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A new class of system of generalized parametric nonlinear quasivariational inequalities
involving various classes of mappings is introduced and studied. With the properties of
maximal monotone mappings, the equivalence between the class of system of generalized
parametric nonlinear quasivariational inequalities and a class of fixed point problems is
proved and an iterative algorithm with errors is constructed. A few existence and unique-
ness results and sensitivity analysis of solutions are also established for the system of gen-
eralized nonlinear parametric quasivariational inequalities and some convergence results
of iterative sequence generated by the algorithm with errors are proved.

1. Introduction

Recently, variational inequalities constitute an important modelling tool in pure and ap-
plied mathematics. In 1996, Zhu and Marcotte [28] introduced and investigated a class of
system of variational inequalities in Rn. Afterwards, Nie et al. [21], Verma [22, 23, 24, 25,
26], Wu et al. [27], and others studied the approximation and solvability of a few kinds of
various systems of variational inequalities in Hilbert spaces. Moreover, Agarwal et al. [1],
Dafermos [3], Dong et al. [4], and Liu et al. [20], and others considered the sensitivity of
solutions for several kinds of parametric variational inequalities in Hilbert spaces.

Motivated and inspired by the research work [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28], in this paper, we introduce and
study a new class of system of generalized parametric nonlinear quasivariational inequali-
ties involving various classes of mappings in Hilbert spaces. Using some properties of the
maximal monotone mapping, we prove the equivalence between the class of system of
generalized parametric nonlinear quasivariational inequalities and a class of fixed point
problems and also construct an iterative algorithm with errors for solving the system of
generalized parametric nonlinear quasivariational inequalities. We also establish a few ex-
istence and uniqueness results as well as the sensitivity analysis of solutions for the system
of generalized nonlinear parametric quasivariational inequalities, and prove some con-
vergence results of iterative sequence generated by the algorithm with errors. The results
presented in this paper extend, improve, and unify some known results in [21, 26, 27]
and others.
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2. Preliminaries

Let H be a real Hilbert space with an inner product 〈·,·〉 and norm ‖ · ‖, respectively. Let
K be a nonempty closed convex subset of H and let G be an open subset of H in which
the parameter λ takes values. Suppose that M : H ×G→ 2H is such that for each λ ∈ G,
M(·,λ) : H → 2H is maximal monotone. Let S,T : H ×G→H be any mappings, let ρ and
β be positive constants, and let f and g be arbitrary elements in H . For each λ ∈ G, we
consider the following problem: find x, y ∈H such that

0∈ ρ
(
S(y,λ)−T(y,λ)− f

)
+ x− y + ρM(x,λ),

0∈ β
(
S(x,λ)−T(x,λ)− g

)
+ y− x+βM(y,λ),

(2.1)

which is known as the system of generalized parametric nonlinear quasivariational inequal-
ities.

If S(x,λ) = x,T(x,λ) = T(x), and M(x,λ) = ∂ϕ(x) for any (x,λ) ∈ H ×G, where ∂ϕ
denotes the subdifferential of a proper, convex, and lower semicontinuous functional
ϕ : H → R∪{+∞}, then the problem (2.1) reduces to the following problem: determine
elements x, y ∈H such that

〈
ρ
(
S(y)−T(y)− f

)
+ x− y,u− x

〉≥ ρϕ(x)− ρϕ(u),
〈
β
(
S(x)−T(x)− g

)
+ y− x,u− y

〉≥ βϕ(y)−βϕ(u) ∀u∈H ,
(2.2)

which is said to be the system of generalized nonlinear variational inequalities studied by
Nie et al. in [21].

In case ϕ= δK , where δK denotes the indicator function of the nonempty closed convex
subset K of H , then the problem (2.2) reduces to the following problem:

〈
ρ
(
S(y)−T(y)− f

)
+ x− y,u− x

〉≥ 0,
〈
β
(
S(x)−T(x)− g

)
+ y− x,u− y

〉≥ 0 ∀u∈ K ,
(2.3)

which was introduced and studied by Wu et al. in [27].
If f = g = T = 0, then the problem (2.3) is equivalent to finding x, y ∈ K such that

〈
ρS(y) + x− y,u− x

〉≥ 0,
〈
βS(x) + y− x,u− y

〉≥ 0 ∀u∈ K ,
(2.4)

which is called the system of nonlinear variational inequalities and has been introduced
and studied by Verma [26].

