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We are going to consider the functional inequality f(x+ y) — f(x) — f(y) = ¢(x,y),
x,y € X, where (X, +) isan abelian group, and ¢ : X x X — Rand f : X — R are unknown
mappings. In particular, we will give conditions which force biadditivity and symmetry
of ¢ and the representation f(x) = (1/2)¢(x,x) +a(x) for x € X, where a is an additive
function. In the present paper, we continue and develop our earlier studies published by
the author (2004).

Let (X, +) be an abelian group. We consider the functional inequality

flety) = fxX) = f(y) = d(x,y), xy€X, (1)

where ¢ : X XX — Rand f : X — R are unknown mappings.
First, we quote [3, Proposition].

ProprosiTioN 1. If f: X — R, ¢ : X X X — R satisfy (1) and
¢(x,—x) = —P(x,x), x€X, (2)

then, (a) f(0) <0; (b) f(x)+ f(—x) < ¢(x,x) for x € X; (¢) f(2x) = 3f(x)+ f(—x) for

x e X.

One can see that an even function f : X — R which fulfills assumptions of Proposition
1 satisfies f(2x) = 4f(x) for x € X. This observation was used in [3], where a new func-
tion Q: X — R was defined by the formula Q(x) := limg_.c f(2Fx)/4F for x € X. The
resulted equality Q(2x) = 4Q(x) for x € X played a crucial role.

The main idea of the present paper is to drop the assumption that f is even and use
Proposition 1(c) to get a limit function ¢ : X — R satisfying the equality ¢(2x) = 3¢(x) +
¢(—x) for x € X (see Theorems 14 and 16).
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Itis assumed that N = {1,2,...} and Ny = {0,1,2,...}.
Let us quote here [3, Lemma 1].

LEmMA 2. Assume that f: X — Rand ¢ : X x X — R satisfy (1). If

o, —y) = —d(x,y), xyeX,
f(2x) <4f(x), xeX,

then
flx) = %(p(x,x), xeX.

Moreover, ¢ is biadditive and symmetric.

The foregoing result was the main tool in [3]. In fact, this lemma, in slightly different
version, was first proved by K. Baron (see [4]). In the present paper, we need to state a
more general lemma, which works for maps satistying f(2x) <3 f(x) + f(—x) for x € X.

LEMMA 3. Assume that f: X — Rand ¢ : X X X — R satisfy (1) and (3). If
f(2x) <3f(x)+ f(—x), xeX,

then there exists an additive function a: X — R such that
Flx) = %qﬁ(x,x) talx), xeX.

Moreover, ¢ is biadditive and symmetric.

Proof. Setting —y instead of y in (1), we obtain

flx—yp)—f(x)— f(=y) = d(x,—y) = —d(x,y), x,yeX.

Adding this to (1) leads to

fx+n+fx—y)=2fx)+f+f(-y), xyeX

(6)

(8)

9)

Fix arbitrarily u,v € X. Applying this inequality with x = u+v and y = u — v and using

(6), we infer that

3f(u)+ f(—u)+3f(v)+ f(—v)

> fRu)+ fv)z2f(u+v)+ fu-v)+f(v—u), uveX

The last two inequalities imply that f satisfies the equality

fx+y)+fx—y)=2f(x)+f()+f(-y), xyeX
Now, define g: X — R and a: X — R by the formulas

f&)+ f(=x)

, e X.
2 X

q(x):=

(10)

(11)

(12)
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It is clear that
a(x+y)+alx—y)=2alx), xyeX, (13)
thus a is additive. Moreover,

qx+y)+qx—y) =2q(x)+2q(y), xyeX, (14)

that is, g is quadratic. There exists a biadditive and symmetric functional B: X x X — R
such that g(x) = B(x,x) for x € X (see, e.g., Aczél and Dhombres [1, Chapter 11, Propo-
sition 1]). Moreover, we have

q(x+y)—q(x) —q(y) =2B(x,y), xy€X. (15)

This implies that 2B(x, y) = ¢(x, y) for x, y € X. By the use of this, (3), and the biadditiv-
ity of B, we get that ¢(x, y) = —¢(x,—y) = —2B(x,—y) = 2B(x, y) forx,y € X. S0 2B = ¢.
This completes the proof. O

Our next step is to drop the assumption of the evenness of function f in [3, Lemma
3]. We have the following generalization of this result.

Recall that a group X is called uniquely 2-divisible if and only if the map X = x —
x+x € X is bijective.

