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We show that the reaction-diffusion system ut = ∆ϕ(u) + f (v), vt = ∆ψ(v) + g(u), with
homogeneous Neumann boundary conditions, has a positive global solution on Ω×
[0,∞) if and only if

∫∞
ds/ f (F−1(G(s)))=∞ (or, equivalently,

∫∞
ds/g(G−1(F(s)))=∞),

where F(s) = ∫ s0 f (r)dr and G(s) = ∫ s0 g(r)dr. The domain Ω ⊆ RN (N ≥ 1) is bounded
with smooth boundary. The functions ϕ, ψ, f , and g are nondecreasing, nonnegative
C([0,∞)) functions satisfying ϕ(s)ψ(s) f (s)g(s) > 0 for s > 0 and ϕ(0) = ψ(0) = 0. Ap-
plied to the special case f (s) = sp and g(s) = sq, p > 0, q > 0, our result proves that the
system has a global solution if and only if pq ≤ 1.

1. Introduction

We consider the reaction-diffusion system

ut = ∆ϕ(u) + f (v), vt = ∆ψ(v) + g(u) on Q∞ ≡Ω× (0,∞),

∂νϕ(u)= ∂νψ(v)= 0 on ∂Ω× (0,∞),

u(x,0)= u0(x)≥ 0, v(x,0)= v0(x)≥ 0 on Ω,

(1.1)

where Ω is a bounded domain in RN with a smooth boundary ∂Ω, ∂ν = ∂/∂ν is the deriv-
ative in the direction ν of the outward normal to ∂Ω, and the functions ϕ, ψ, f , and g are
nondecreasing, nonnegative C([0,∞)) functions satisfying

ϕ(s)ψ(s) f (s)g(s) > 0 for s > 0, ϕ(0)= ψ(0)= 0. (1.2)

We show that the problem (1.1) has a global solution if and only if f and g satisfy

∫∞ ds

f
(
F−1

(
G(s)

)) =∞ (
or equivalently,

∫∞ ds

g
(
G−1

(
F(s)

)) =∞), (1.3)

where F(s) ≡ ∫ s0 f (ξ)dξ and G(s) ≡ ∫ s0 g(ξ)dξ. This, in turn, is exactly the necessary and
sufficient condition needed to guarantee the existence of a global solution to the initial
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value problem for the system (see Lemma 2.2.)

y′(t)= f
(
z(t)

)
, z′(t)= g(y(t)

)
, 0 < t <∞,

y(0)= a≥ 0, z(0)= b ≥ 0, a+ b > 0.
(1.4)

In the special case f (s)= sp and g(s)= sq (p > 0,q > 0), condition (1.3) becomes pq ≤ 1.
Reaction-diffusion systems have been studied for decades (see, e.g., [4, 5, 10, 11], and

their references). The particular problem of determining conditions under which such
systems have global solutions has been the object of studies for almost as long. (See [6, 7,
8, 9, 10, 11, 15, 16, 17, 18, 19] and their references.) For the system (p > 0,q > 0)

ut = ∆u+ vp,

vt = ∆v+uq,
(1.5)

it is well known that the existence of global solutions in general depends on more than
just the values of the exponents p and q. In particular, when homogeneous Dirichlet
boundary conditions are imposed, it is well known [6, 8] that for pq ≤ 1, the system has
only global solutions, but if pq > 1, the system will have a global solution for “small” ini-
tial data but not for “large” initial data. A similar phenomenon occurs for the Cauchy
problem [5, 7]. However, our results (see Theorems 2.1 and 3.2) show that this cannot
occur with homogeneous Neumann boundary data, where blowup (i.e., no global solu-
tion) depends exclusively on the reaction terms and occurs (for (1.5)) precisely if pq > 1.
We show that this is true also in the presence of nonlinear diffusion. Thus the existence
of a global solution is also independent of the diffusion term, although the diffusion rate
may well determine the nature of blowup as in the scalar case (see [12, 14]). On the other
hand, with homogenous Dirichlet boundary data, Galaktionov et al. [10, 11] have shown
that the quasilinear system

ut = ∆uν+1 + vp,

vt = ∆vµ+1 +uq
(1.6)

has only global solutions if pq < (1 +µ)(1 + ν), but for pq ≥ (1 +µ)(1 + ν), the existence of
global solutions depends on the initial data and the size of the domain. In the present case,
this does not occur. Indeed applying Theorem 3.2 to the system (1.6) with homogeneous
Neumann boundary conditions, we find that a global solution exists if and only if pq ≤ 1.

