A WIRSING-TYPE APPROACH TO SOME CONTINUED FRACTION EXPANSION

GABRIELA ILEANA SEBE

Received 29 July 2004 and in revised form 9 March 2005

Chan (2004) considered a certain continued fraction expansion and the corresponding Gauss-Kuzmin-Lévy problem. A Wirsing-type approach to the Perron-Frobenius operator of the associated transformation under its invariant measure allows us to obtain a near-optimal solution to this problem.

1. Introduction

The Gauss 1812 problem gave rise to an extended literature. In modern times, the socalled Gauss-Kuzmin-Lévy theorem is still one of the most important results in the metrical theory of regular continued fractions (RCFs). A recent survey of this topic is to be found in [10]. From the time of Gauss, a great number of such theorems followed. See, for example, [2, 6, 7, 8, 18].

Apart from the RCF expansion there are many other continued fraction expansions: the continued fraction expansion to the nearest integer, grotesque expansion, Nakada's α -expansions, Rosen expansions; in fact, there are too many to mention (see [4, 5, 11, 12, 13, 16, 17] for some background information). The Gauss-Kuzmin-Lévy problem has been generalized to the above continued fraction expansions (see [3, 14, 15, 19, 20, 21]).

Taking up a problem raised in [1], we consider another expansion of reals in the unit interval, different from the RCF expansion. In fact, in [1] Chan has studied the transformation related to this new continued fraction expansion and the asymptotic behaviour of its distribution function. Giving a solution to the Gauss-Kuzmin-Lévy problem, he showed in [1, Theorem 1] that the convergence rate involved is $O(q^n)$ as $n \to \infty$ with 0 < q < 1. This unsurprising result can be easily obtained from well-known general results (see [9, pages 202 and 262–266] and [10, Section 2.1.2]) concerning the Perron-Frobenius operator of the transformation under the invariant measure induced by the limit distribution function.

Our aim here is to give a better estimation of the convergence rate discussed. First, in Section 2 we introduce equivalent, but much more concise and rigorous expressions than in [1] of the transformation involved and of the related incomplete quotients. Next, in Section 3, our strategy is to derive the Perron-Frobenius operator of this transformation

Copyright © 2005 Hindawi Publishing Corporation

International Journal of Mathematics and Mathematical Sciences 2005:12 (2005) 1943–1950 DOI: 10.1155/IJMMS.2005.1943

under its invariant measure. In Section 4, we use a Wirsing-type approach (see [22]) to study the optimality of the convergence rate. Actually, in Theorem 4.3 of Section 4 we obtain upper and lower bounds of the convergence rate which provide a near-optimal solution to the Gauss-Kuzmin-Lévy problem.

2. Another expansion of reals in the unit interval

In this section we describe another continued fraction expansion different from the regular continued fraction expansion for a number *x* in the unit interval I = [0, 1], which has been actually considered in [1].

Define for any $x \in I$ the transformation

$$\tau(x) = 2^{\{(\log x^{-1})/\log 2\}} - 1, \quad x \neq 0; \ \tau(0) = 0, \tag{2.1}$$

where $\{u\}$ denotes the fractionary part of a real u while log stands for natural logarithm. (Nevertheless, the definition of τ is independent of the base of the logarithm used.) Putting

$$a_n(x) = a_1(\tau^{n-1}(x)), \quad n \in \mathbb{N}_+ = \{1, 2, \ldots\},$$
(2.2)

with $\tau^0(x) = x$ the identity map and

$$a_1(x) = \left[\frac{(\log x^{-1})}{\log 2}\right],$$
(2.3)

where [u] denotes the integer part of a real u, one easily sees that every irrational $x \in (0,1)$ has a unique infinite expansion

$$x = \frac{2^{-a_1}}{1 + \frac{2^{-a_2}}{1 + \dots}} = [a_1, a_2, \dots].$$
(2.4)

Here, the incomplete quotients or digits $a_n(x)$, $n \in \mathbb{N}_+$ of $x \in (0, 1)$ are natural numbers.

