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The well-known Bailey’s transform is extended. Using the extended transform, we derive
hitherto undiscovered ordinary and q-hypergeometric identities and discuss their partic-
ular cases of importance, namely, two new q-sums for Saalschützian 4Φ3, new double se-
ries Rogers-Ramanujan-type identities of modulo 81, discrete extension of the q-analogs
of two quadratic transformations of 2F1, and two new quadratic-cubic transformations
of 3F2.

1. Introduction

The well-known transform was discovered by Bailey [12] in 1947 and is being used,
since then, to obtain various ordinary and q-hypergeometric identities and Rogers-
Ramanujan-type identities.

It states that if

βn =
n∑

r=0

αrun−rvn+r ,

γn =
∞∑
r=n

δrur−nvr+n,

(1.1)

then, subject to convergence conditions,

∞∑
n=0

αnγn =
∞∑
n=0

βnδn. (1.2)

Making use of this remarkably simple transformation, Bailey [12, 13] outlined a tech-
nique for obtaining transformations of both ordinary and q-hypergeometric series. He
also used these transformations to obtain a number of identities of Rogers-Ramanujan
type. Subsequently, Slater [27, 28] gave a very exhaustive list of 130 identities of the
Rogers-Ramanujan type derived by her, using (1.2). For further details on (1.2), see [29].
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Andrews [4, 5, 10] exploited Bailey’s transform in the form of Bailey pair and Bailey
chains to show that all of the 130 identities given by Slater [27, 28] can be embedded in
infinite families of multiple-series Rogers-Ramanujan-type identities.

Using (1.2), Bressoud [14] found finite forms of Rogers-Ramanujan type identities
and further, recently, Bressoud et al. [15] introduced the concept of change of base in
Bailey pairs and derived many new multiple-series Rogers-Ramanujan-type identities.

Verma and Jain [31, 32] and Jain [20, 22] also used (1.2) to derive a number of q-
hypergeometric transformations and identities.

In brief, after Bailey and Slater, a large number of mathematicians have used Bailey’s
transform (1.2) to make applications in the theory of generalized hypergeometric series,
number theory, partition theory, combinatorics, physics, and computer algebra (see [1,
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 16, 20, 25, 26, 31, 32]).

In this paper, we extend such a fundamental and useful transform of Bailey. The ex-
tensions are discussed in Section 2 as Theorems 2.1 and 2.2. Using the extended Bailey’s
transform, we derive five new q-hypergeometric identities in Section 3. The identities
(3.1) and (3.3) both convert a Saalschützian 4Φ3 of base q2 into a Saalschützian 4Φ3 of
base q, like Singh’s quadratic transformation, [19, Appendix, III.21]. The identity (3.2)
converts a 4Φ3 of base q2 into a 4Φ2 of base q. The identity (3.4) provides a transfor-
mation of a very well-poised 12Φ11 with base q2 into a very well-poised 10Φ9 with base
q. The identity (3.5) is a transformation of a very well-poised 12Φ11 with base q3 into a
Saalschützian 6Φ5 with base q.

In Section 4, seven new and interesting ordinary hypergeometric identities (4.1) to
(4.7) are derived. An interesting fact about these identities is that they will have no exact
q-analogs, unlike other results of ordinary hypergeometric series, until the required sums of
q-hypergeometric series, having parameters of different bases and needed arguments, are in-
vestigated. This fact is illustrated for the result (4.1) in Section 5. In this way, an open
problem of investigating the q-analogs of (4.1) to (4.7), by any other method, arises nat-
urally in the study of extended Bailey’s transform.

The particular cases and applications of some of the results of Sections 3 and 4 are
discussed in Section 6. They include two new q-sums for Saalschützian 4Φ3, derivations
of double-series Rogers-Ramanujan-type identities of modulo 81, discrete extensions of
the q-analogs of two quadratic transformations of 2F1(z), and derivations of two new
quadratic-cubic transformations for 3F2(z).

We have followed the definitions and notations from [19, 29].

2. Extended Bailey’s transform

Theorem 2.1. If

βn =
[n/p]∑
r=0

αrun−prvn+r tn−rwn+pr ,

γn =
∞∑

r=pn
δrur−pnvr+ntr−nwr+pn,

(2.1)
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then, subject to convergence conditions,

∞∑
n=0

αnγn =
∞∑
n=0

βnδn, (2.2)

where p is any integer and αr , δr , ur , vr , tr , and wr are any functions of r only. Obviously, the
p = 1 case is the original Bailey’s transform.

