x, ẋ,u, u̇)

)
dt

≥ λT
∫ b

a

{(
f
(
t,x0, ẋ0,u0, u̇0)− vTg

(
t,x0, ẋ0,u0, u̇0))+βTj h

j
(
t,x0, ẋ0,u0, u̇0)}dt.

(3.28)

This concludes the theorem, since λi ≥ 0 for each i∈ K . �

Theorem 3.10. Assume that for all feasible (x,u) for (FP)v and for all feasible (x0,u0,λ,v,β)
for (FD),

(a) for each i ∈ K , λi > 0 and ( f i(t,·,·,·,·)− vigi(t,·,·,·,·)) + βTh(t,·,·,·,·) is both
ρ-pseudoconvex and ρ-quasiconvex with ΣKλiρi ≥ 0.

Then (3.6) cannot hold.

Proof. We assume that x �= x0. From the duality constraint (3.2), we get (3.7). Now by
integration by parts,

∫ b

a

(
x− x0)[λT( fx0

(
t,x0, ẋ0,u0, u̇0)− vTgx0

(
t,x0, ẋ0,u0, u̇0))+βThx0

(
t,x0, ẋ0,u0, u̇0)]dt

= {(x−x0)[λT( fẋ0

(
t,x0, ẋ0,u0, u̇0)−vTgẋ0

(
t,x0, ẋ0,u0, u̇0))+βThẋ0

(
t,x0, ẋ0,u0, u̇0)]}t=β

t=α

−
∫ b

a

[
D
(
x− x0)][λT( fẋ0

(
t,x0, ẋ0,u0, u̇0)− vTgẋ0

(
t,x0, ẋ0,u0, u̇0))

+βThẋ0

(
t,x0, ẋ0,u0, u̇0)]dt.

(3.29)

Since λi > 0, i∈ K , and by the fact that λTe = 1, we get

∑
k

λi

∫ b

a

{(
x− x0)[( f ix0

(
t,x0, ẋ0,u0, u̇0)− vigix0

(
t,x0, ẋ0,u0, u̇0))+βThx0

(
t,x0, ẋ0,u0, u̇0)]

+
[
D
(
x− x0)][( f iẋ0

(
t,x0, ẋ0,u0, u̇0)− vigiẋ0

(
t,x0, ẋ0,u0, u̇0))

+βThẋ0

(
t,x0, ẋ0,u0, u̇0)]}dt = 0.

(3.30)

Given that ΣKλiρi ≥ 0 and ‖x− x0‖2 is always positive,

∑
k

λi

∫ b

a

{(
x− x0)[( f ix0

(
t,x0, ẋ0,u0, u̇0)− vigix0

(
t,x0, ẋ0,u0, u̇0))+βThx0

(
t,x0, ẋ0,u0, u̇0)]

+
[
D
(
x− x0)][( f iẋ0

(
t,x0, ẋ0,u0, u̇0)− vigiẋ0

(
t,x0, ẋ0,u0, u̇0))

+βThẋ0

(
t,x0, ẋ0,u0, u̇0)]}dt ≥−ΣKλiρi

∥∥x− x0
∥∥2
.

(3.31)
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Again using the nonnegativity of each λi, i∈ K , and ρ-pseudoconvexity and the equiv-
alent form of ρ-quasiconvexity in Theorem 3.10(a), it follows from the above inequal-
ity that

∫ b

a

{(
f i(t,x, ẋ,u, u̇)− vigi(t,x, ẋ,u, u̇)

)
+βTh(t,x, ẋ,u, u̇)

}
dt

≥
∫ b

a

{(
f i
(
t,x0, ẋ0,u0, u̇0)− vigi

(
t,x0, ẋ0,u0, u̇0))

+βTh
(
t,x0, ẋ0,u0, u̇0)}dt, ∀i∈ K ,∫ b

a

{(
f i(t,x, ẋ,u, u̇)− vigi(t,x, ẋ,u, u̇)

)
+βTh(t,x, ẋ,u, u̇)

}
dt

>
∫ b

a

{(
f i
(
t,x0, ẋ0,u0, u̇0)− vigi

(
t,x0, ẋ0,u0, u̇0))

+βTh
(
t,x0, ẋ0,u0, u̇0)}dt, for some i∈ K.

(3.32)

Now using the feasibility of (x,u) for (FP)v and (x0,u0,λ,v,β) for (FD) provides us with
the desired conclusion that (3.6) cannot hold. �

Next we state the last weak duality theorem. The proof is on similar lines as earlier.