Let \mathcal{B}_I be the σ -algebra of Borel subsets of *I*. There is a probability measure ν on \mathcal{B}_I defined by

$$\nu(A) = \frac{1}{\log(4/3)} \int_{A} \frac{dx}{(x+1)(x+2)}, \quad A \in \mathcal{B}_{I},$$
(2.5)

such that $\nu(\tau^{-1}(A)) = \nu(A)$ for any $A \in \mathcal{B}_I$, that is, ν is τ -invariant.

3. An operator treatment

In the sequel we will derive the Perron-Frobenius operator of τ under the invariant measure ν .

Let μ be a probability measure on \mathcal{B}_I such that $\mu(\tau^{-1}(A)) = 0$ whenever $\mu(A) = 0, A \in \mathcal{B}_I$, where τ is the continued fraction transformation defined in Section 2. In particular,

this condition is satisfied if τ is μ -preserving, that is, $\mu\tau^{-1} = \mu$. It is known from [10, Section 2.1] that the Perron-Frobenius operator P_{μ} of τ under μ is defined as the bounded linear operator on $L^{1}_{\mu} = \{f : I \to \mathbb{C} \mid \int_{I} |f| d\mu < \infty\}$ which takes $f \in L^{1}_{\mu}$ into $P_{\mu}f \in L^{1}_{\mu}$ with

$$\int_{A} P_{\mu} f d\mu = \int_{\tau^{-1}(A)} f d\mu, \quad A \in \mathcal{B}_{I}.$$
(3.1)

In particular the Perron-Frobenius operator P_{λ} of τ under the Lebesgue measure λ is

$$P_{\lambda}(x) = \frac{d}{dx} \int_{\tau^{-1}([0,x])} f d\lambda \quad \text{a.e. in } I.$$
(3.2)

PROPOSITION 3.1. The Perron-Frobenius operator $P_{\nu} = U$ of τ under ν is given a.e. in I by the equation

$$Uf(x) = \sum_{k \in \mathbb{N}} p_k(x) f(u_k(x)), \quad f \in L^1_{\nu},$$
(3.3)

where

$$p_{k}(x) = \frac{\gamma^{k+1}(x+1)(x+2)}{(\gamma^{k}+x+1)(\gamma^{k+1}+x+1)}, \quad x \in I,$$

$$u_{k}(x) = \frac{\gamma^{k}}{x+1}, \quad x \in I,$$
(3.4)

with $\gamma = 1/2$.

The *proof* is entirely similar to that of [10, Proposition 2.1.2].

An analogous result to [10, Proposition 2.1.5] is shown as follows.

PROPOSITION 3.2. Let μ be a probability measure on \mathcal{B}_I . Assume that $\mu \ll \lambda$ and let $h = d\mu/d\lambda$. Then

$$\mu(\tau^{-n}(A)) = \int_{A} \frac{U^{n} f(x)}{(x+1)(x+2)} dx$$
(3.5)

for any $n \in \mathbb{N}$ and $A \in \mathcal{B}_I$, where f(x) = (x+1)(x+2)h(x), $x \in I$.

4. A Wirsing-type approach

Let μ be a probability measure on \mathfrak{B}_I such that $\mu \ll \lambda$. For any $n \in \mathbb{N}$, put

$$F_n(x) = \mu(\tau^n < x), \quad x \in I, \tag{4.1}$$

where τ^0 is the identity map. As $(\tau^n < x) = \tau^{-n}((0, x))$, by Proposition 3.2 we have

$$F_n(x) = \int_0^x \frac{U^n f_0(u)}{(u+1)(u+2)} du, \quad n \in \mathbb{N}, \ x \in I,$$
(4.2)

with $f_0(x) = (x+1)(x+2)F'_0(x), x \in I$, where $F'_0 = d\mu/d\lambda$.

In this section we will assume that $F'_0 \in C^1(I)$. So, we study the behaviour of U^n as $n \to \infty$, assuming that the domain of U is $C^1(I)$, the collection of all functions $f: I \to \mathbb{C}$ which have a continuous derivative.