Proof. Observe that

∞∑
n=0

αnγn =
∞∑
n=0

∞∑
r=pn

αnδrur−pnvr+ntr−nwr+pn. (2.3)

If this double series is convergent, then using [30, page 10, Lemma 3], namely,

∞∑
r=0

∞∑
n=0

A(r,n)=
∞∑
r=0

[r/p]∑
n=0

A(r−np,n), (2.4)

in (2.3) after the replacement of r by r + pn, we get

∞∑
n=0

αnγn =
∞∑
r=0

[r/p]∑
n=0

αnδrur−pnvr+ntr−nwr+pn =
∞∑
r=0

βrδr . (2.5)

�

Theorem 2.2. If

βn =
n∑

r=0

αrun−rvn+r tn+2rwpn−rzp′n+r ,

γn =
∞∑
r=n

δrur−nvr+ntr+2nwpr−nzp′r+n,

(2.6)

then, subject to convergence conditions,

∞∑
n=0

αnγn =
∞∑
n=0

βnδn, (2.7)

where, αr , δr , ur , vr , tr , wr , and zr are any functions of r only, and p and p′ are any integers.
Obviously, when tr = 1 and p = p′ = 1, it will yield the original Bailey’s transform.

Proof. Proceeding as in the proof of Theorem 2.1 and using [24, page 56, Lemma 10] in
place of (2.4), we get (2.7). �

Here, it may be noted that Theorems 2.1 and 2.2 convert into original Bailey’s trans-
form when p = 1 and tr = 1, p = p′ = 1, respectively. Hence, only those cases in which
the choice for parameters αr , ur , p, p′, and so forth does not involve the conditions, p = 1
for Theorem 2.1 and tr = 1, p = p′ = 1 for Theorem 2.2, will be the cases not contained
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in original Bailey’s transform. In fact, Theorems 2.1 and 2.2 can be combined to form a
single theorem, but such a presentation has been avoided for easier visualization of the
extensions and application process.

The two theorems suggest that various new sequences of other combinations of in-
volved summation indices may be introduced in their βn and γn. Further, it may be pos-
sible in many cases to decide the new expressions for αr , δr , ur , vr , tr , wr , and zr , which
yield closed forms for βn and γn, using one or two of the known summation theorems.
Thus, many more new results may be discovered. But we have discussed certain cases
which use the well-known classical summation theorems [19, Appendix, II.5,6,12,21,22]
and their ordinary hypergeometric analogs only. It may be emphasized that there may be
other various appropriate cases to have the closed forms for βn and γn in Theorems 2.1
and 2.2.

3. New q-hypergeometric identities

In the extensions of Bailey’s transform, discussed in the previous section as Theorems 2.1
and 2.2, we observed five expressions for αr , δr , ur , vr , tr , wr , and zr , which yield closed
forms for βn and γn and lead to five new q-hypergeometric identities. The identities are
as follows:

4Φ3


a

2,b2,q−N+1,q−N

a2b2q,c2,
q2−2N

c2

;q2,q2


= (ac,−c/a;q)N(

c2;q2
)
N

·4 Φ3


 a2,ab,−ab,q−N

a2b2,ac,
−aq1−N

c

;q,q


 , (3.1)

4Φ3


 a,aq,q−N+1,q−N

b2q,
aq−N+1

c
,
aq−N+2

c

;q2,q2


= (c;q)N

(c/a;q)N
·4 Φ2

[
a,b,−b,q−N

b2,c
;q,
−cqN
a

]
, (3.2)

4Φ3


a,b,−q−N ,q−N

−ab,c,
q1−2N

c

;q,q


=

(
caq,c/a;q2

)
N

(c;q)2N
·4 Φ3


 a2,ab,abq,q−2N

acq,a2b2,
aq2−2N

c

;q2,q2


 , (3.3)

12W11
(
a;a2/b2,c,cq,d,dq,abq1+N/cd,abq2+N/cd,q−N+1,q−N ;q2,q2)