For suitable and appropriate choices of the elements f and g and the mappings S and
T , one can obtain various new and previously known systems of variational inequali-
ties as special cases of the system of generalized parametric nonlinear quasivariational
inequalities (2.1).
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We recall the following concept.

Definition 2.1 [1]. Let M : H ×G→ 2H be such that for each λ ∈ G, M(·,λ) : H → 2H is

maximal monotone. Then the implicit resolvent mapping JM(·,λ)
ρ associated with M(·,λ)

is defined by JM(·,λ)
ρ (u)= (I + ρM(·,λ))−1(u) for all u∈H , where ρ > 0 is a constant and

I is the identity mapping.

It is known that
∥∥JM(·,λ)

ρ (x)− JM(·,λ)
ρ (y)

∥∥≤ ‖x− y‖ ∀x, y ∈H. (2.5)

Definition 2.2. Let S : H ×G→H be a mapping.
(1) S is said to be t-Lipschitz continuous with respect to the first argument if there exists

a constant t > 0 satisfying
∥∥S(x,λ)− S(y,λ)

∥∥≤ t‖x− y‖ ∀(x, y,λ)∈H ×H ×G. (2.6)

(2) S is said to be t-strongly monotone with respect to the first argument if there exists
a constant t > 0 satisfying

〈
x− y,S(x,λ)− S(y,λ)

〉≥ t‖x− y‖2 ∀(x, y,λ)∈H ×H ×G. (2.7)

(3) S is said to be t-generalized pseudocontractive with respect to the first argument if
there exists a constant t > 0 satisfying

〈
x− y,S(x,λ)− S(y,λ)

〉≤ t‖x− y‖2 ∀(x, y,λ)∈H ×H ×G. (2.8)

(4) S is said to be t-relaxed Lipschitz with respect to the first argument if there exists a
constant t > 0 satisfying

〈
x− y,S(x,λ)− S(y,λ)

〉≤−t‖x− y‖2 ∀(x, y,λ)∈H ×H ×G. (2.9)

(5) S is said to be t-relaxed monotone with respect to the first argument if there exists a
constant t > 0 satisfying

〈
x− y,S(x,λ)− S(y,λ)

〉≥−t‖x− y‖2 ∀(x, y,λ)∈H ×H ×G. (2.10)

Lemma 2.3 [5]. Let {an}n≥0, {bn}n≥0, {cn}n≥0, and {tn}n≥0 be four sequences of nonnegative
numbers satisfying

an+1 ≤
(
1− tn

)
an + tnbn + cn ∀n≥ 0, (2.11)

where {tn}n≥0 ⊆ [0,1],
∑∞

n=0 tn=+∞, limn→∞ bn=0, and
∑∞

n=0 cn <∞. Then limn→∞ an=0.

3. Main results

The goal of this section is to establish a few existence and uniqueness results as well as
sensitivity analysis of solutions for the system of generalized parametric nonlinear qua-
sivariational inequalities (2.1), and prove some convergence results of iterative sequences
generated by the algorithm with errors which is based on the following Lemma 3.1.
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Lemma 3.1. Let S,T : H ×G→H be mappings, let ρ and β be positive constants, let f and
g be arbitrary elements in H , and λ∈G. Then the following statements are equivalent:

(a) the system of generalized parametric nonlinear quasivariational inequalities (2.1) has
a solution (x, y)∈H ×H ;

(b) there exists (x, y)∈H ×H satisfying

x = JM(·,λ)
ρ

(
y− ρ

(
S(y,λ)−T(y,λ)− f

))
,

y = JM(·,λ)
β

(
x−β

(
S(x,λ)−T(x,λ)− g

))
;

(3.1)

(c) the mapping F(·,λ) : H →H defined by

F(u,λ)= JM(·,λ)
ρ

[
JM(·,λ)
β

(
u−β

(
S(u,λ)−T(u,λ)− g

))

− ρ
[
S
(
JM(·,λ)
β

(
u−β

(
S(u,λ)−T(u,λ)− g

))
,λ
)

−T
(
JM(·,λ)
β

(
u−β

(
S(u,λ)−T(u,λ)− g

))
,λ
)
− f

]]
∀u∈H ,

(3.2)

has a fixed point x ∈H and y = JM(·,λ)
β (x−β(S(x,λ)−T(x,λ)− g)).

