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We are going to consider the functional inequality f (x + y)− f (x)− f (y) ≥ φ(x, y),
x, y ∈ X , where (X ,+) is an abelian group, and φ : X ×X →R and f : X →R are unknown
mappings. In particular, we will give conditions which force biadditivity and symmetry
of φ and the representation f (x) = (1/2)φ(x,x) + a(x) for x ∈ X , where a is an additive
function. In the present paper, we continue and develop our earlier studies published by
the author (2004).

Let (X ,+) be an abelian group. We consider the functional inequality

f (x+ y)− f (x)− f (y)≥ φ(x, y), x, y ∈ X , (1)

where φ : X ×X →R and f : X →R are unknown mappings.
First, we quote [3, Proposition].

Proposition 1. If f : X →R, φ : X ×X →R satisfy (1) and

φ(x,−x)≥−φ(x,x), x ∈ X , (2)

then, (a) f (0) ≤ 0; (b) f (x) + f (−x) ≤ φ(x,x) for x ∈ X ; (c) f (2x) ≥ 3 f (x) + f (−x) for
x ∈ X .

One can see that an even function f : X →R which fulfills assumptions of Proposition
1 satisfies f (2x)≥ 4 f (x) for x ∈ X . This observation was used in [3], where a new func-
tion Q : X → R was defined by the formula Q(x) := limk→+∞ f (2kx)/4k for x ∈ X . The
resulted equality Q(2x)= 4Q(x) for x ∈ X played a crucial role.

The main idea of the present paper is to drop the assumption that f is even and use
Proposition 1(c) to get a limit function ϕ : X →R satisfying the equality ϕ(2x)= 3ϕ(x) +
ϕ(−x) for x ∈ X (see Theorems 14 and 16).
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It is assumed that N= {1,2, . . .} and N0 = {0,1,2, . . .}.
Let us quote here [3, Lemma 1].

Lemma 2. Assume that f : X →R and φ : X ×X →R satisfy (1). If

φ(x,−y)≥−φ(x, y), x, y ∈ X , (3)

f (2x)≤ 4 f (x), x ∈ X , (4)

then

f (x)= 1
2
φ(x,x), x ∈ X. (5)

Moreover, φ is biadditive and symmetric.

The foregoing result was the main tool in [3]. In fact, this lemma, in slightly different
version, was first proved by K. Baron (see [4]). In the present paper, we need to state a
more general lemma, which works for maps satisfying f (2x)≤ 3 f (x) + f (−x) for x ∈ X .

Lemma 3. Assume that f : X →R and φ : X ×X →R satisfy (1) and (3). If

f (2x)≤ 3 f (x) + f (−x), x ∈ X , (6)

then there exists an additive function a : X →R such that

f (x)= 1
2
φ(x,x) + a(x), x ∈ X. (7)

Moreover, φ is biadditive and symmetric.

Proof. Setting −y instead of y in (1), we obtain

f (x− y)− f (x)− f (−y)≥ φ(x,−y)≥−φ(x, y), x, y ∈ X. (8)

Adding this to (1) leads to

f (x+ y) + f (x− y)≥ 2 f (x) + f (y) + f (−y), x, y ∈ X. (9)

Fix arbitrarily u,v ∈ X . Applying this inequality with x = u+ v and y = u− v and using
(6), we infer that

3 f (u) + f (−u) + 3 f (v) + f (−v)

≥ f (2u) + f (2v)≥ 2 f (u+ v) + f (u− v) + f (v−u), u,v ∈ X.
(10)

The last two inequalities imply that f satisfies the equality

f (x+ y) + f (x− y)= 2 f (x) + f (y) + f (−y), x, y ∈ X. (11)

Now, define q : X →R and a : X →R by the formulas

a(x) := f (x)− f (−x)
2

, q(x) := f (x) + f (−x)
2

, x ∈ X. (12)
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It is clear that

a(x+ y) + a(x− y)= 2a(x), x, y ∈ X , (13)

thus a is additive. Moreover,

q(x+ y) + q(x− y)= 2q(x) + 2q(y), x, y ∈ X , (14)

that is, q is quadratic. There exists a biadditive and symmetric functional B : X ×X →R
such that q(x)= B(x,x) for x ∈ X (see, e.g., Aczél and Dhombres [1, Chapter 11, Propo-
sition 1]). Moreover, we have

q(x+ y)− q(x)− q(y)= 2B(x, y), x, y ∈ X. (15)

This implies that 2B(x, y)≥ φ(x, y) for x, y ∈ X . By the use of this, (3), and the biadditiv-
ity of B, we get that φ(x, y)≥−φ(x,−y)≥−2B(x,−y)= 2B(x, y) for x, y ∈ X . So 2B = φ.
This completes the proof. �

Our next step is to drop the assumption of the evenness of function f in [3, Lemma
3]. We have the following generalization of this result.