= (aq,bq/c,bq/d,aq/cd;q)N
(bq,aq/c,aq/d,bq/cd;q)N

· 10W9

(
b;c,d,a/b,b

√
q

a
,−b

√
q

a
,abq1+N/cd,q−N ;q,

bq

a

)

(3.4)

12W11

(
a3;b,bq,bq2,c,cq,cq2,q−N+2,q−N+1,q−N ;q3,

(
a4q1+N

bc

)3
)

=
(
a3q,a3q/bc;q

)
N(

a3q/b,a3q/c;q
)
N

· 6Φ5

[
a,aω,aω2,b,c,q−N

a3/2√q,−a3/2√q,a3/2,−a3/2,bcq−N/a3;q,q

]
,

(3.5)

where ω is the cube root of unity.
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Proof of (3.1). Choosing

αr =
(
b2;q2

)
r(−a2)rqr

2+2r(
a2b2q,q2;q2

)
r

, ur = qr

(q;q)r
, tr =

(
a2;q2)

r ,

δr =
(
q−N ;q

)
r(

ac,−aq1−N/c;q
)
r

,

(3.6)

vr = wr = 1, and p = 2 in (2.1), and making use of the q-Pfaff-Saalschütz sum [19, Ap-
pendix, II.12], we get

βn =
(
a2b2;q2

)
n

(
a2;q

)
nq

n(
a2b2;q

)
n(q;q)n

,

γn =
(
c2;q2

)
N

(
a2;q2

)
n

(
q−N ;q

)
2nq

−n2

(ac,−c/a;q)N
(
c2;q2

)
n

(
q2−2N/c2;q2

)
n(−a2)n

.

(3.7)

Putting these values in (2.2), we obtain the result (3.1). �

Proof of (3.2). Choosing

αr = q(1+2N)r−r2
(c/a)2r(

b2q;q2
)
r

(
q2;q2

)
r

, ur = qNr+r2
(c/a)r

(q;q)r
, tr = q−r

2
,

δr =
(
a,q−N ;q

)
r

(c;q)r
,

(3.8)

vr = wr = 1, and p = 2 in (2.1), and making use of the q-Chu-Vandermonde sums [19,
Appendix, II.6,7], we get

βn =
(
b2;q2

)
nq
−n(n−1)/2(cqN/a)n(

b2;q
)
n(q;q)n

,

γn = (c/a;q)N
(
a,q−N ;q

)
2nq

n2+n(1−2N)

(c;q)N
(
aq−N+1/c;q

)
2n

.

(3.9)

Putting these values in (2.2), we obtain the result (3.2). �

Proof of (3.3). Choosing

αr = (b;q)rq(r2+3r)/2 ar

(−ab;q)r(q;q)r
, ur = q2r(

q2;q2
)
r

, wr = (a;q)r ,

δr =
(
q−2N ;q2

)
r(

acq,aq2−2N/c;q2
)
r

,

(3.10)
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vr = tr = zr = 1, and p = 2 in (2.6), and making use of the q-Pfaff-Saalschütz sum [19,
Appendix, II.12], we get

βn =
(
a2;q2

)
n(ab;q)2nq2n(

a2b2;q2
)
n

(
q2;q2

)
n

,

γn = (c;q)2N (a;q)n
(
q−2N ;q2

)
nq
−n(n+1)/2(

acq,c/a;q2
)
N (c;q)n

(
q1−2N/c;q2

)
n

(
an
) .

(3.11)

Putting these values in (2.7), we obtain the result (3.3). �

Proof of (3.4). Choosing

αr =
(
a,q2√a,−q2√a,a2/b2;q2

)
rq

2r(b/a)2r(√
a,−√a,q2b2/a,q2;q2

)
r

, ur = (b/a;q)rqr

(q;q)r
, wr = (b;q)r

(aq;q)r
,

δr =
(
q
√
b,−q√b,c,d,abq1+N/cd,q−N ;q

)
r(√

b,−√b,qb/c,qb/d,cdq−N/a,bq1+N ;q
)
r

,

(3.12)

vr = tr = 1, and p = 2 in (2.1), and making use of the Jackson’s 8Φ7 sum [19, Appendix,
II.22], we get

βn =
(
a2/b2,b;q

)
n

(
b2q/a;q2

)
2n(bq/a)n(

aq;q2
)
n

(
qb2/a,q;q

)
n

,

γn = (bq,aq/c,aq/d,bq/cd;q)N
(
c,d,abq1+N/cd,q−N ;q

)
2n (a/b)2n(

a2q,bq/c,bq/d,a2q/cd;q
)
N

(
qa2/c,qa2/d,cdq−N/b,aq1+N ;q

)
2n

.