Proof. It is easy to see that

0∈ ρ
(
S(y,λ)−T(y,λ)− f

)
+ x− y + ρM(x,λ)

⇐⇒ y− ρ
(
S(y,λ)−T(y,λ)− f

)∈ [I + ρM(·,λ)
]
(x)

⇐⇒ x = JM(·,λ)
ρ

(
y− ρ

(
S(y,λ)−T(y,λ)− f

))
.

(3.3)

Analogously we can obtain that y = JM(·,λ)
β (x− β(S(x,λ)− T(x,λ)− g)). That is, (a) ⇔

(b). Suppose that (c) holds. Obviously, the mapping F has a fixed point x ∈H and y =
JM(·,λ)
β (x − β(S(x,λ)− T(x,λ)− g)). It follows from (3.2) that x = F(x,λ) = JM(·,λ)

ρ (y −
ρ(S(y,λ)−T(y,λ)− f )). That is, (3.1) is satisfied, therefore, (b) holds. Conversely, if (b)
holds, then (3.1) and (3.2) yield that

x = JM(·,λ)
ρ

(
y− ρ

(
S(y,λ)−T(y,λ)− f

))

= JM(·,λ)
ρ

[
JM(·,λ)
β

(
x−β

(
S(x,λ)−T(x,λ)− g

))

− ρ
[
S
(
JM(·,λ)
β

(
x−β

(
S(x,λ)−T(x,λ)− g

))
,λ
)

−T
(
JM(·,λ)
β

(
x−β

(
S(x,λ)−T(x,λ)− g

))
,λ
)
− f

]]

= F(x,λ),

(3.4)

that is, (c) holds. This completes the proof. �
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Remark 3.2. Lemma 2.1 of Nie et al. in [21], [26, Lemma 1.3] of Verma, and [27, Lemma
2.1] of Wu et al. are special cases of Lemma 3.1 in this paper.

Based on Lemma 3.1 we suggest the following general iterative algorithm with errors
for the system of generalized parametric nonlinear quasivariational inequalities (2.1).

Algorithm 3.3. For an arbitrarily chosen initial element x0 ∈H , λ∈G, compute sequences
{xn}n≥0 and {yn}n≥0 by the following iterative procedure:

zn =
(
1− bn

)
xn + bnF

(
xn,λ

)
+un,

xn+1 =
(
1− an

)
xn + anF

(
zn,λ

)
+ vn,

yn = JM(·,λ)
β

(
xn−β

(
S
(
xn,λ

)−T
(
xn,λ

)− g
))

+wn ∀n≥ 0,

(3.5)

where F is defined by (3.2), {an}n≥0 and {bn}n≥0 are any sequences in [0,1], and {un}n≥0,
{vn}n≥0, and {wn}n≥0 are any sequences satisfying

∞∑

n=0

an = +∞, lim
n→∞

∥∥un
∥∥= 0,

∞∑

n=0

∥∥vn
∥∥ < +∞, lim

n→∞
∥∥wn

∥∥= 0.

(3.6)

Theorem 3.4. Assume that S : H ×G→ H is both s-Lipschitz continuous and a-relaxed
monotone with respect to the first argument and T : H ×G→H is both t-Lipschitz contin-
uous and b-relaxed Lipschitz with respect to the first argument. Suppose that the sequences
{xn}n≥0 and {yn}n≥0 generated by Algorithm 3.3 satisfy (3.5) and (3.6). If there exist positive
constants ρ and β satisfying

max{ρ,β} < 2(b− a)
(s+ t)2

, (3.7)

then for any given f ,g ∈ H , λ ∈ G, the system of generalized parametric nonlinear quasi-
variational inequalities (2.1) has a unique solution (x, y)∈H ×H and limn→∞ xn = x and
limn→∞ yn = y. Furthermore, if there exists a constant η > 0 such that

∥∥JM(·,λ)
ρ (w)− JM(·,λ̄)

ρ (w)
∥∥≤ η‖λ− λ̄‖ (3.8)

for all (w, λ̄,λ) ∈ H ×G×G, and S and T are continuous (resp., uniformly continuous or
Lipschitz continuous) with respect to the second argument, then the solutions of the system of
generalized parametric nonlinear quasivariational inequalities (2.1) are continuous (resp.,
uniformly continuous or Lipschitz continuous).