Recall that a group X is called uniquely 2-divisible if and only if the map X � x →
x+ x ∈ X is bijective.

Lemma 4. Assume X to be uniquely 2-divisible, f : X → R, φ : X ×X → R satisfy (1), (2),
and

φ(2x,2x)≤ 4φ(x,x), x ∈ X. (16)

If f is nonnegative, then f is even and f (x)= (1/2)φ(x,x) for x ∈ X .

Proof. By Proposition 1(c) and nonnegativity of f , we get that for x ∈ X , the sequence
(2n f (x/2n))n∈N is nonincreasing and nonnegative and thus convergent. So, the formula

A(x) := lim
n→+∞2n f

(
x

2n

)
, x ∈ X , (17)

correctly defines a map A : X →R. Moreover, A(x)≥ 0 and A(2x)= 2A(x) for x ∈ X .
Proposition 1(c) implies that

2n f
(

x

2n−1

)
≥ 3 · 2n f

(
x

2n

)
+ 2n f

(−x
2n

)
, x ∈ X , n∈N. (18)

So

2A(x)= A(2x)≥ 3A(x) +A(−x), x ∈ X , (19)

and we can easily observe that A= 0.
Now, we will follow the original proof of [3, Lemma 3]. Fix an x ∈ X . From (1) and

(16), we derive inductively the estimations

2k f
(

x

2k−1

)
− 2k+1 f

(
x

2k

)
≥ 2kφ

(
x

2k
,
x

2k

)
≥ 1

2k
φ(x,x), (20)
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for all k ∈N. Summing up these inequalities side by side for k ∈ {1, . . . ,n}, we get that

2 f (x)− 2n+1 f
(
x

2n

)
≥

n∑
k=1

1
2k
φ(x,x), n∈N. (21)

Letting n tend to +∞ yields the inequality 2 f (x)≥ φ(x,x).
On the other hand, Proposition 1(b) states that f (x) + f (−x)≤ φ(x,x) for x ∈ X . So,

f is even and f (x)= (1/2)φ(x,x) for x ∈ X . This completes the proof. �

In the next lemma, we will provide a certain property of the inequality from
Proposition 1(c).

Lemma 5. Assume X to be uniquely 2-divisible. If f : X →R satisfies

f (2x)≥ 3 f (x) + f (−x), x ∈ X , (22)

∀x∈X ∃k0∈N ∀k≥k0 f
(
x

2k

)
≥ 0, (23)

then f ≥ 0.

Proof. Define a sequence (ϕk)k∈N0 of real mappings on X by the formula

ϕk(x) := 4k + 2k

2
f
(
x

2k

)
+

4k − 2k

2
f
(
− x

2k

)
, x ∈ X , k ∈N0. (24)

We will show that this sequence is nonincreasing. Fix an x ∈ X and k ∈N0. We have

ϕk(x)= 4k + 2k

2
f
(
x

2k

)
+

4k − 2k

2
f
(
− x

2k

)

≥ 4k + 2k

2

[
3 f
(

x

2k+1

)
+ f

(
− x

2k+1

)]

+
4k − 2k

2

[
3 f
(
− x

2k+1

)
+ f

(
x

2k+1

)]

= 4k+1 + 2k+1

2
f
(

x

2k+1

)
+

4k+1− 2k+1

2
f
(
− x

2k+1

)
= ϕk+1(x).

(25)

The assumption (23) implies that the sequence (ϕk(x))k∈N0 is nonnegative for x ∈ X .
In particular f (x)= ϕ0(x)≥ 0 for x ∈ X . This completes the proof. �

Now, we may join this lemma with our Lemmas 4, 2 and Proposition 1(c) to get the
following result.

Corollary 6. Assume X to be uniquely 2-divisible, f : X → R, φ : X ×X → R satisfy (1),
(2), (16), and (23). Then f is nonnegative, even, and f (x)= (1/2)φ(x,x) for x ∈ X . More-
over, if (3) is also satisfied, then φ is biadditive and symmetric.
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Next, we will quote [3, Theorem 2].