(3.13)

Putting these values in (2.2), we obtain the result (3.4). �

Proof of (3.5). Choosing

αr =
(
a3,q3

√
a3,−q3

√
a3;q3

)
rq

3r(3r+1)/2(−a3)r(√
a3,−√a3,q3;q3

)
r

, ur = qr

(q;q)r
, wr = 1(

a3q;q
)
r

,

δr =
(
b,c,q−N ;q

)
r(

bcq−N/a3;q
)
r

,

(3.14)

vr = tr = 1, and p = 3 in (2.1), and making use of the 6Φ5 sum and q-Pfaff-Saalschütz
sum [19, Appendix, II.20,12], respectively, we get

βn =
(
a3;q3

)
nq

n(
a3;q

)
2n(q;q)n

,

γn =
(
a3q/b,a3q/c;q

)
N

(
b,c,q−N ;q

)
3nq

−3n(3n−1)/2(−1)n(
a3q,a3q/bc;q

)
N

(
a3q/b,a3q/c,a3q1+N ;q

)
3n

(
a3qN

bc

)3n

.

(3.15)

Putting these values in (2.2), we obtain the result (3.5). �
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4. New ordinary hypergeometric identities

In this section, seven new and interesting ordinary hypergeometric identities are ob-
tained, from the extended Bailey’s transform quoted in Section 2. The seven transfor-
mations are as follows:

6F5


a,a+ (1/3),a+ (2/3),�(2;1− c+ 3a),−N

d, (3/2) + 3a−d,�(3;1 + 3a− c−N)
;1




= (c)N
(c− 3a)N

· 4F3


3a,2 + 3a− 2d,2d− 3a− 1,−N

c,d,3a−d+ (3/2)
;
1
4


 ,

(4.1)

5F4


w,�(2; f − a),�(2;w+ a)

w+ a, f − a,�(2; f )
;1




= Γ( f )Γ
(
f −w− 1/2

)
Γ
(
f −w/2

)
Γ
(
f −w/2− 1/2

) · 4F3


a, f −w− a,w, f −w− 1

2
�(3;2 f −w− 1)

;
2

27


 ,

(4.2)

11F10




v,1 +
v

2
,d,w,

1
2

+ 2v−w−d+N ,�(2;1 + v−w),

v

2
,1 + v−d,1 + v−w,

1
2
− v+w+d−N ,�(2;v+w),

� (3;v+w), −N
� (3;1 + 2v−w),1 + v+N

;1

]

= (1 + v)N
(
1/2 + v−w

)
N (1 + 2v− 2d−w)2N

(1 + v−d)N
(
1/2 + v−d−w

)
N (1 + 2v−w)2N

· 5F4




1 + v− 2w,d,w,
1
2

+ 2v−w−d+N ,−N
1
2

+ v−w,w− 2v+ 2d− 2N ,1 + 2v− 2d−w,1 + 2v−w+ 2N
;1


 ,

(4.3)

4F3


d,�(2; f ),−N

�(3;2 f )
;
32
27




=
(
f −d+ 1/2

)
N(

f + 1/2
)
N

· 4F3




�(2;d),�(2;−N)

f −d+
1
2

, f +N +
1
2

,d− f +N +
1
2

;4


 ,

(4.4)

6F5




1 + v− g,�(3;v),�(2;−N)

h,
3
2

+ v−h,�(3;1 + v− g −N)
;1


= (g)N

(g − v)N
· 4F3


v,h− 1

2
,1 + v−h,−N

g,2h− 1,2 + 2v− 2h
;4


 ,

(4.5)



1916 Extensions of Bailey’s transform and applications

11F10




a,1 +
a

2
,b,

1
2

+ 2a− b−d,d− a,1 + 3a−d+N ,

a

2
,1 + a− b,

1
2

+ b+d− a,1 + 2a−d,d− 2a−N ,

� (3;d), �(2;−N)

� (3;1 + 3a−d),�(2;1 + 2a+N)
;−1

]

= (1 + 2a)N (1 + 3a− 2d)N
(1 + 2a−d)N (1 + 3a−d)N

· 5F4




b,b+d− a,
1
2

+ a− b,2d− 2a,−N
1
2

+ a,1 + 2a− 2b,2d+ 2b− 2a,2d− 3a−N
;1


 ,

(4.6)

4F3


a,

3a
2
− 1,

3a
2
− 3

2
,−N

a− 1,3a− 2,b
;
4
3




= (b− a)N
(b)N

· 5F4


 �(2;a),�(3;−N)

a,b− a,�(2;1 + a− b−N)
;1


 .