Proof. For each given λ ∈ G, we want to prove that F(·,λ) : H → H defined by (3.2) is
a contraction mapping. Since S is both s-Lipschitz continuous and a-relaxed monotone
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with respect to the first argument, T is both t-Lipschitz continuous and b-relaxed Lips-
chitz with respect to the first argument and (2.5), we get that

∥∥F(u,λ)−F(v,λ)
∥∥2

=
∥∥∥JM(·,λ)

ρ

[
JM(·,λ)
β

(
u−β

(
S(u,λ)−T(u,λ)− g

))

− ρ
[
S
(
JM(·,λ)
β

(
u−β

(
S(u,λ)−T(u,λ)− g

))
,λ
)

−T
(
JM(·,λ)
β

(
u−β

(
S(u,λ)−T(u,λ)− g

))
,λ)− f

]]

− JM(·,λ)
ρ

[
JM(·,λ)
β

(
v−β

(
S(v,λ)−T(v,λ)− g

))

− ρ
[
S
(
JM(·,λ)
β

(
v−β

(
S(v,λ)−T(v,λ)− g

))
,λ
)

−T
(
JM(·,λ)
β

(
v−β

(
S(v,λ)−T(v,λ)− g

))
,λ
)
− f

]]∥∥∥
2

≤
∥∥∥JM(·,λ)

β

(
u−β

(
S(u,λ)−T(u,λ)− g

))

− JM(·,λ)
β

(
v−β

(
S(v,λ)−T(v,λ)− g

))

− ρ
[
S
(
JM(·,λ)
β

(
u−β

(
S(u,λ)−T(u,λ)− g

))
,λ
)

− S
(
JM(·,λ)
β

(
v−β

(
S(v,λ)−T(v,λ)− g

))
,λ
)]

+ ρ
[
T
(
JM(·,λ)
β

(
u−β

(
S(u,λ)−T(u,λ)− g

))
,λ
)

−T
(
JM(·,λ)
β

(
v−β

(
S(v,λ)−T(v,λ)− g

))
,λ
)]∥∥∥

2

=
∥∥∥JM(·,λ)

β

(
u−β

(
S(u,λ)−T(u,λ)− g

))

− JM(·,λ)
β

(
v−β

(
S(v,λ)−T(v,λ)− g

))∥∥∥
2

− 2ρ
〈
JM(·,λ)
β

(
u−β

(
S(u,λ)−T(u,λ)− g

))

− JM(·,λ)
β

(
v−β

(
S(v,λ)−T(v,λ)− g

))
,

S
(
JM(·,λ)
β

(
u−β

(
S(u,λ)−T(u,λ)− g

))
,λ
)

− S
(
JM(·,λ)
β

(
v−β

(
S(v,λ)−T(v,λ)− g

))
,λ
)〉

+ 2ρ
〈
JM(·,λ)
β

(
u−β

(
S(u,λ)−T(u,λ)− g

))

− JM(·,λ)
β

(
v−β

(
S(v,λ)−T(v,λ)− g

))
,

T
(
JM(·,λ)
β

(
u−β

(
S(u,λ)−T(u,λ)− g

))
,λ
)

−T
(
JM(·,λ)
β

(
v−β

(
S(v,λ)−T(v,λ)− g

))
,λ
)〉
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+ ρ2
∥∥∥S
(
JM(·,λ)
β

(
u−β

(
S(u,λ)−T(u,λ)− g

))
,λ
)

− S
(
JM(·,λ)
β

(
v−β

(
S(v,λ)−T(v,λ)− g

))
,λ
)

−T
(
JM(·,λ)
β

(
u−β

(
S(u,λ)−T(u,λ)− g

))
,λ
)

+T
(
JM(·,λ)
β

(
v−β

(
S(v,λ)−T(v,λ)− g

))
,λ
)∥∥∥

2

≤
∥∥∥JM(·,λ)

β

(
u−β

(
S(u,λ)−T(u,λ)− g

))

− JM(·,λ)
β

(
v−β

(
S(v,λ)−T(v,λ)− g

))∥∥∥
2

+ 2ρa
∥∥∥JM(·,λ)

β

(
u−β

(
S(u,λ)−T(u,λ)− g

))