We note also that some authors (e.g., [9, 16]) have been concerned with whether a
diffusion-free system can have a global solution while the corresponding diffusive system
does not. Obviously, this cannot occur with the present system.

2. Smooth constitutive functions

Before establishing the general case, we first consider the case where the constitutive func-
tions and the initial and boundary data are smooth. Thus we prove the following theorem.
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Theorem 2.1. Let u0 and v0 be nonnegative C∞(Ω) functions, at least one of which is non-
trivial. Assume that the functions ϕ, ψ, f , and g are nonnegative nondecreasing C∞([0,∞))
functions satisfying (1.2) and ϕ′ψ′ > 0. Then problem (1.1) has a nonnegative classical solu-
tion if and only if f and g satisfy condition (1.3).

Before proving this, we establish a preliminary lemma.

Lemma 2.2. Suppose that f and g are nonnegative nondecreasing functions on [0,∞) sat-
isfying f (s)g(s) > 0 for s > 0. Then the system of ordinary differential equation (1.4) has a
nonnegative classical solution if and only if (1.3) holds.

Proof. Necessity. Without loss of generality, assume that a > 0, and problem (1.4) has
solution (y,z). Then y′g(y) = z′ f (z), which gives d/dt[G(y)− F(z)] = 0. Thus there
is a constant K so that G(y) = F(z) + K , and clearly from the initial values of y and
z, we get K = G(a)− F(b). Let F̃(z) = F(z) +K and note that y(t) = G−1(F̃(z(t))), and
hence z′(t) = g(y(t)) = g(G−1(F̃(z(t)))) ≥ g(G−1(F̃(b))) = g(a) > 0, which implies that
limt→∞ z(t)=∞. Now, if b > 0, we get

d

dt

∫ z(t)

b

ds

g
(
G−1

(
F̃(s)

)) = 1 which implies that
∫ z(t)

b

ds

g
(
G−1

(
F̃(s)

)) = t. (2.1)

Letting t→∞, we establish condition (1.3). If b = 0, then for every ε > 0, we get

d

dt

∫ z(t)

ε

ds

g
(
G−1

(
F̃(s)

)) = 1 (2.2)

which, after integrating from δ > 0 to t, gives

∫ z(t)

ε

ds

g
(
G−1

(
F̃(s)

)) = t− δ−∫ ε
z(δ)

ds

g
(
G−1

(
F̃(s)

)) . (2.3)

Letting δ→ 0 gives

∫ z(t)

ε

ds

g
(
G−1

(
F̃(s)

)) = t−∫ ε
0

ds

g
(
G−1

(
F̃(s)

)) , (2.4)

which implies that the integral on the right converges, and hence letting ε→ 0, we estab-
lish that (2.1) holds for b = 0. The proof now continues as in the case b > 0.

Sufficiency. Now suppose that (1.3) holds. Define F̃(s)= ∫ sb f (t)dt and G̃(s)= ∫ sa g(t)dt.
We need to prove that the problem (1.4) has a classical solution. Once again, we assume
that a > 0. Define

H(s)=
∫ s
a

dσ

f
(
F̃−1

(
G̃(σ)

)) . (2.5)

Clearly, H(a)= 0, H′(s) > 0 for s > 0. Thus H is one-to-one and from (1.3), which holds
for F replaced by F̃ and G replaced by G̃, we know that H([a,∞)) = [0,∞). Now define
y : [0,∞)→ [a,∞) by y(t) =H−1(t) and define z(t) = F̃−1(G̃(y(t))). We now show that
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y, z satisfy (1.4). Clearly, y(0)= a andH(y(t))= t. ThusH′(y(t))y′(t)= 1 so that y′(t)=
f (F̃−1(G̃(y(t)))) = f (z(t)). Likewise, z(0) = F̃−1(G̃(y(0))) = F̃−1(G̃(a)) = F̃−1(0) = b,
and

z′ = G̃′(y)y′

F̃′
(
F̃−1

(
G̃(y)

)) = G̃′(y)y′

F̃′(z)
= g(y). (2.6)

This completes the proof. �

Proof of Theorem 2.1. Necessity. Suppose that problem (1.1) has a nonnegative clas-
sical solution (u,v). From [13, Theorem 5.1], there exist T0 > 0 and a > 0 such that
min{u(x, t),v(x, t)} > a on Ω× [T0,∞). We now consider the system

α′(t)= f
(
β(t)

)
2

, β′(t)= g
(
α(t)

)
2

for t > T0,

α
(
T0
)= β(T0

)= a

2
.