Let $f \in C^1(I)$. Then the series (3.3) can be differentiated term-by-term, since the series of derivatives is uniformly convergent. Putting $\Delta_k = \gamma^k - \gamma^{2k}$, $k \in \mathbb{N}$ we get

$$p_{k}(x) = \gamma^{k+1} + \frac{\Delta_{k}}{\gamma^{k} + x + 1} - \frac{\Delta_{k+1}}{\gamma^{k+1} + x + 1},$$

$$(Uf)'(x) = \sum_{k \in \mathbb{N}} \left[p_{k}'(x) f\left(\frac{\gamma^{k}}{x+1}\right) - p_{k}(x) \frac{\gamma^{k}}{(x+1)^{2}} f'\left(\frac{\gamma^{k}}{x+1}\right) \right]$$

$$= \sum_{k \in \mathbb{N}} \left[\left(\frac{\Delta_{k+1}}{(\gamma^{k+1} + x + 1)^{2}} - \frac{\Delta_{k}}{(\gamma^{k} + x + 1)^{2}}\right) f\left(\frac{\gamma^{k}}{x+1}\right) - p_{k}(x) \frac{\gamma^{k}}{(x+1)^{2}} f'\left(\frac{\gamma^{k}}{x+1}\right) \right]$$

$$= -\sum_{k \in \mathbb{N}} \left[\frac{\Delta_{k+1}}{(\gamma^{k+1} + x + 1)^{2}} \left(f\left(\frac{\gamma^{k+1}}{x+1}\right) - f\left(\frac{\gamma^{k}}{x+1}\right) \right) + p_{k}(x) \frac{\gamma^{k}}{(x+1)^{2}} f'\left(\frac{\gamma^{k}}{x+1}\right) \right],$$

$$(4.3)$$

 $x \in I$. Thus, we can write

$$(Uf)' = -Vf', \quad f \in C^1(I),$$
 (4.4)

where $V : C(I) \rightarrow C(I)$ is defined by

$$Vg(x) = \sum_{k \in \mathbb{N}} \left(\frac{\Delta_{k+1}}{(\gamma^{k+1} + x + 1)^2} \int_{\gamma^{k/(x+1)}}^{\gamma^{k+1/(x+1)}} g(u) du + p_k(x) \frac{\gamma^k}{(x+1)^2} g\left(\frac{\gamma^k}{x+1}\right) \right),$$
(4.5)

 $g \in C(I), x \in I$. Clearly,

$$(U^n f)' = (-1)^n V^n f', \quad n \in \mathbb{N}_+, f \in C^1(I).$$
 (4.6)

We are going to show that V^n takes certain functions into functions with very small values when $n \in \mathbb{N}_+$ is large.

PROPOSITION 4.1. There are positive constants v > 0.206968896 and w < 0.209364308, and a real-valued function $\varphi \in C(I)$ such that $v\varphi \leq V\varphi \leq w\varphi$.

Proof. Let $h : \mathbb{R}_+ \to \mathbb{R}$ be a continuous bounded function such that $\lim_{x \to \infty} h(x) < \infty$. We look for a function $g : (0,1] \to \mathbb{R}$ such that Ug = h, assuming that the equation

$$Ug(x) = \sum_{k \in \mathbb{N}} p_k(x)g\left(\frac{\gamma^k}{x+1}\right) = h(x)$$
(4.7)

holds for $x \in \mathbb{R}_+$. Then (4.7) yields

$$\frac{h(x)}{x+2} - \frac{h(2x+1)}{2x+3} = \frac{x+1}{(x+2)(2x+3)}g\left(\frac{1}{x+1}\right), \quad x \in \mathbb{R}_+.$$
(4.8)