LEmMA 4. Assume X to be uniquely 2-divisible, f : X — R, ¢ : X x X — R satisfy (1), (2),
and

6(2x,2x) < 4¢(x,x), xe€X. (16)

If f is nonnegative, then f is even and f(x) = (1/2)¢(x,x) for x € X.

Proof. By Proposition 1(c) and nonnegativity of f, we get that for x € X, the sequence
(2" f (x/2")) nen is nonincreasing and nonnegative and thus convergent. So, the formula

A= lim 2f (2, xex, (17)

correctly defines a map A : X — R. Moreover, A(x) = 0 and A(2x) = 2A(x) for x € X.
Proposition 1(c) implies that

2"f(2:€_1>23'2”f(;7>+2”f(%f), xeX,neN, (18)
So
2A(x) = A(2x) = 3A(x) +A(—x), x€X, (19)

and we can easily observe that A = 0.
Now, we will follow the original proof of [3, Lemma 3]. Fix an x € X. From (1) and
(16), we derive inductively the estimations

X

() () ) e o



1892  Cauchy difference

for all k € N. Summing up these inequalities side by side for k € {1,...,n}, we get that

Zf(X)—2n+1f(;7> Zik xx), neN. (21)

Letting 7 tend to +oo yields the inequality 2 f (x) > ¢(x,x).
On the other hand, Proposition 1(b) states that f(x) + f(— $(x,x) for x € X. So,
fisevenand f(x) = (1/2)¢(x,x) for x € X. This completes the proof. O

In the next lemma, we will provide a certain property of the inequality from
Proposition 1(c).

LEMMA 5. Assume X to be uniquely 2-divisible. If f : X — R satisfies
fQ2x)=3f(x)+ f(—x), x€X, (22)
X
Vaex Fuen Vien (55 ) 20 (23)

then f > 0.

Proof. Define a sequence (¢ )ken, of real mappings on X by the formula

gk ok x4k 2k X
P = f(z—k>+ . f(—?>, xeX, ke N (24)

We will show that this sequence is nonincreasing. Fix an x € X and k € Ny. We have

o =50 (5)+ 5 (-5)
=) (- 55)]

A (-5 (5] -

B 4k+1+2k+1 X 4k+l 2k+1
- g )

= §0k+1(x)~

The assumption (23) implies that the sequence (@i (x))ken, is nonnegative for x € X.
In particular f(x) = @o(x) = 0 for x € X. This completes the proof. O

Now, we may join this lemma with our Lemmas 4, 2 and Proposition 1(c) to get the
following result.

CoOROLLARY 6. Assume X to be uniquely 2-divisible, f : X R, ¢ : X X X — R satisfy (1),
(2), (16), and (23). Then f is nonnegative, even, and f(x) = (1/2)¢(x,x) for x € X. More-
over, if (3) is also satisfied, then ¢ is biadditive and symmetrzc.
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Next, we will quote [3, Theorem 2].
THEOREM 7. Assume X to be uniquely 2-divisible and that f : X — R, ¢ : X X X — R satisfy
(1), (3), (16) jointly with
f)+f(=x)=0, xeX. (26)

Then there exists an additive function a: X — R such that
f0)=39mx)+alw), xEX. (27)

Moreover, ¢ is biadditive and symmetric.

This result together with Lemma 5 applied for a map x — f(x) + f(—x) leads to the
following corollary.

CoROLLARY 8. Assume X to be uniquely 2-divisible and that f : X - R, ¢ : X xX - R
satisfy (1), (3), (16) jointly with

X X
Vxex ElkoeN szhf(ﬁ) +f< — 27) > 0. (28)

Then there exists an additive function a : X — R such that
1
fx) = 5¢(x,x) +a(x), xeX (29)

Moreover, ¢ is biadditive and symmetric.
Now, we quote [2, Corollary 2].

CoROLLARY 9. Assume X to be a real linear space and that f : X - R, ¢ : X xX - R
satisfy (1), f is nonnegative, and ¢(x, -) is homogeneous for x € X. Then ¢ is bilinear and
symmetric and f(x) = (1/2)¢(x,x) for x € X.

In the light of Lemma 5, we get then the following corollary.

CoroLLARY 10. Assume X to be a real linear space, f : X — R, ¢ : X x X — R satisfy (1),
(23), and ¢(x, -) is homogeneous for x € X. Then ¢ is bilinear and symmetric and f(x) =
(172)¢(x,x) = 0 for x € X.

We recall also the following corollary.