(2.7)

We will show that this system has a solution, and then invoke Lemma 2.2 to yield that
(1.3) holds, which will complete the proof of necessity. Clearly, the system (2.7) has a
solution on some, perhaps small, interval. Let t0 > T0 be the supremum of all values τ
such that a solution exists on [T0,τ). If t0 =∞, then the system (2.7) has a solution and
(1.3) holds as a result of Lemma 2.2. Thus suppose that t0 <∞. We will first show that

α(t) < u(x, t), β(t) < v(x, t) on Ω× [T0, t0
)
. (2.8)

Thus suppose that there exists (x̃,T)∈Ω× [T0, t0), where at least one of the two inequal-
ities (2.8) fails to hold. Let ζ ∈ C2(Ω) such that ∂νζ < 0 on ∂Ω and ζ ≥ 1 on Ω. Clearly,
inequalities (2.8) hold for t near T0 since they hold for t = T0. Hence T > T0. Define
W(x, t)= u(x, t)− εζ(x) and Z(x, t)= v(x, t)− εζ(x), where ε > 0 is chosen small so that
the following conditions hold for all s∈ [0,s0], s0 ≡maxΩ×[T0,T](u+ v):

ζ(x) <
m0

2ε
,

−ϕ′(s)∆ζ(x)− εϕ′′(s)∣∣∇ζ(x)
∣∣2 ≤ m0

4ε
,

−ψ′(s)∆ζ(x)− εψ′′(s)∣∣∇ζ(x)
∣∣2 ≤ m0

4ε
,

(2.9)

where m0 = min{a,g(a/2), f (a/2)}. Then since W(x,T0)− α(T0) = u(x,T0)− εζ(x)−
α(T0) ≥ a− εζ(x)− a/2 > 0 and similarly for Z(x,T0)− β(T0), we get W(x,T0) > α(T0)
and Z(x,T0) > β(T0) on Ω. Now let

t1 = sup
{
τ ∈ [T0,T

] |W(x, t)≥ α(t), Z(x, t)≥ β(t)∀(x, t)∈Ω× [T0,τ
]}
. (2.10)
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Clearly t1 > T0 and at t = t1, eitherW −α or Z−β is zero for some x0 ∈Ω. Without loss of
generality, we assume that it is Z−β; that is, minx∈ΩZ(x, t1)−β(t1)= Z(x0, t1)−β(t1)=
0 and W(x, t1)−α(t1)≥ 0 on Ω. Since ∂νZ = ∂νv− ε∂νζ =−ε∂νζ > 0 on ∂Ω× (T0, t0), we
must have x0 ∈Ω, and hence ∇Z(x0, t1)= 0 and ∆Z(x0, t1)≥ 0. Thus, at (x0, t1), we have
the following:

0≥ Zt −β′ = vt −β′ = ∆ψ(v) + g(u)− g(α)
2

= ψ′(v)∆v+ψ′′(v)|∇v|2 + g(u)− g(α)
2

= ψ′(v)∆(Z + εζ) +ψ′′(v)|∇Z + ε∇ζ|2 + g(u)− g(α)
2

≥ εψ′(v)∆ζ + ε2ψ′′(v)|∇ζ|2 + g(u)− g(α)
2

≥−m0

4
+ g(u)− g(α)

2

≥−m0

4
+
g(u)

2
+

[
g(u)− g(α)

]
2

≥−m0

4
+
g(α)

2
≥−m0

4
+
g(a/2)

2
> 0.

(2.11)

We thus arrive at a contradiction. Therefore inequalities (2.8) hold. Hence, the solution
of (2.7) can be extended to an interval [0, t∗0 ), where t∗0 > t0. This contradicts the fact that
t0 is the supremum of all such values. Therefore, our assumption that t0 <∞ cannot hold.
Thus (2.7) has a global solution, and therefore Lemma 2.2 implies that (1.3) holds.