(4.7)

Proof of (4.1). Choosing αr = (−1/4)r /(d)r(3/2 + 3a− d)rr!, ur = 1/r!, δr = (−N)r /(c)r ,
tr = (3a)r , and vr =wr = zr = 1 in (2.6), and using the Vandermonde and Saalschütz sum
[29, Appendix, III.4,2] to simplify the γn and βn, and putting these in (2.7), we obtain
(4.1). �

Proof of (4.2). Choosing αr = (a)r( f − w − a)r(1/4)r /r!, ur = (1/4)r /r!, vr = 1/( f )r ,
wr = (w)r , δr = tr = zr = 1 and p = 2 in (2.6), and using the Saalschütz and the Gauss
sum [29, Appendix, III.2,3] to simplify the γn and βn, and putting these in (2.7), we ob-
tain (4.2). �

Proof of (4.3). Choosing αr = (1 + v− 2w)r /r!, ur = 1/r!, δr = (1 + v/2)r(d)r(1/2 + 2v −
w− d +N)r(−N)r /(v/2)r(1 + v− d)r(1/2− v +w + d−N)r(1 + v +N)r , wr = (w)r , vr =
(v)r , zr = 1/(1 + 2v − w)r , tr = 1, and p = p′ = 2 in (2.6), and using the
Saalschütz and Dougall sum [29, Appendix, III.2,14] to simplify the γn and βn, and
putting these in (2.7), we obtain (4.3). �

Proof of (4.4). Choosing αr = (1/4)r /r!, ur = 1/r!, δr = (d)r(−N)r , vr = 1/( f + 1/2)r , tr =
wr = 1 and p = 2 in (2.1), and using the Vandermonde sum [29, Appendix, III.4] to
simplify the γn and βn, and putting these in (2.2), we obtain (4.4). �

Proof of (4.5). Choosing αr = (1/4)r /(h)r(3/2 + v−h)rr!, ur = 1/r!, δr = (−N)r , vr = (v)r ,
tr =wr = 1, and p = 2 in (2.1), and using the Saalschütz and Vandermonde sum [29, Ap-
pendix, III.2,4] to simplify the γn and βn, and putting these in (2.2), we obtain (4.5).

�
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Proof of (4.6). Choosing αr = (a)r(1 + a/2)(b)r(1/2 + 2a − b − d)r /(a/2)r(1 + a −
b)r(1/2− a+ b+d)rr!, ur = 1/r!, δr = (−N)r /(2d− 3a−N)r , vr = (d)r , tr = (d− a)r ,wr=
1/(1 + 2a)r , and p = 2 in (2.1), and using the Dougall and Vandermonde sum [29, Ap-
pendix, III.14,4] to simplify the γn and βn, and putting these in (2.2), we obtain (4.6). �

Proof of (4.7). Choosing αr = (1/27)r /(a)rr!, ur = 1/r!, δr = (−N)r /(b)r , tr = (a)r , vr =
wr = 1, and p = 3 in (2.1), and using the Saalschütz and Vandermonde sum [29, Appen-
dix, III.2,4] to simplify the γn and βn, and putting these in (2.2), we obtain (4.7). �

5. A note on q-analogs of (4.1) to (4.7)

As mentioned in introduction, now we will illustrate the fact about q-analogs of (4.1).
We choose

αr = q(r2+3r)/2(−1)r(
a6q3/d2,d2,q2;q2

)
r

, ur = qr

(q;q)r
, δr =

(
q−N ;q

)
r

(c;q)r
, tr =

(
a3;q

)
r

(5.1)

and vr =wr = zr = 1. Using these in (2.6), we get

βn =
n∑

r=0

(
a3;q

)
2r+n

(
q−n;q

)
rq

nr+r+n(
a6q3/d2,d2,q2;q2

)
r(c,q;q)n

,

γn =
N∑
r=0

(
a3;q

)
3n+r

(
q−N ;q

)
n+rq

r

(c;q)n+r(q;q)r
.