− JM(·,λ)
β

(
v−β

(
S(v,λ)−T(v,λ)− g

))∥∥∥
2

− 2ρb
∥∥∥JM(·,λ)

β

(
u−β

(
S(u,λ)−T(u,λ)− g

))

− JM(·,λ)
β

(
v−β

(
S(v,λ)−T(v,λ)− g

))∥∥∥
2

+ ρ2
(∥∥∥S

(
JM(·,λ)
β

(
u−β

(
S(u,λ)−T(u,λ)− g

))
,λ
)

− S
(
JM(·,λ)
β

(
v−β

(
S(v,λ)−T(v,λ)− g

))
,λ
)∥∥∥

+
∥∥∥T
(
JM(·,λ)
β

(
u−β

(
S(u,λ)−T(u,λ)− g

))
,λ
)

−T
(
JM(·,λ)
β

(
v−β

(
S(v,λ)−T(v,λ)− g

))
,λ
)∥∥∥
)2

≤ (1− 2(b− a)ρ+ (s+ t)2ρ2)∥∥∥JM(·,λ)
β

(
u−β

(
S(u,λ)−T(u,λ)− g

))

− JM(·,λ)
β

(
v−β

(
S(v,λ)−T(v,λ)− g

))∥∥∥
2

≤ (1− 2(b− a)ρ+ (s+ t)2ρ2)

×∥∥u− v−β
[
S(u,λ)− S(v,λ)−T(u,λ) +T(v,λ)

]∥∥2

= (1− 2(b− a)ρ+ (s+ t)2ρ2)[‖u− v‖2− 2β
〈
u− v,S(u,λ)− S(v,λ)

〉

+ 2β
〈
u− v,T(u,λ)−T(v,λ)

〉

+β2
∥∥S(u,λ)− S(v,λ)−T(u,λ) +T(v,λ)

∥∥2
]

≤ (1− 2(b− a)ρ+ (s+ t)2ρ2)(1− 2(b− a)β+ (s+ t)2β2)‖u− v‖2

(3.9)

for all u,v ∈H . Put

θ =
√

1− 2(b− a)ρ+ (s+ t)2ρ2 ·
√

1− 2(b− a)β+ (s+ t)2β2. (3.10)
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According to (3.7), we know that θ ∈ (0,1). It follows from (3.9) that

∥∥F(u,λ)−F(v,λ)
∥∥≤ θ‖u− v‖ ∀u,v ∈H. (3.11)

That is, F(·,λ) is a contraction mapping and hence it has a unique fixed point x ∈H for

each given λ∈ G. Set y = JM(·,λ)
β (x− β(S(x,λ)−T(x,λ)− g)). It follows from Lemma 3.1

that the system of generalized parametric nonlinear quasivariational inequalities (2.1) has
a solution (x, y)∈H ×H .

Now we claim that (x, y) is the unique solution of the system of generalized paramet-
ric nonlinear quasivariational inequalities (2.1). In fact, if (u,v) ∈H ×H is also a solu-
tion of the system of generalized parametric nonlinear quasivariational inequalities (2.1),

by Lemma 3.1 we know that u = F(u,λ) and v = JM(·,λ)
β (u− β(S(u,λ)−T(u,λ)− g)). It

follows from the uniqueness of fixed point of F that u = x and hence v = JM(·,λ)
β (x −

β(S(x,λ)−T(x,λ)− g))= y.
Next we assert that the sequences {xn}n≥0 and {yn}n≥0 generated by Algorithm 3.3

converge strongly to x and y, respectively. In view of (3.1), (3.5), and (3.11), we conclude
that

∥∥zn− x
∥∥≤ (1− bn

)∥∥xn− x
∥∥+ bn

∥∥F(xn,λ
)−F(x,λ)

∥∥+‖un‖
≤ ∥∥xn− x

∥∥+‖un‖,
∥∥xn+1− x

∥∥≤ (1− an
)∥∥xn− x

∥∥+ anθ
∥∥zn− x

∥∥+
∥∥vn
∥∥

≤ (1− (1− θ)an
)∥∥xn− x

∥∥+ anθ
∥∥un

∥∥+
∥∥vn
∥∥,

(3.12)

∥∥yn− y
∥∥=

∥∥∥JM(·,λ)
β

(
xn−β

(
S
(
xn,λ

)−T
(
xn,λ

)− g
))