Theorem 7. Assume X to be uniquely 2-divisible and that f : X →R, φ : X ×X →R satisfy
(1), (3), (16) jointly with

f (x) + f (−x)≥ 0, x ∈ X. (26)

Then there exists an additive function a : X →R such that

f (x)= 1
2
φ(x,x) + a(x), x ∈ X. (27)

Moreover, φ is biadditive and symmetric.

This result together with Lemma 5 applied for a map x 	→ f (x) + f (−x) leads to the
following corollary.

Corollary 8. Assume X to be uniquely 2-divisible and that f : X → R, φ : X ×X → R
satisfy (1), (3), (16) jointly with

∀x∈X ∃k0∈N ∀k≥k0 f
(
x

2k

)
+ f

(
− x

2k

)
≥ 0. (28)

Then there exists an additive function a : X →R such that

f (x)= 1
2
φ(x,x) + a(x), x ∈ X. (29)

Moreover, φ is biadditive and symmetric.

Now, we quote [2, Corollary 2].

Corollary 9. Assume X to be a real linear space and that f : X → R, φ : X × X → R
satisfy (1), f is nonnegative, and φ(x,·) is homogeneous for x ∈ X . Then φ is bilinear and
symmetric and f (x)= (1/2)φ(x,x) for x ∈ X .

In the light of Lemma 5, we get then the following corollary.

Corollary 10. Assume X to be a real linear space, f : X → R, φ : X ×X → R satisfy (1),
(23), and φ(x,·) is homogeneous for x ∈ X . Then φ is bilinear and symmetric and f (x) =
(1/2)φ(x,x)≥ 0 for x ∈ X .

We recall also the following corollary.

Corollary 11 [2, Corollary 1]. Assume X to be a real linear space and that f : X → R,
φ : X ×X → R satisfy (1). If for every x ∈ X the function R� t 	→ f (tx)∈ R has the prop-
erty that its Jensen convexity implies its convexity and f satisfies (26) with φ(x,·) being
homogeneous for x ∈ X , then there exists a linear functional L : X →R such that

f (x)= 1
2
φ(x,x) +L(x), x ∈ X. (30)

Moreover, φ is bilinear and symmetric.
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A similar reasoning as above allows us to derive the following fact.

Corollary 12. Assume X to be a real linear space and that f : X → R, φ : X ×X → R
satisfy (1). If for every x ∈ X the functionR� t 	→ f (tx)∈R has the property that its Jensen
convexity implies its convexity and f satisfies (28) with φ(x,·) being homogeneous for x ∈ X ,
then there exists a linear functional L : X →R such that

f (x)= 1
2
φ(x,x) +L(x), x ∈ X. (31)

Moreover, φ is bilinear and symmetric.

Remark 13. If X is a real linear topological Hausdorff space, then (23) is satisfied if f is
nonnegative in a certain neighborhood of zero.

Now, we state and prove our next result.

Theorem 14. Assume X to be uniquely 2-divisible, f : X → R, φ : X ×X → R satisfy (1),
(3),

φ(2x,2y)≤ 4φ(x, y), x, y ∈ X , (32)

∀x∈X
(

liminf
k→+∞

[
4k f

(
x

2k

)
+ 4k f

(−x
2k

)]
>−∞

)
,

∀x∈X

(
liminf
k→+∞

2k f
(
x

2k

)
>−∞∨ limsup

k→+∞
2k f

(−x
2k

)
< +∞

)
.

(33)

Then there exists an additive function a : X →R such that

f (x)= 1
2
φ(x,x) + a(x), x ∈ X. (34)

Moreover, φ is biadditive and symmetric.

Proof. Define a sequence (ϕk)k∈N0 of real mappings on X by the formula (24). We have
already checked (proof of Lemma 5) that this sequence is nonincreasing. We will show
that it is pointwise bounded. Fix an x ∈ X and observe that

ϕk(x)= 4k + 2k

2 · 4k

[
4k f

(
x

2k

)
+ 4k f

(−x
2k

)]
− 2k f

(−x
2k

)
, k ∈N0,

ϕk(x)= 4k − 2k

2 · 4k

[
4k f

(
x

2k

)
+ 4k f

(−x
2k

)]
+ 2k f

(
x

2k

)
, k ∈N0.