(5.2)

Now γn can be simplified by the Vandermonde sum, but to simplify βn, we will have to
sum the following 3Φ2 q-hypergeometric series, having one parameter of base q and
remaining parameters of base q2 with a special argument, namely,

n∑
r=0

(
a3qn;q2

)
r

(
a3qn+1;q2

)
r

(
q−n;q

)
rq

nr+r(
a6q3/d2,d2,q2;q2

)
r

, (5.3)

which is not possible from available summation theorems. Similar difficulty arises with
all the other choices of αr , δr , ur , vr , and so forth, selected in order to obtain the q-analogs
of identities (4.1) to (4.7).

6. Particular cases and applications of investigated identities

(i) As q→ 1 in (3.1) to (3.5), one obtains corresponding new ordinary hypergeometric
identities (6.1) to (6.5), noted as below:

4F3


 a,b,�(2;−N)

1
2

+ a+ b,c,1− c−N
;1


= (a+ c)N

(c)N
· 3F2

[
a+ b,2a,−N
2(a+ b),a+ c

;1

]
, (6.1)
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4F3


 �(2;a),�(2;−N)

1
2

+ b,�(2;1 + a− c−N)
;1


= (c)N

(c− a)N
· 3F2

[
a,b,−N

2b,c
;2

]
, (6.2)

3F2

[
a,b,−N

c,1− c− 2N
;1

]
= 22N

(
(1 + a+ c)/2

)
N

(
(c− a)/2

)
N

(c)2N

· 4F3


 a,�(2;a+ b),−N
a+ b,

1 + a+ c

2
,1 +

a− c

2
−N

;1


 ,

(6.3)

11F10




a,1 +
a

2
,2a− b,�(2;c),�(2;d),

a

2
,1 + a− b,�(2;1 + 2a− c),�(2;1 + 2a−d),

� (2;1 + 2a− b− c−d+N), �(2;−N)

� (2;c+d+ b−N), �(2;1 + 2a+N)
;1

]

= (1 + 2a)N (1 + b− c)N (1 + b−d)N (1 + 2a− c−d)N
(1 + b)N (1 + 2a−d)N (1 + 2a− c)N (1 + b− c−d)N

· 7F6


 b,1 +

b

2
,c,d,1 + 2a+ b− c−d,

1
2

+ b− a,−N
b

2
,1 + b− c,1 + b−d,c+d− 2a−N ,1 + 2b− 2a,

1
2

+ a,1 + b+N
;1


 ,

(6.4)

11F10


 a,1 +

a

2
,�(3;b),�(3;c),�(3;−N)

a

2
,�(3;1 + 3a− b),�(3;1 + 3a− c),�(3;1 + 3a+N)

;1




= (1 + 3a)N (1 + 3a− b− c)N
(1 + 3a− b)N (1 + 3a− c)N

· 4F3


 a,b,c,−N

3a
2

,
1 + 3a

2
,b+ c− 3a−N

;
3
4


 .

(6.5)

(ii) When b = 1/
√
q in (3.1), the 4Φ3(q2) on the left becomes 3Φ2 and can be summed

by q-Pfaff-Saalschütz sum [19, Appendix, II.2] to have

4Φ3




a√
q

,− a√
q

,a2,q−N

a2

q
,ac,−aq1−N

c

;q,q


=

(
c2;q

)
N

(
c2/q;q2

)
N(

c2/q,ac,−c/a;q
)
N

. (6.6)
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And when c = b/q in (3.3), the 4Φ3(q2) on the right gets converted into 3Φ2 and can be
summed by q-Pfaff-Saalschütz sum [19, Appendix, II.2] to have

4Φ3



a,b,−q−N ,q−N

ab,
b

q
,
q2−2N

b

;q,q


=

(
ab,ab/q,b2;q2)N(
b,b/q,a2b2;q2

)
N

. (6.7)

Equations (6.6) and (6.7) provide two new q-summation theorems for a Saalschützian

4Φ3. Further, by applying Sear’s 4Φ3 transformation [19, Appendix, III.15] and Watson’s

8Φ7 transformation [19, Appendix, III.17], on the 4Φ3’s of (6.6) and (6.7), one can de-
velop a number of summation formulae.