Sufficiency. Now suppose that (1.3) holds. From [2, page 17], we know that there ex-
ists a maximal time T0 ∈ (0,∞] such that problem (1.1) has a (unique) solution, (u,v),
and furthermore, if u and v remain bounded and positive on Ω× (0,T′) for all T′ < T0,
then T0 = ∞. Clearly u and v are positive. Thus we need only to show that they are
bounded on Ω× (0,T′). To do this, we let (y,z) satisfy the system (whose solution ex-
ists by Lemma 2.2)

y′(t)= 2 f
(
z(t)

)
, z′(t)= 2g

(
y(t)

)
, 0 < t <∞,

y(0)= z(0)=M + 1,
(2.12)

where M = ‖u0‖∞,Ω +‖v0‖∞,Ω. We first show that

0≤ u(x, t) < y(t), 0≤ v(x, t) < z(t) on QT′ . (2.13)

Thus suppose that there exists an (x0,T) ∈ QT′ such that (2.13) does not hold. Clearly,
inequalities (2.13) hold for t small since u(x,0)≤M < y(0) and v(x,0)≤M < z(0). Hence
T > 0. Define the function ζ as in the proof of necessity and let p(x, t) = u(x, t) + εζ(x)
and q(x, t)= v(x, t) + εζ(x) on Ω× [0,T], where ε > 0 is chosen small so that each of the
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following hold on Ω for every s∈ [0,s0], where s0 =maxΩ×[0,T](u+ v):

ζ(x) <
1
ε

, (2.14)

−ϕ′(s)∆ζ(x) + εϕ′′(s)
∣∣∇ζ(x)

∣∣2 ≤ M0

ε
, (2.15)

−ψ′(s)∆ζ(x) + εψ′′(s)
∣∣∇ζ(x)

∣∣2 ≤ M0

ε
, (2.16)

where M0 =min{g(M + 1), f (M + 1)}. From (2.14), it is clear that

p(x,0)− y(0) < 0, q(x,0)− z(0) < 0, ∀x ∈Ω. (2.17)

By our assumption concerning T , there exists τ0 ∈ (0,T] such that either maxx∈Ω p(x,τ0)
= y(τ0) or maxx∈Ω q(x,τ0)= z(τ0). Let

t0 = sup
{
τ ∈ [0,T] | p(x, t)≤ y(t), q(x, t)≤ z(t)∀(x, t)∈Ω× [0,τ]

}
. (2.18)

Then at t = t0, either p− y or q− z is zero for some x0 ∈Ω. Without loss of generality, we
assume that maxx∈Ω p(x, t0)− y(t0) = p(x0, t0)− y(t0) = 0, and hence maxx∈Ω q(x, t0)−
z(t0)≤ 0. Notice that ∂νp = ε∂νζ < 0 on ∂Ω× (0, t0) so that x0 ∈Ω, and hence ∇p(x0, t0)
= 0 and ∆p(x0, t0)≤ 0. We now have, at (x0, t0), the following:

0≤ pt − y′ = ut − y′ = ∆ϕ(u) + f (v)− 2 f (z)

= ϕ′(u)∆(p− εζ) +ϕ′′(u)
∣∣∇(p− εζ)

∣∣2
+ f (v)− 2 f (z)

≤−εϕ′(u)∆ζ + ε2ϕ′′(u)|∇ζ|2 +
(
f (v)− f (z)

)− f (z)

≤M0− f (z)≤ f (M + 1)− f (z) < 0,

(2.19)

which provides a contradiction. Thus no such t0 exists. Hence p < y and q < z on Ω×
[0,T] which, in turn, yields u < y and v < z on Ω× [0,T]. Thus there is no T where
(2.13) fails to hold, and hence it holds on QT′ and therefore holds for all T′ < T0 giving
T0 =∞. This completes the proof. �

3. Nonsmooth constitutive functions

We now consider the case where the data and constitutive functions are not smooth.
In this case, it is well known that the system (1.1) does not, in general, have a classical
solution even in the case of a single equation (see, e.g., [1]). Therefore, we will consider a
weak formulation of a solution motivated by Bénilan et al. [3] and similar to that of [14].
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Definition 3.1. The sequence of problems

∂un
∂t

= ∆ϕn
(
un
)

+ fn
(
vn
)
,

∂vn
∂t
= ∆ψn

(
vn
)

+ gn
(
un
)

in Q∞,

∂νϕn
(
un
)= ∂νψn

(
vn
)= 0 on ∂Ω× [0,∞),

un(x,0)= u0,n(x), vn(x,0)= v0,n(x) on Ω

(3.1)

is called a sequence of approximating problems for (1.1) if

ϕn,ψn, fn,gn ∈ C∞
(
[0,∞)