(35)

So, by (33), the sequence (ϕk)k∈N0 is pointwise convergent. Define ϕ : X → R by ϕ(x) :=
limk→+∞ϕk(x) for x ∈ X . Observe that

ϕk+1(2x)= 3ϕk(x) +ϕk(−x), x ∈ X , k ∈N0, (36)

and thus

ϕ(2x)= 3ϕ(x) +ϕ(−x), x ∈ X. (37)
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Next, by the definition of ϕ and ϕk, (1) and (32), we have

ϕ(x+ y)−ϕ(x)−ϕ(y)= lim
k→+∞

[
ϕk(x+ y)−ϕk(x)−ϕk(y)

]
≥ limsup

k→+∞

4k + 2k

2
φ
(
x

2k
,
y

2k

)
+ limsup

k→+∞

4k − 2k

2
φ
(−x

2k
,
−y
2k

)
≥ 1

2
φ(x, y) +

1
2
φ(−x,−y), x, y ∈ X.

(38)

Define φ1 : X ×X → R by φ1(x, y) := (1/2)[φ(x, y) + φ(−x,−y)] for x, y ∈ X . Now, we
may apply Lemma 3 with ϕ and φ1 to get that φ1 is biadditive and symmetric and ϕ =
q+ a, where q is a quadratic mapping and a is an additive one. Moreover,

ϕ(x+ y)−ϕ(x)−ϕ(y)= q(x+ y)− q(x)− q(y)= φ1(x, y), x, y ∈ X. (39)

Now, put f1 := f −ϕ and φ2 := φ−φ1. We have f1 ≥ 0 and

f1(x+ y)− f1(x)− f1(y)≥ φ2(x, y), x, y ∈ X. (40)

Lemma 4 applied for f = f1 and φ = φ2 implies that f1 is even and f1(2x) = 4 f1(x) for
x ∈ X . By Proposition 1(c), we have

3ϕ(x) +ϕ(−x) + 4 f1(x)= ϕ(2x) + f1(2x)= f (2x)

≥ 3 f (x) + f (−x)= 3ϕ(x) +ϕ(−x) + 4 f1(x), x ∈ X.
(41)

So f (2x)= 3 f (x) + f (−x) for x ∈ X . This means that f = ϕ, and as a consequence φ2 = 0.
This completes the proof. �

Remark 15. The assumption (33) is fulfilled if f satisfies the condition (26), which ap-
pears (among others) in Theorem 7. But Theorem 14 does not generalize Theorem 7 or
Corollary 8, unless we are able to replace the assumption (32) by (16) in Theorem 14
(note that (32) in its whole strength was used only to prove that ϕ(x+ y)−ϕ(x)−ϕ(y)≥
φ1(x, y) for x, y ∈ X).

Now, we will state and prove our last result, which yields a generalization to [3, Theo-
rem 1].

Theorem 16. Assume that f : X →R and φ : X ×X →R satisfy (1), (3) and

limsup
k→+∞

1
4k
φ
(
2kx,2kx

)
< +∞, x ∈ X ,

liminf
k→+∞

1
4k
φ
(
2kx,2k y

)≥ φ(x, y), x, y ∈ X.

(42)

If the sequence (2−k[ f (2kx)− f (−2kx)])k∈N is pointwise convergent to a superadditive func-
tion, then there exists a subadditive function A : X →R such that

f (x)= 1
2
φ(x,x)−A(x), x ∈ X. (43)

Moreover, φ is biadditive and symmetric.
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Proof. Define a sequence (ϕ̂k)k∈N0 of real mappings on X by the formula

ϕ̂k(x) := 4−k + 2−k

2
f
(
2kx

)
+

4−k − 2−k

2
f
(− 2kx

)
, x ∈ X , k ∈N0. (44)

We will show that this sequence is convergent. Fix an x ∈ X . We have

ϕ̂k(x)= f
(
2kx

)
+ f

(− 2kx
)

2 · 4k
+

f
(
2kx

)− f
(− 2kx

)
2k+1

, k ∈N0. (45)

Observe that by Proposition 1(c), the first summand is nondecreasing and (by
Proposition 1(b)) pointwise upper bounded by 4−kφ(2kx,2kx), whereas the second one is
convergent by the assumption. Thus the sequence (ϕ̂k)k∈N is convergent. Therefore, the
formula

ϕ̂(x) := lim
k→+∞

ϕ̂k(x), x ∈ X , (46)

correctly defines a map ϕ̂ : X → R. Moreover, ϕ̂(2x) = 3ϕ̂(x) + ϕ̂(−x) for x ∈ X and the
following inequality is satisfied:

ϕ̂(x+ y)− ϕ̂(x)− ϕ̂(y)