CoroLLARY 11 [2, Corollary 1]. Assume X to be a real linear space and that f : X — R,
¢ : X XX — Rsatisfy (1). If for every x € X the function R > t — f(tx) € R has the prop-
erty that its Jensen convexity implies its convexity and f satisfies (26) with ¢(x,-) being
homogeneous for x € X, then there exists a linear functional L : X — R such that

f0)= 39m0)+1(), xEX. (30)

Moreover, ¢ is bilinear and symmetric.
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A similar reasoning as above allows us to derive the following fact.

CoROLLARY 12. Assume X to be a real linear space and that f : X - R, ¢: X XX - R
satisfy (1). If for every x € X the function R 3 t — f(tx) € R has the property that its Jensen
convexity implies its convexity and f satisfies (28) with ¢(x, -) being homogeneous for x € X,
then there exists a linear functional L : X — R such that

ﬂM=%M%m+Mw,xeX. (31)

Moreover, ¢ is bilinear and symmetric.

Remark 13. If X is a real linear topological Hausdorff space, then (23) is satisfied if f is
nonnegative in a certain neighborhood of zero.

Now, we state and prove our next result.

THEOREM 14. Assume X to be uniquely 2-divisible, f : X — R, ¢ : X X X — R satisfy (1),
(3);

¢(2x,2y) <4¢(x,y), xy€eX, (32)

.. k X k —X

v (iminf [ (35) +4/ (55) | > )
X X (33)
. . k . k -
Vxex<hkr£1i2f2 f<27) >—00V llging f(z—k> < +00>.

Then there exists an additive function a: X — R such that

f0)=39mx)+alw), xeX. (34)

Moreover, ¢ is biadditive and symmetric.

Proof. Define a sequence (¢k)ken, of real mappings on X by the formula (24). We have
already checked (proof of Lemma 5) that this sequence is nonincreasing. We will show
that it is pointwise bounded. Fix an x € X and observe that

pin= 2 s () s ()] 24(5). remn

(35)

i A2 [ () ()2 (5 s

So, by (33), the sequence (@i )ken, is pointwise convergent. Define ¢ : X — R by ¢(x) :=
limg 40 @ (x) for x € X. Observe that

Pk (2x) = 3¢r(x) +r(—x), x€X, k€ Ny, (36)
and thus

0(2x) =3¢p(x) +9(-x), xe€X. (37)
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Next, by the definition of ¢ and ¢, (1) and (32), we have
9t y) —9(x) —p(y) = lim [gr(x+y) = pr(x) — pe(y)]

gk xoyy gk ok oy oy
= limsup =75 (35,3 ) +limsup 5455 5F) (38)

—+o00
1 1
> 5¢(x,y) + Egb(—x, -y), xyeX

Define ¢; : X X X — R by ¢1(x, y) := (1/2)[¢(x, y) + ¢(—x,—y)] for x,y € X. Now, we
may apply Lemma 3 with ¢ and ¢; to get that ¢; is biadditive and symmetric and ¢ =
q + a, where q is a quadratic mapping and a is an additive one. Moreover,

plxty) —(x) —9(y) =qx+y) —q(x) —q(y) =¢1(x,y), xyeX.  (39)
Now, put f;:= f —¢ and ¢, := ¢ — ¢,. We have f; = 0 and

filx+y) = ilx) = fily) = 2(x,9), %y €X (40)
Lemma 4 applied for f = f; and ¢ = ¢, implies that f; is even and f,(2x) = 4 f1(x) for
x € X. By Proposition 1(c), we have
3p(x) + (—x) +4£1(x) = (2x) + fi(2x) = f(2x)
23f(x)+ f(—x) =3¢(x) +o(—x)+4fi(x), xeX.

So f(2x) =3 f(x) + f(—x) for x € X. This means that f = ¢, and as a consequence ¢, = 0.
This completes the proof. O

(41)

Remark 15. The assumption (33) is fulfilled if f satisfies the condition (26), which ap-
pears (among others) in Theorem 7. But Theorem 14 does not generalize Theorem 7 or
Corollary 8, unless we are able to replace the assumption (32) by (16) in Theorem 14
(note that (32) in its whole strength was used only to prove that ¢(x + y) — ¢(x) — ¢(y) =
¢1(x,y) forx,y € X).

Now, we will state and prove our last result, which yields a generalization to [3, Theo-
rem 1].