)
, u0,n,v0,n ∈ C∞(Ω),

ϕn(0)= ψn(0)= 0, fn(0)≥ 0, gn(0)≥ 0,

ϕ′n > 0, ψ′n > 0, f ′n > 0, g′n > 0,

lim
n→∞

(∥∥ϕn−ϕ∥∥∞,S +
∥∥ψn−ψ∥∥∞,S +

∥∥ fn− f
∥∥∞,S +

∥∥gn− g∥∥∞,S

)= 0,

lim
n→∞

(∥∥u0,n−u0
∥∥∞,Ω +

∥∥v0,n− v0
∥∥∞,Ω

)= 0,

(3.2)

for every compact subset S of [0,∞). Furthermore, a sequence {(un,vn)} of classical solu-
tions to the approximating problems (3.1) is called a sequence of approximating solutions
to problem (1.1). Finally, a nonnegative function pair (u,v) defined onQ∞ is a generalized
solution of problem (1.1) if there exists a sequence {(un,vn)} of approximating solutions
which, for every T > 0, converges to (u,v) weakly in L1(QT) and

sup
n

(∥∥un∥∥∞,QT
+
∥∥vn∥∥∞,QT

)
<∞. (3.3)

We prove the following theorem.

Theorem 3.2. Let u0 and v0 be positive C(Ω) functions and assume that the functions ϕ, ψ,
f , and g are nondecreasing, nonnegative C([0,∞)) functions satisfying (1.2). Then problem
(1.1) has a generalized solution if and only if f and g satisfy condition (1.3).

Since much of the proof that follows is like that of Theorem 2.1 above, we merely point
out important differences.

Proof. Necessity. Suppose that problem (1.1) has a generalized solution (u,v). Let (un,
vn) be a sequence of approximating solutions, thus satisfying (3.1). Since u0 and v0 are
strictly positive on Ω and the sequence {(u0,n,v0,n)} converges uniformly on Ω, there
exists a subsequence, which, for convenience, we will assume is the sequence itself, for
which there exists a positive constant a such that min{un(x, t),vn(x, t)} > a on Ω× [0,∞).
(We note that in the smooth case (Theorem 2.1), the initial data did not need to be strictly
positive. However, for nonsmooth data and constitutive functions, it is unknown whether
a generalized solution with nonnegative, nontrivial initial data ever becomes strictly pos-
itive at a later time.) The proof may now proceed as with Theorem 2.1 (with T0 = 0) to
prove

αn(t) < un(x, t), βn(t) < vn(x, t) on Ω× [0,∞), (3.4)
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where (αn,βn) is the solution to system (2.7) with f and g replaced with fn and gn, re-
spectively, and hence for all T > 0,

αn(t) +βn(t)≤ sup
k

(∥∥uk∥∥∞,QT
+
∥∥vk∥∥∞,QT

)
<∞ n∈N, 0≤ t ≤ T. (3.5)

We can now use this inequality to show that (2.7) has a solution on [0,∞). To do this, we
note that there is an interval, perhaps small, on which a solution (α,β) to (2.7) exists. In
fact, from the proof of Lemma 2.2, it is clear that a solution exists on the interval [0, t0),
where t0 =H(∞) with

H(s)=
∫ s
a/2

dσ

f
(
F̃−1

(
G̃(σ)

)) (3.6)

and F̃, G̃ defined as in the proof of Lemma 2.2 with both a and b replaced by a/2. How-
ever, since the sequences { fn}, {gn} converge uniformly on compact subsets of [0,∞), so
do the sequences {Fn}, {Gn}, where Fn(s) = ∫ sa/2 fn(σ)dσ and Gn(s) = ∫ sa/2 gn(σ)dσ . It is
then straightforward to show that F−1

n , G−1
n converge uniformly on compact subsets of

[0,∞), and therefore H−1
n converges uniformly on compact subsets of [0, t0). Therefore,

(αn,βn)→ (α,β) as n→∞ uniformly on compact subsets of [0, t0), and hence (α,β) must
satisfy

α(t) +β(t)≤ sup
k

(∥∥uk∥∥∞,QT
+
∥∥vk∥∥∞,QT

)
<∞, 0≤ t ≤ T < t0. (3.7)

Therefore, the functions α and β must be defined on [0,∞). Indeed, the only way that α
and β can fail to exist at t0 is for limt→t−0 α(t) =∞ (similarly for β), which is impossible
because of (3.7). Therefore α and β exist on [0, t0] and can be extended to a larger interval
[0, t0 + ε), which contradicts the fact that t0 was the extent of the existence. Therefore, we
must have t0 =∞ so that (1.3) holds.