(iii) In this section we will obtain the new double-series Rogers-Ramanujan-type iden-
tities of modulo 81, from our investigated q-hypergeometric transformation (3.5), which
connect a very well-poised 12Φ11 of base q3 with a Saalschützian 6Φ5 of base q.

Jain [22] also derived such double-series Rogers-Ramanujan-type identities of other
moduli using his own investigated q-hypergeometric transformation connecting a 8Φ7

of base q with a 4Φ3 of base q2 and the classical Bailey’s transform. However, we will
derive our identities on the line of Jain [22] but will make use of the q-hypergeometric
transformation (3.5) and the extended Bailey’s transform given in Theorem 2.1 of this
paper. Incidently, the investigation of these identities matches with the intuitive feelings
of Agarwal mentioned in a presidential address [1, page 7].

First, we will derive a transformation (6.8) using (3.5) and Theorem 2.1. This transfor-
mation (6.8) on specialization yields the double-series Rogers-Ramanujan-type identities
of modulo 81:

(
a9q3;q3)

∞
∞∑

N=0

[N/3]∑
k=0

(
a3q;q

)
3N

(
a3;q3

)
k

(
q−3N ;q3

)
kq

3N(N−1)+3N(1−p)+ka9N(
q3;q3

)
N

(
a9q3;q3

)
2N

(
a3;q2

)
2k

(
q−3N/a3;q

)
k

(
q3;q3

)
k

=
∞∑

N=0

p∑
s=0

(
a3;q3

)
N

(
1− a3q6N

)(
q−3p;q3

)
sa

39N+9sq18Ns+3s2/2+3s/2+81N2/2−3N/2−9Np(
q3;q3

)
N (1− a3)

(
q3;q3

)
s(−1)N+s

(6.8)

Proof of (6.8). Setting b = ωq−N , c = ω2q−N in (3.5), we get

[N/3]∑
k=0

(
a3;q3

)
k

(
1− a3q6k

)
a27kq27k2/2−3k/2

(1− a3)(a9q3;q3)N+3k(q3;q3)N−3k

=
(
a3q;q

)
3N(

q3;q3
)
N

(
a9q3;q3

)
2N

∞∑
k=0

(
a3;q3

)
k

(
q−3N ;q3

)
kq

k(
a3;q2

)
2k

(
q−3N/a3;q

)
k

(
q3;q3

)
k

.

(6.9)
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Now in extended Bailey’s transform, that is, Theorem 2.1, choosing

uk = 1(
q3;q3

)
k

, wk = 1(
a9q3

)
k

, αk =
(
a3;q3

)
k

(
1− a3q6k

)
a12kq27k2/2−3k/2(

q3;q3
)
k

(
1− a3

) ,

δk =
(
x;q3

)
k

(
y;q3

)
k

xk yk
a9kq3k(1−p)

(6.10)

and evaluating βN and γN by using (6.9) and the following transformation formula [22,
equation (3.11)]

2Φ1

[
a,b

e
;q,

ec

ab

]
= (e/a,e/b;q)∞(

e,e/ab;q
)
∞

3Φ2


 a,b,c
abq

e
,0

;q,q


 (6.11)

(where, either a, b, or c is of the form q−p, p a nonnegative integer. In case only c is of the
form q−p then (6.11) is valid only if | ec/ab |< 1), we get (6.8) on letting x, y→∞. �

6.1. The double series Rogers-Ramanujan type identities of modulo 81. Now (6.8) for
a= 1, p = 0 yields

(
q3;q3)

∞
∞∑

N ,k=0

(q;q)3N+8kq3N2+18Nk+28k2(
q2;q2

)
2k−1

(
q3;q3

)
N+2k

(
1− q3k

)(
q3;q3

)
2N+6k

=
∞∏

N=1

(
1− q81N−42)(1− q81N)(1− q81N−39).

(6.12)

But (6.8), for a= 1, p = 1, gives

(
q3;q3)

∞
∞∑

N ,k=0

(q;q)3N+8kq3N2+18Nk+28k2−3N−9k(
q2;q2

)
2k−1

(
q3;q3

)
N+2k

(
1− q3k

)(
q3;q3

)
2N+6k

=
∞∏

N=1

(
1− q81N−51)(1− q81N)(1− q81N−30)

+
∞∏

N=1

(
1− q81N−48)(1− q81N)(1− q81N−33).