Hence

$$g(u) = (u+2)h\left(\frac{1}{u}-1\right) - (u+1)h\left(\frac{2}{u}-1\right), \quad u \in (0,1],$$
(4.9)

and we indeed have Ug = h since

$$Ug(x) = \sum_{k \in \mathbb{N}} p_k(x) \left[\left(\frac{\gamma^k}{x+1} + 2 \right) h \left(\frac{x+1}{\gamma^k} - 1 \right) - \left(\frac{\gamma^k}{x+1} + 1 \right) h \left(\frac{2(x+1)}{\gamma^k} - 1 \right) \right]$$

$$= \frac{x+2}{2} \sum_{k \in \mathbb{N}} \frac{\gamma^{2k}}{(\gamma^k + x+1)(\gamma^{k+1} + x+1)}$$

$$\times \left[\left(\frac{x+1}{\gamma^{k+1}} + 1 \right) h \left(\frac{x+1}{\gamma^k} - 1 \right) - \left(\frac{x+1}{\gamma^k} + 1 \right) h \left(\frac{x+1}{\gamma^{k+1}} - 1 \right) \right]$$

$$= h(x), \quad x \in \mathbb{R}_+.$$

(4.10)

In particular, for any fixed $a \in I$ we consider the function $h_a : \mathbb{R}_+ \to \mathbb{R}$ defined by $h_a(x) = 1/(x + a + 1), x \in \mathbb{R}_+$. By the above, the function $g_a : (0, 1] \to \mathbb{R}$ defined as

$$g_a(x) = (x+2)h_a\left(\frac{1}{x}-1\right) - (x+1)h_a\left(\frac{2}{x}-1\right)$$

= $\frac{x(x+2)}{ax+1} - \frac{x(x+1)}{ax+2}, \quad x \in (0,1],$ (4.11)

satisfies $Ug_a(x) = h_a(x), x \in I$. Setting

$$\varphi_a(x) = g'_a(x) = \frac{3ax^2 + 4(a+1)x + 6}{(ax+2)^2(ax+1)^2},$$
(4.12)

we have

$$V\varphi_a(x) = -(Ug_a)'(x) = \frac{1}{(x+a+1)^2}, \quad x \in I.$$
 (4.13)

We choose *a* by asking that $(\varphi_a/V\varphi_a)(0) = (\varphi_a/V\varphi_a)(1)$. This amounts to $3a^4 + 12a^3 + 18a^2 - 2a - 17 = 0$ which yields as unique acceptable solution a = 0.794741181... For this value of *a*, the function $\varphi_a/V\varphi_a$ attains its maximum equal to $(3/2)(a + 1)^2 = 4.83164386...$ at x = 0 and x = 1, and has a minimum $m(a) \simeq (\varphi_a/V\varphi_a)(0.39) = 4.776363306...$ It follows that for $\varphi = \varphi_a$ with a = 0.794741181..., we have

$$\frac{2\varphi}{3(a+1)^2} \le V\varphi \le \frac{\varphi}{m(a)},\tag{4.14}$$

that is, $v\varphi \leq V\varphi \leq w\varphi$, where $v = 2/3(a+1)^2 > 0.206968896$, and w = 1/m(a) < 0.209364308.

COROLLARY 4.2. Let $f_0 \in C^1(I)$ such that $f'_0 > 0$. Put $\alpha = \min_{x \in I} \varphi(x) / f'_0(x)$ and $\beta = \max_{x \in I} \varphi(x) / f'_0(x)$. Then

$$\frac{\alpha}{\beta}v^n f'_0 \le V^n f'_0 \le \frac{\beta}{\alpha}w^n f'_0, \quad n \in \mathbb{N}_+.$$
(4.15)

Proof. Since V is a positive operator, we have

$$v^n \varphi \le V^n \varphi \le w^n \varphi, \quad n \in \mathbb{N}_+.$$
 (4.16)

Noting that $\alpha f'_0 \leq \varphi \leq \beta f'_0$, we can write

$$\frac{\alpha}{\beta}\nu^{n}f_{0}' \leq \frac{1}{\beta}\nu^{n}\varphi \leq \frac{1}{\beta}V^{n}\varphi \leq V^{n}f_{0}' \leq \frac{1}{\alpha}V^{n}\varphi \leq \frac{1}{\alpha}w^{n}\varphi \leq \frac{\beta}{\alpha}w^{n}f_{0}',$$
(4.17)

 $n \in \mathbb{N}_+$, which shows that (4.15) holds.