= lim
k→+∞

1
2
· 4−k

[
f
(
2kx+ 2k y

)− f
(
2kx

)− f
(
2k y

)]
+

1
2
· 4−k

[
f
(− 2kx− 2k y

)− f
(− 2kx

)− f
(− 2k y

)]
+ 2−k−1[ f (2kx+ 2k y

)− f
(
2kx

)− f
(
2k y

)]
− 2−k−1[ f (− 2kx− 2k y

)− f
(− 2kx

)− f
(− 2k y

)]
≥ liminf

k→+∞
1
2
· 4−k

[
φ
(
2kx,2k y

)
+φ

(− 2kx,−2k y
)]

+
1
2

[
p(x+ y)− p(x)− p(y)

]
≥ 1

2

[
φ(x, y) +φ(−x,−y)

]
, x, y ∈ X ,

(47)

where p : X →R is defined by

p(x) := lim
k→+∞

1
2k
[
f
(
2kx

)− f
(− 2kx

)]
, x ∈ X. (48)

Lemma 3 states that the map φ1 : X × X → R, defined by φ1(x, y) = (1/2)[φ(x, y) +
φ(−x,−y)] for x, y ∈ X , is biadditive and symmetric and ϕ̂(x)= (1/2)φ1(x,x) + a(x) for
x ∈ X , where a is an additive mapping. It implies that

ϕ̂(x+ y)− ϕ̂(x)− ϕ̂(y)= φ1(x, y), x, y ∈ X , (49)

that is, the foregoing estimation holds with the equality. In particular,

lim
k→+∞

4−k
[
f
(
2kx+ 2k y

)− f
(
2kx

)− f
(
2k y

)]= φ(x, y), x, y ∈ X. (50)
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Moreover, observe that ϕ̂k(x)− ϕ̂k(−x)= (1/2k)( f (2kx)− f (−2kx)) for x ∈ X and k ∈
N0, whence 2a= p.

Now, put f1 := f − ϕ̂ and φ2 := φ−φ1. Clearly, φ2 satisfies (3), (42), and

f1(x+ y)− f1(x)− f1(y)≥ φ2(x, y), x, y ∈ X. (51)

Moreover, one has

lim
k→+∞

4−k
[
f1
(
2kx+ 2k y

)− f1
(
2kx

)− f1
(
2k y

)]= φ2(x, y), x, y ∈ X , (52)

lim
k→+∞

1
2k
[
f1
(
2kx

)− f1
(− 2kx

)]
= lim

k→+∞
1
2k
[
f
(
2kx

)− f
(− 2kx

)]− lim
k→+∞

1
2k
[
ϕ̂
(
2kx

)− ϕ̂
(− 2kx

)]
= p(x)− 2a(x)= 0, x ∈ X.

(53)

Split f1 into its even and odd parts, that is, define P,g : X → R by P(x) := (1/2)[ f1(x) +
f1(−x)] and g(x) := (1/2)[ f1(x)− f1(−x)] for x ∈ X . Next, fix x, y ∈ X and apply (51)
twice: for x and y and then for −x and −y. Summing up side by side the two inequalities
obtained and using the definition of φ1 and φ2, we get

f1(x+ y) + f1(−x− y)− f1(x)− f1(−x)− f1(y)− f1(−y)≥ 0, (54)

that is, P is superadditive. In particular, due to its evenness, P is nonpositive and P(2x)≥
2P(x) for x ∈ X . Thus, the sequence (2−kP(2kx))k∈N is convergent, whence

lim
k→+∞

4−kP
(
2kx

)= 0, x ∈ X. (55)

This, jointly with (52), implies that

lim
k→+∞

4−k
[
g
(
2kx+ 2k y

)− g
(
2kx

)− g
(
2k y

)]= φ2(x, y), x, y ∈ X. (56)

On the other hand, we have

lim
k→+∞

2−kg
(
2kx

)= lim
k→+∞

1
2k+1

[
f1
(
2kx

)− f1
(− 2kx

)]= 0, x ∈ X. (57)

From the last two equalities, it follows that φ2 = 0. So φ= φ1 is biadditive and symmetric.
It remains to define A : X → R by A(x) := (1/2)φ(x,x)− f (x) for x ∈ X . This completes
the proof. �

Remark 17. The convergence assumption spoken of in Theorem 16 is weaker than the
supposition of the evenness of f , used in [3, Theorem 1]. However, we do not know
definitely whether or not it could be omitted.
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