THEOREM 16. Assume that f: X — R and ¢ : X X X — R satisfy (1), (3) and

li;nsup4—1k¢(2kx,2kx) <400, x€X,
™ (42)
liminf —¢(2"x,2"y) = ¢(x,y), xyeX.
k—+oo 4

Ifthe sequence (27 [ f(25x) — f(=2%x)])ken is pointwise convergent to a superadditive func-
tion, then there exists a subadditive function A : X — R such that

Fx) = %(p(x,x) “Ax), xeX. (43)

Moreover, ¢ is biadditive and symmetric.
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Proof. Define a sequence (§k)ken, of real mappings on X by the formula

47k 4k
— f(2kx) +

4—k _ sz

> f(=2kx), xeX, keN,. (44)

Pr(x) :=
We will show that this sequence is convergent. Fix an x € X. We have

k ok Ko\ _ £ _ ok
Pr(x) = f x);_j;,f 2%%) + f2) zkfl( 2 x), k € No. (45)

Observe that by Proposition 1(c), the first summand is nondecreasing and (by
Proposition 1(b)) pointwise upper bounded by 4%¢(2kx, 2k x), whereas the second one is
convergent by the assumption. Thus the sequence (¢x)ken is convergent. Therefore, the
formula

P(x):= klim ok(x), x€X, (46)
—+00

correctly defines a map ¢ : X — R. Moreover, $(2x) = 3¢(x) + $(—x) for x € X and the
following inequality is satisfied:

Px+y) = o(x) = 9(y)

2 aTH (=25 - 2) - f(=24%) - f(~24)]
+2 [ f 2K+ 2y) - £(24%) - £(2)]
2 f(=2kx=24y) - f(=2%) - (= 24)] 47)
> hkrzljgf% 4R (25 x, 2K y) + ¢ (— 2kx, —2Fy) ]

+%[p(x+y) - p(x) = p(y)]
1

= 2[¢(x>)’)+¢(—x,—y)]> X,)/EX,

where p: X — R is defined by

p(x)::klirpwz—ll([f(2kx) “f(-2*0)], xeX. (48)

Lemma 3 states that the map ¢; : X X X — R, defined by ¢,(x,y) = (1/2)[¢(x, y) +
¢(—x,—y)] for x,y € X, is biadditive and symmetric and §(x) = (1/2)¢; (x,x) + a(x) for
x € X, where a is an additive mapping. It implies that

Px+y)—9x) —9(y) =¢di(x,y), xyeX, (49)

that is, the foregoing estimation holds with the equality. In particular,

lim 47F[f (2" x+2%y) = f(2"x) = fF(2*))] = p(x.y), xyeX (50)

k—+co
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Moreover, observe that ¢y (x) — @k (—x) = (1/2F)(f (2%x) — f(—2kx)) forx € X and k €
No, whence 2a = p.
Now, put fi := f — ¢ and ¢, := ¢ — ¢,. Clearly, ¢, satisfies (3), (42), and

flx+y) = ilx) = ily) = da(x,y), xy€X (51)

Moreover, one has

lim 475 fi (2%x+2%y) = fi(2%) - A (2" y)] = da(xp), xyEX,  (52)

k—+o00
klirpw zik [f1(2"x) = fi(—2Fx)]

= lim S [F(25) - f(= 2] - lim [k - p(- 2] ()

=p(x)—2a(x)=0, xeX

Split f into its even and odd parts, that is, define P,g : X — R by P(x) := (1/2)[ fi(x) +
fi(=x)] and g(x) := (1/2)[ fi(x) — fi(—x)] for x € X. Next, fix x,y € X and apply (51)
twice: for x and y and then for —x and —y. Summing up side by side the two inequalities
obtained and using the definition of ¢; and ¢,, we get

hx+y)+ fl=x-y) - filx) - fi(=x) = fily) - fi(=y) =0, (54)

that is, P is superadditive. In particular, due to its evenness, P is nonpositive and P(2x) >
2P(x) for x € X. Thus, the sequence (27¥P(2%x))ken is convergent, whence

lim 47FP(2¥x) =0, xeX. (55)

k—+oo

This, jointly with (52), implies that

lim 47 [g(2kx+2Fy) — g(2Fx) —g(2¥y)] = ¢a(x,¥), x,yE€X. (56)

k—+oco
On the other hand, we have

lim 27%g(2kx) = kljl}lm 2k1+1 [A(2*x) = A(—-2%x)] =0, x€X. (57)

k—+oco

From the last two equalities, it follows that ¢, = 0. So ¢ = ¢, is biadditive and symmetric.
It remains to define A : X — R by A(x) := (1/2)¢(x,x) — f(x) for x € X. This completes
the proof. O

Remark 17. The convergence assumption spoken of in Theorem 16 is weaker than the
supposition of the evenness of f, used in [3, Theorem 1]. However, we do not know
definitely whether or not it could be omitted.
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