THEOREM 4.3 (near-optimal solution to Gauss-Kuzmin-Lévy problem). Let $f_0 \in C^1(I)$ such that $f'_0 > 0$. For any $n \in \mathbb{N}_+$ and $x \in I$,

$$\frac{(\log(4/3))^{2} \alpha \min_{x \in I} f_{0}'(x)}{2\beta} v^{n} F(x) (1 - F(x))
\leq \left| \mu(\tau^{n} < x) - F(x) \right| \leq \frac{(\log(4/3))^{2} \beta \max_{x \in I} f_{0}'(x)}{\alpha} w^{n} F(x) (1 - F(x)),$$
(4.18)

where α , β , v and w are defined in Proposition 4.1 and Corollary 4.2 and $F(x) = (1/\log(4/3))\log(2(x+1))/x + 2$. In particular, for any $n \in \mathbb{N}_+$ and $x \in I$,

$$0.01023923\nu^{n}F(x)(1-F(x)) \leq |\lambda(\tau^{n} < x) - F(x)| \\ \leq 0.334467468w^{n}F(x)(1-F(x)).$$

$$(4.19)$$

Proof. For any $n \in \mathbb{N}$ and $x \in I$, set $d_n(F(x)) = \mu(\tau^n < x) - F(x)$. Then by (4.2) we have

$$d_n(F(x)) = \int_0^x \frac{U^n f_0(u)}{(u+1)(u+2)} du - F(x).$$
(4.20)

Differentiating twice with respect to *x* yields

$$d'_{n}(F(x))\frac{1}{(\log(4/3))(x+1)(x+2)} = \frac{U^{n}f_{0}(x)}{(x+1)(x+2)} - \frac{1}{(\log(4/3))(x+1)(x+2)},$$

$$\left(U^{n}f_{0}(x)\right)' = \frac{1}{(\log(4/3))^{2}}\frac{d''_{n}(F(x))}{(x+1)(x+2)}, \quad n \in \mathbb{N}, \ x \in I.$$

(4.21)

Hence by (4.6) we have

$$d_n''(F(x)) = (-1)^n \left(\log\left(\frac{4}{3}\right) \right)^2 (x+1)(x+2) V^n f_0'(x), \quad n \in \mathbb{N}, \ x \in I.$$
(4.22)

Since $d_n(0) = d_n(1) = 0$, it follows from a well-known interpolation formula that

$$d_n(x) = -\frac{x(1-x)}{2}d_n^{\prime\prime}(\theta), \quad n \in \mathbb{N}, \ x \in I$$
(4.23)

for a suitable $\theta = \theta(n, x) \in I$. Therefore

$$\mu(\tau^n < x) - F(x) = (-1)^{n+1} \left(\log\left(\frac{4}{3}\right) \right)^2 \frac{\theta + 1}{2} V^n f_0'(\theta) F(x) \left(1 - F(x)\right)$$
(4.24)

for any $n \in \mathbb{N}$ and $x \in I$, and another suitable $\theta = \theta(n, x) \in I$. The result stated follows now from Corollary 4.2. In the special case $\mu = \lambda$, we have $f_0(x) = (x+1)(x+2)$, $x \in I$. Then with a = 0.794741181..., we have

$$\alpha = \min_{x \in I} \frac{\varphi(x)}{f_0'(x)} = \frac{7a + 10}{5(a+2)^2(a+1)^2} = 0.123720515...,$$

$$\beta = \max_{x \in I} \frac{\varphi(x)}{f_0'(x)} = 0.5,$$

(4.25)

so that $(\log(4/3))^2 \alpha/2\beta = 0.01023923...$ and $(\log 4/3)^2 \beta/\alpha = 0.334467468....$ The proof is complete.