(6.13)

On the other hand, (6.8), for a= q, p = 0, reduces to

(
q12;q3)

∞
∞∑

N ,k=0

(
q4;q

)
3N+8kq

3N2+18Nk+28k2+9N+27k(
q3;q2

)
2k

(
q3;q3

)
N+2k

(
q12;q3

)
2N+6k

=
∞∏

N=1

(
1− q81N−3)(1− q81N)(1− q81N−78).

(6.14)

The Rogers-Ramanujan-type identities of modulo 27 [29, equations (7.3.1.20),
(7.3.1.17)] also follow directly from our cubic q-transformation (3.5) by letting b→∞,
c→∞, N →∞ in it and using Jacobi triple product identity, after setting a= 1 and a= q.
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(iv) When in (3.1), we replace c by ax, it becomes (6.15) and when in (3.2), we select
c = ax, it becomes (6.16) as given below:

4Φ3



a2,b2,q−N+1,q−N

a2b2q,a2x2,
q2−2N

a2x2

;q2,q2




=
(− a2x,x;q

)
N(

a2x2;q2
)
N

· 4Φ3



a2,ab,−ab,q−N

a2b2,a2x,
−q1−N

x

;q,q




(6.15)

4Φ3




a,aq,q−N+1,q−N

b2q,
q−N+1

x
,
q−N+2

x

;q2,q2




= (ax;q)N
(x;q)N

· 4Φ2

[
a,b,−b,q−N

b2,ax
;q,−xqN

]
.

(6.16)

The results (6.15) and (6.16) provide generalizations or discrete extensions of the results
of Jain [20, equation (3.7.1.3)] and [18, equation (3.7.1.5), page 88], which are the q-
analogs of the quadratic transformations of Gauss for 2F1.

The identity (4.1) is a discrete extension of Bailey’s cubic transformation for a 3F2(z)
[17, page 190, equation (2)], which follows from (4.1), on replacing N by Nz and c by
−N and letting Nz→ +∞ through integer values of Nz with z fixed and 0 < z < 1, and
then using analytic continuation with respect to z. Further, in the same way, two of our
ordinary hypergeometric identities (4.5) and (4.7) lead to two new quadratic-cubic trans-
formations (6.17) and (6.18), respectively, as described below.

Let v = a, h= b+ (1/2), replace N by Nz and g by −N in (4.5), and then letting Nz→
+∞ through integer values of Nz with z fixed and 0 < z < 1, and then using analytic
continuation with respect to z, we get

(1− z)−a3F2



a

3
,
a+ 1

3
,
a+ 2

3
b+

1
2

,1 + a− b
;

27z2

4(1− z)3


= 3F2


 a,b,

1
2

+ a− b

2b,1 + 2a− 2b
;4z


 . (6.17)

Similarly, replacing N by Nz and b by −N in (4.7), and letting Nz→ +∞ through integer
values of Nz, and proceeding as above, we get

(1− z)−a2F1


a2 ,

a+ 1
2

a
;

4z3

27(1− z)2


= 3F2


a,

3a
2
− 1,

3a− 3
2

a− 1,3a− 2
;z/3


 . (6.18)

Further, (6.18) may be used, with an algebraic expression for a particular 2F1 [24, page
70, Example 10], to have an algebraic expression for a particular 3F2 as below:

3F2


a,3a− 1,3a− 3

2
2a− 1,6a− 2

; y


= 1

(1− y)
√

1− 4y
·
(

2
1− 3y + (1− y)

√
1− 4y

)2a−1

. (6.19)
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Equation (6.19) would be as useful in obtaining generating functions as the formula in
[24, page 70, Example 10], see [24, page 137] and also [23, page 85–88].

7. Conclusion

In conclusion, this paper illustrates the concept of extensions of Bailey’s transform and
its use in obtaining hitherto undiscovered ordinary and q-hypergeometric identities with
their particular cases of interests. This is not the end because these extensions will, cer-
tainly, explore many more new and useful results. For example, the study of these exten-
sions on the line of Andrews [10] and Bressoud et al. [15] and, further, additional results
from these extensions will form the subject matter of our subsequent communications.
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