− JM(·,λ)
β

(
x−β

(
S(x,λ)−T(x,λ)− g

))∥∥∥+
∥∥wn

∥∥

≤ ∥∥(xn− x
)−β

(
S
(
xn,λ

)− S(x,λ)−T
(
xn,λ

)
+T(x,λ)

)∥∥+
∥∥wn

∥∥

=
[∥∥xn− x

∥∥2− 2β
〈
xn− x,S

(
xn,λ

)− S(x,λ)
〉

+ 2β
〈
xn− x,T

(
xn,λ

)−T(x,λ)
〉

+β2
∥∥S(xn,λ

)− S(x,λ)−T
(
xn,λ

)
+T(x,λ)

∥∥2
]1/2

+
∥∥wn

∥∥

≤
√

1− 2(b− a)β+ (s+ t)2β2
∥∥xn− x

∥∥+
∥∥wn

∥∥

(3.13)

for all n≥ 0, where F and θ are defined by (3.2) and (3.10), respectively. It follows from
Lemma 2.3 and (3.6) that limn→∞ xn = x. Letting n→∞ in (3.13), by (3.7) we infer that
limn→∞ yn = y.
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Now we analyze the sensitivity of solutions of the generalized parametric nonlinear
quasivariational inequalities (2.1). For each given λ ∈ G, there exists a unique solution
(x, y)∈H ×H denoted by x(λ) and y(λ) such that (2.1) holds. Hence for each λ, λ̄∈ G,
we get that

x(λ)= F
(
x(λ),λ

)
, x(λ̄)= F

(
x(λ̄), λ̄

)
,

y(λ)= JM(·,λ)
β

(
x(λ)−β

(
S(x,λ)−T(x,λ)− g

))
,

y(λ̄)= JM(·,λ̄)
β

(
x(λ̄)−β

(
S(x, λ̄)−T(x, λ̄)− g

))
,

(3.14)

∥∥x(λ)− x(λ̄)
∥∥≤ ∥∥F(x(λ),λ

)−F
(
x(λ), λ̄

)∥∥+
∥∥F(x(λ), λ̄

)−F
(
x(λ̄), λ̄

)∥∥, (3.15)

∥∥y(λ)− y(λ̄)
∥∥=

∥∥∥JM(·,λ)
β

(
x(λ)−β

(
S(x,λ)−T(x,λ)− g

))

−JM(·,λ̄)
β

(
x(λ̄)−β

(
S(x, λ̄)−T(x, λ̄)− g

))∥∥∥.
(3.16)

It follows from (2.5) and (3.8) that

∥∥F(x(λ),λ
)−F

(
x(λ), λ̄

)∥∥

≤
∥∥∥JM(·,λ)

ρ

[
JM(·,λ)
β

(
x(λ)−β

(
S
(
x(λ),λ

)−T
(
x(λ),λ

)− g
))

− ρ
[
S
(
JM(·,λ)
β

(
x(λ)−β

(
S
(
x(λ),λ

)−T
(
x(λ),λ

)− g
))

,λ
)

−T
(
JM(·,λ)
β

(
x(λ)−β

(
S
(
x(λ),λ

)−T
(
x(λ),λ

)− g
))

,λ
)
− f

]]

− JM(·,λ̄)
ρ

[
JM(·,λ)
β

(
x(λ)−β

(
S
(
x(λ),λ

)−T
(
x(λ),λ

)− g
))

− ρ
[
S
(
JM(·,λ)
β

(
x(λ)−β

(
S
(
x(λ),λ

)−T
(
x(λ),λ

)− g
))

,λ
)

−T
(
JM(·,λ)
β

(
x(λ)−β

(
S(x(λ),λ

)−T
(
x(λ),λ

)− g
))

,λ
)− f

]]∥∥∥

+
∥∥∥JM(·,λ̄)

ρ

[
JM(·,λ)
β

(
x(λ)−β

(
S(x(λ),λ

)−T
(
x(λ),λ

)− g
))

− ρ
[
S
(
JM(·,λ)
β

(
x(λ)−β

(
S
(
x(λ),λ

)−T
(
x(λ),λ

)− g
))

,λ
)