Acknowledgments

I would like to thank Marius Iosifescu for many stimulating discussions. Also, I would like to thank the referees, whose comments were extremely valuable.

References

- H.-C. Chan, A Gauss-Kuzmin-Lévy theorem for a certain continued fraction, Int. J. Math. Math. Sci. 2004 (2004), no. 20, 1067–1076.
- K. Dajani and C. Kraaikamp, Generalization of a theorem of Kusmin, Monatsh. Math. 118 (1994), no. 1-2, 55–73.
- [3] _____, A Gauss-Kusmin theorem for optimal continued fractions, Trans. Amer. Math. Soc. 351 (1999), no. 5, 2055–2079.
- [4] _____, The mother of all continued fractions, Colloq. Math. 84/85 (2000), part 1, 109–123.
- [5] _____, *Ergodic Theory of Numbers*, Carus Mathematical Monographs, vol. 29, Mathematical Association of America, District of Columbia, 2002.
- [6] M. Iosifescu, On the Gauss-Kuzmin-Lévy theorem. I, Rev. Roumaine Math. Pures Appl. 39 (1994), no. 2, 97–117.
- [7] _____, On the Gauss-Kuzmin-Lévy theorem. II, Rev. Roumaine Math. Pures Appl. 40 (1995), no. 2, 91–105.
- [8] _____, On the Gauss-Kuzmin-Lévy theorem. III, Rev. Roumaine Math. Pures Appl. 42 (1997), no. 1-2, 71–88.
- M. Iosifescu and Ş. Grigorescu, Dependence with Complete Connections and Its Applications, Cambridge Tracts in Mathematics, vol. 96, Cambridge University Press, Cambridge, 1990.
- [10] M. Iosifescu and C. Kraaikamp, *Metrical Theory of Continued Fractions*, Mathematics and Its Applications, vol. 547, Kluwer Academic, Dordrecht, 2002.
- [11] A. Ya. Khinchin, Continued Fractions, Dover Publications, New York, 1997.
- [12] C. Kraaikamp, A new class of continued fraction expansions, Acta Arith. 57 (1991), no. 1, 1–39.
- [13] H. Nakada, Metrical theory for a class of continued fraction transformations and their natural extensions, Tokyo J. Math. 4 (1981), no. 2, 399–426.
- [14] G. J. Rieger, Ein Gauss-Kusmin-Levy-Satz für Kettenbrüche nach nächsten Ganzen, Manuscripta Math. 24 (1978), no. 4, 437–448 (German).

- [15] A. M. Rockett, The metrical theory of continued fractions to the nearer integer, Acta Arith. 38 (1980), no. 2, 97–103.
- [16] A. M. Rockett and P. Szüsz, Continued Fractions, World Scientific, New Jersey, 1992.
- [17] F. Schweiger, Ergodic Theory of Fibred Systems and Metric Number Theory, Oxford Science Publications, Clarendon Press, Oxford University Press, New York, 1995.
- [18] _____, Kuzmin's theorem revisited, Ergodic Theory Dynam. Systems 20 (2000), no. 2, 557– 565.
- [19] G. I. Sebe, A two-dimensional Gauss-Kuzmin theorem for singular continued fractions, Indag. Math. (N.S.) 11 (2000), no. 4, 593–605.
- [20] _____, On convergence rate in the Gauss-Kuzmin problem for grotesque continued fractions, Monatsh. Math. 133 (2001), no. 3, 241–254.
- [21] _____, A Gauss-Kuzmin theorem for the Rosen fractions, J. Théor. Nombres Bordeaux 14 (2002), no. 2, 667–682.
- [22] E. Wirsing, On the theorem of Gauss-Kusmin-Lévy and a Frobenius-type theorem for function spaces, Acta Arith. 24 (1974), 507–528.

Gabriela Ileana Sebe: Department of Mathematics I, "Politehnica" University of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania

E-mail address: gisebe@mathem.pub.ro