Theorem 3.11. Assume that for all feasible (x,u) for (FP)v and for all feasible (x0,u0,λ,v,β)
for (FD),

(a) for each i ∈ K , λi > 0 and λT( f (t,·,·,·,·)− vTg(t,·,·,·,·)) + βTh(t,·,·,·,·) is ρ-
convex with ρ ≥ 0, or

(b) λT( f (t,·,·,·,·)− vTg(t,·,·,·,·)) +βTh(t,·,·,·,·) is strictly ρ-convex with ρ≥ 0.

Then (3.6) cannot hold.

Assumption (b) above that λT( f (t,·,·,·,·)− vTg(t,·,·,·,·)) +βTh(t,·,·,·,·) is strictly
ρ-convex can be replaced by much weaker conditions. This leads to the following corol-
lary.

Corollary 3.12. For all feasible (x,u) for (FP)v and for all feasible (x0,u0,λ,v,β) for (FD),
assume that Theorem 3.11 holds, except that instead of (b), for each i∈ K , ( f i(t,·,·,·,·)−
vigi(t,·,·,·,·)) + βTh(t,·,·,·,·) is ρi-convex, and for at least one q ∈ K , ( f q(t,·,·,·,·)−
vqgq(t,·,·,·,·)) +βTh(t,·,·,·,·) is strictly ρq-convex (with the corresponding component λq
of λ positive) with ΣKλiρi ≥ 0. Then (3.6) cannot hold.

Before proving strong duality theorem, we give the following lemma.

Lemma 3.13. Assume that weak duality (any of the Theorems 3.1–3.11 or any of the Corol-
laries 3.2–3.12) holds between (FP)v and (FD). If (x̄, ū, λ̄, v̄, β̄) is feasible for (FD) with∫ b
a β̄

Th(t, x̄, ¯̇x, ū, ¯̇u)dt = 0 and (x̄, ū) is feasible for (FP)v, then (x̄, ū) is efficient for (FP)v and
(x̄, ū, λ̄, v̄, β̄) is efficient for (FD).
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Proof. On the contrary, we assume that (x̄, ū) is not efficient for (FP)v, then there exists a
feasible (x,u) for (FP)v such that

∫ b

a

(
f i(t,x, ẋ,u, u̇)− vigi(t,x, ẋ,u, u̇)

)
dt

≤
∫ b

a

(
f i
(
t, x̄, ¯̇x, ū, ¯̇u

)− vigi
(
t, x̄, ¯̇x, ū, ¯̇u

))
dt, ∀i∈ K ,

∫ b

a

(
f i(t,x, ẋ,u, u̇)− vigi(t,x, ẋ,u, u̇)

)
dt

<
∫ b

a

(
f i
(
t, x̄, ¯̇x, ū, ¯̇u

)− vigi
(
t, x̄, ¯̇x, ū, ¯̇u

))
dt, for some i∈ K.

(3.33)

Since
∫ b
a β̄

Th(t, x̄, ¯̇x, ū, ¯̇u)dt = 0 (⇒ ∫ b
a β̄

T
j h

j(t, x̄, ¯̇x, ū, ¯̇u)dt = 0), we can write ( f i
(
t, x̄, ¯̇x, ū,

¯̇u)− v̄i f i(t, x̄, ¯̇x, ū, ¯̇u)) + β̄Tj h
j(t, x̄, ¯̇x, ū, ¯̇u) in place of ( f i(t, x̄, ¯̇x, ū, ¯̇u)− v̄i f i(t, x̄, ¯̇x, ū, ¯̇u)) in

the right-side terms of (3.33). �

Now using the feasibility of (x,u) for (FP)v and (x̄, ū, λ̄, v̄, β̄) for (FD), we get a con-
tradiction to the weak duality. So, (x̄, ū) is efficient for (FP)v. Similarly, we can show that
(x̄, ū, λ̄, v̄, β̄) is efficient for (FD).

Now using this lemma in conjunction with the necessary optimality conditions (Prop-
osition 2.5) of Section 2, we establish the following strong duality theorem.

Theorem 3.14. Let (x̄, ū) be an efficient solution for (FP)v and assume that (x̄, ū) satisfies
the Kuhn-Tucker constraint qualification for (FP)v. Then there exists λ̄∈Rk and a piecewise
smooth function β̄ : I → Rm such that (x̄, ū, λ̄, v̄, β̄) is feasible for (FD), along with the con-

dition
∫ b
a β̄

Th(t, x̄, ¯̇x, ū, ¯̇u)dt = 0. Further, if weak duality (Theorems 3.1–3.11 or Corollaries
3.2–3.12) also holds between (FP)v and (FD), then (x̄, ū, λ̄, v̄, β̄) is efficient for (FD).
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