−T
(
JM(·,λ)
β

(
x(λ)−β

(
S
(
x(λ),λ

)−T
(
x(λ),λ

)− g
))

,λ
)
− f

]]

− JM(·,λ̄)
ρ

[
JM(·,λ̄)
β

(
x(λ)−β

(
S
(
x(λ), λ̄

)−T
(
x(λ), λ̄)− g

))

− ρ
[
S
(
JM(·,λ̄)
β

(
x(λ)−β

(
S
(
x(λ), λ̄

)−T
(
x(λ), λ̄

)− g
))

, λ̄
)

−T
(
JM(·,λ̄)
β

(
x(λ)−β

(
S
(
x(λ), λ̄

)−T
(
x(λ), λ̄

)− g
))

, λ̄
)− f

]]∥∥∥

≤ η‖λ− λ̄‖+
∥∥∥JM(·,λ)

β

(
x(λ)−β

(
S
(
x(λ),λ

)−T
(
x(λ),λ

)− g
))

− JM(·,λ̄)
β

(
x(λ)−β

(
S
(
x(λ),λ

)−T
(
x(λ),λ

)− g
))∥∥∥
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+
∥∥∥JM(·,λ̄)

β

(
x(λ)−β

(
S
(
x(λ),λ

)−T
(
x(λ),λ

)− g
))

− JM(·,λ̄)
β

(
x(λ)−β

(
S
(
x(λ), λ̄

)−T
(
x(λ), λ̄

)− g
))∥∥∥

+ ρ
(∥∥∥S

(
JM(·,λ)
β

(
x(λ)−β

(
S
(
x(λ),λ

)−T
(
x(λ),λ

)− g
))

,λ
)

− S
(
JM(·,λ̄)
β

(
x(λ)−β

(
S
(
x(λ),λ

)−T
(
x(λ),λ

)− g
))

,λ
)∥∥∥

+
∥∥∥S
(
JM(·,λ̄)
β

(
x(λ)−β

(
S
(
x(λ),λ

)−T
(
x(λ),λ

)− g
))

,λ
)

− S
(
JM(·,λ̄)
β

(
x(λ)−β

(
S
(
x(λ), λ̄

)−T
(
x(λ), λ̄

)− g
))

,λ
)∥∥∥

+
∥∥∥S
(
JM(·,λ̄)
β

(
x(λ)−β

(
S
(
x(λ), λ̄

)−T
(
x(λ), λ̄

)− g
))

,λ
)

− S
(
JM(·,λ̄)
β

(
x
(
λ)−β

(
S
(
x(λ), λ̄

)−T
(
x(λ), λ̄

)− g
))

, λ̄
)∥∥∥

+
∥∥∥T
(
JM(·,λ)
β

(
x(λ)−β

(
S
(
x(λ),λ

)−T
(
x(λ),λ

)− g
))

,λ
)

−T
(
JM(·,λ̄)
β

(
x(λ)−β

(
S
(
x(λ),λ

)−T
(
x(λ),λ

)− g
))

,λ
)∥∥∥

+
∥∥∥T
(
JM(·,λ̄)
β

(
x(λ)−β

(
S
(
x(λ),λ

)−T
(
x(λ),λ

)− g
))

,λ
)

−T
(
JM(·,λ̄)
β

(
x
(
λ)−β

(
S
(
x(λ), λ̄

)−T
(
x(λ), λ̄

)− g
))

,λ
)∥∥∥

+
∥∥∥T
(
JM(·,λ̄)
β

(
x(λ)−β

(
S
(
x(λ), λ̄

)−T
(
x(λ), λ̄

)− g
))

,λ
)

−T
(
JM(·,λ̄)
β

(
x(λ)−β

(
S
(
x(λ), λ̄

)−T
(
x(λ), λ̄

)− g
))

, λ̄
)∥∥∥
)

≤ 2η‖λ− λ̄‖+β
(∥∥S(x(λ),λ

)− S
(
x(λ), λ̄

)∥∥

+
∥∥T(x(λ),λ

)−T
(
x(λ), λ̄

)∥∥)

+ ρ
[
ηs‖λ− λ̄‖+βs

(∥∥S(x(λ),λ
)− S

(
x(λ), λ̄

)∥∥+
∥∥T(x(λ),λ

)−T
(
x(λ), λ̄

)∥∥)

+
∥∥S(z,λ)− S(z, λ̄)