Sufficiency. Now suppose that (1.3) holds. We show that problem (1.1) has a nonnega-
tive generalized solution. We choose sequences { fn}, {gn}, {ϕn}, {ψn}, {u0,n}, and {v0,n}
as specified in the definition of a generalized solution. Such sequences are not difficult
to construct using mollifiers and the properties of the functions f , g, ϕ, ψ, u0, and v0.
Furthermore, the sequences { fn}, {gn} may be (and are) chosen so that for each n, they
satisfy (1.3) with f and g replaced by fn and gn, respectively. Let (un,vn) be the smooth
solution of (3.1), and let (yn,zn) be the solution of

y′n(t)= 2 fn
(
zn(t)

)
, z′n(t)= 2gn

(
yn(t)

)
, 0 < t <∞,

yn(0)= zn(0)=M + 1,
(3.8)

where M = supn(‖u0,n‖∞,Ω +‖v0,n‖∞,Ω). It is then clear that, as in the proof of (2.12),

0≤ un(x, t) < yn(t), 0≤ vn(x, t) < zn(t) on Q∞. (3.9)

Also, since (yn,zn) converges locally uniformly to (y,z), we know that (yn,zn) is locally
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bounded so that (3.3) holds. To complete the proof, we will prove that the sequence
{(un,vn)} has a subsequence {(Un,Vn)} defined on Q∞ and obviously satisfying (3.3),
which converges weakly in L1(QT) to a function pair (u,v) for all T > 0. To do this, we
note that (3.3) implies that {(un,vn)} is pointwise bounded on QT which, in turn, im-
plies that for each k ∈ N, the L2(Qk) norm (and every Lp(Qk) norm for p ≥ 1) of the
sequence {(un,vn)} is bounded. In particular, the L2(Q1) norm is bounded independent
of n so the sequence {(un,vn)} has a weakly convergent subsequence in L2(Q1). We de-
note this subsequence by {(un,1,vn,1)}, and we let (P1,R1) be its weak L2(Q1) limit. Like-
wise, the sequence {(un,1,vn,1)} is bounded in the L2(Q2) norm, and hence has a sub-
sequence {(un,2,vn,2)} which is weakly convergent to a function pair (P2,R2) in L2(Q2).
Clearly (P1,R1) = (P2,R2) on Q1. We continue the process to produce for each k ∈ N
the sequence {(un,k,vn,k)}, a subsequence of {(un,k−1,vn,k−1)}, which is weakly convergent
to (Pk,Rk) in L2(Qk) and (Pk,Rk) = (Pk−1,Rk−1) on Qk−1. Clearly the sequence (Pk,Rk)
converges weakly in L2(QT) for all T > 0 to the function pair (u,v) defined on Q∞ by
(u,v)= (Pj ,Rj) on Qj , j ∈N. In addition, it is easy to prove that the sequence of diago-
nal entries of the double-indexed sequence {(un,k,vn,k)}, namely {(un,n,vn,n)}, converges
weakly in L2(QT), and hence weakly in L1(QT) to (u,v) for all T > 0. Thus the desired
sequence {(Un,Vn)} of approximating solutions which converges to (u,v) is {(un,n,vn,n)},
and therefore (u,v) is a generalized solution of (1.1). This completes the proof. �

An open problem. We note that there is an important difference regarding the initial data
in the hypothesis of Theorem 2.1, the smooth case, and Theorem 3.2, the nonsmooth
case. In the latter, the initial data is required to be strictly positive, whereas in the for-
mer it needs only to be nonnegative and nontrivial. This leaves open the problem: can
Theorem 3.2 be extended to the case where u0 and v0 are merely nonnegative with at least
one of them nontrivial? With smooth constitutive functions, the solution will, in time, be-
come strictly positive with only nonnegative nontrivial initial data. It is unknown whether
this will ever occur in the nonsmooth case. However, it may be possible that a different
proof can be devised, as in the scalar case [14], where Theorem 3.2 can be extended.
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