∥∥+ηt
∥∥λ− λ̄

∥∥

+βt
(∥∥S(x(λ),λ

)− S
(
x(λ), λ̄

)∥∥+
∥∥T(x(λ),λ

)−T
(
x(λ), λ̄

)∥∥)

+
∥∥T(z,λ)−T(z, λ̄)

∥∥]

= [2 + (s+ t)ρ
]
η‖λ− λ̄‖

+
[
1 + (s+ t)ρ

]
β
(∥∥S(x(λ),λ

)− S
(
x(λ), λ̄

)∥∥+
∥∥T(x(λ),λ

)−T
(
x(λ), λ̄

)∥∥)

+ ρ
(∥∥S(z,λ)− S(z, λ̄)

∥∥+
∥∥T(z,λ)−T(z, λ̄)

∥∥),
(3.17)

where z = JM(·,λ̄)
β (x(λ)−β(S(x(λ), λ̄)−T(x(λ), λ̄)− g)). It follows from (3.11) that

∥∥F(x(λ), λ̄
)−F

(
x(λ̄), λ̄

)∥∥≤ θ
∥∥x(λ)− x(λ̄)

∥∥. (3.18)
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Combining (3.15), (3.17), and (3.18), we infer that

∥∥x(λ)− x(λ̄)
∥∥

≤ (1− θ)−1{[2 + (s+ t)ρ
]
η‖λ− λ̄‖

+
[
1 + (s+ t)ρ

]
β
(∥∥S(x(λ),λ

)− S
(
x(λ), λ̄

)∥∥

+
∥∥T(x(λ),λ

)−T
(
x(λ), λ̄

)∥∥)

+ ρ
(∥∥S(z,λ)− S(z, λ̄)

∥∥+
∥∥T(z,λ)−T(z, λ̄)

∥∥)}.

(3.19)

From (3.16), we get that

∥∥y(λ)− y(λ̄)
∥∥

≤
∥∥∥JM(·,λ)

β

(
x(λ)−β

(
S(x,λ)−T(x,λ)− g

))

− JM(·,λ̄)
β

(
x(λ)−β

(
S(x,λ)−T(x,λ)− g

))∥∥∥

+
∥∥∥JM(·,λ̄)

β

(
x(λ)−β

(
S(x,λ)−T(x,λ)− g

))

− JM(·,λ̄)
β

(
x(λ̄)−β

(
S(x, λ̄)−T(x, λ̄)− g

))∥∥∥
≤ η‖λ− λ̄‖+

∥∥x(λ)− x(λ̄)
∥∥

+β
(∥∥S(x,λ)− S(x, λ̄)

∥∥+
∥∥T(x,λ)−T(x, λ̄)

∥∥).

(3.20)

It follows from (3.19), (3.20), and the continuities of S and T (resp., uniform continu-
ities or Lipschitz continuities) with respect to the second argument that the solutions
of the system of generalized parametric nonlinear quasivariational inequalities (2.1) are
continuous (resp., uniformly continuous or Lipschitz continuous). This completes the
proof. �

As in the proof of Theorem 3.4, we get the following result.

Theorem 3.5. Assume that S : H ×G→ H is both s-Lipschitz continuous and a-strongly
monotone with respect to the first argument and T : H ×G→H is both t-Lipschitz continu-
ous and b-generalized pseudocontractive with respect to the first argument. Suppose that the
sequences {xn}n≥0 and {yn}n≥0 generated by Algorithm 3.3 satisfy (3.5) and (3.6). If there
exist positive constants ρ and β satisfying

max{ρ,β} < 2(a− b)
(s+ t)2

, (3.21)

then for any given f ,g ∈ H , λ ∈ G, the system of generalized parametric nonlinear quasi-
variational inequalities (2.1) has a unique solution (x, y)∈H ×H and limn→∞ xn = x and
limn→∞ yn = y. Furthermore, if there exists a constant η > 0 satisfying (3.8) and S and T are
continuous (resp., uniformly continuous or Lipschitz continuous) with respect to the second
argument, then the solutions of the system of generalized parametric nonlinear quasivaria-
tional inequalities (2.1) are continuous (resp., uniformly continuous or Lipschitz continu-
ous).
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Remark 3.6. Theorem 2.1 in [21] is a special case of Theorem 3.5.
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