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Chan (2004) considered a certain continued fraction expansion and the corresponding
Gauss-Kuzmin-Lévy problem. A Wirsing-type approach to the Perron-Frobenius oper-
ator of the associated transformation under its invariant measure allows us to obtain a
near-optimal solution to this problem.

1. Introduction

The Gauss 1812 problem gave rise to an extended literature. In modern times, the so-
called Gauss-Kuzmin-Lévy theorem is still one of the most important results in the met-
rical theory of regular continued fractions (RCFs). A recent survey of this topic is to be
found in [10]. From the time of Gauss, a great number of such theorems followed. See,
for example, [2, 6, 7, 8, 18].

Apart from the RCF expansion there are many other continued fraction expansions:
the continued fraction expansion to the nearest integer, grotesque expansion, Nakada’s
α-expansions, Rosen expansions; in fact, there are too many to mention (see [4, 5, 11,
12, 13, 16, 17] for some background information). The Gauss-Kuzmin-Lévy problem has
been generalized to the above continued fraction expansions (see [3, 14, 15, 19, 20, 21]).

Taking up a problem raised in [1], we consider another expansion of reals in the unit
interval, different from the RCF expansion. In fact, in [1] Chan has studied the transfor-
mation related to this new continued fraction expansion and the asymptotic behaviour
of its distribution function. Giving a solution to the Gauss-Kuzmin-Lévy problem, he
showed in [1, Theorem 1] that the convergence rate involved is O(qn) as n→∞ with
0 < q < 1. This unsurprising result can be easily obtained from well-known general re-
sults (see [9, pages 202 and 262–266] and [10, Section 2.1.2]) concerning the Perron-
Frobenius operator of the transformation under the invariant measure induced by the
limit distribution function.

Our aim here is to give a better estimation of the convergence rate discussed. First, in
Section 2 we introduce equivalent, but much more concise and rigorous expressions than
in [1] of the transformation involved and of the related incomplete quotients. Next, in
Section 3, our strategy is to derive the Perron-Frobenius operator of this transformation
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under its invariant measure. In Section 4, we use a Wirsing-type approach (see [22]) to
study the optimality of the convergence rate. Actually, in Theorem 4.3 of Section 4 we
obtain upper and lower bounds of the convergence rate which provide a near-optimal
solution to the Gauss-Kuzmin-Lévy problem.

2. Another expansion of reals in the unit interval

In this section we describe another continued fraction expansion different from the regu-
lar continued fraction expansion for a number x in the unit interval I = [0,1], which has
been actually considered in [1].

Define for any x ∈ I the transformation

τ(x)= 2{(logx−1)/ log2} − 1, x �= 0; τ(0)= 0, (2.1)

where {u} denotes the fractionary part of a real u while log stands for natural loga-
rithm. (Nevertheless, the definition of τ is independent of the base of the logarithm used.)
Putting

an(x)= a1
(
τn−1(x)

)
, n∈N+ = {1,2, . . .}, (2.2)

with τ0(x)= x the identity map and

a1(x)=
[(

logx−1
)

log2

]
, (2.3)

where [u] denotes the integer part of a real u, one easily sees that every irrational x ∈ (0,1)
has a unique infinite expansion

x = 2−a1

1 +
2−a2

1 + ···

= [a1,a2, . . .
]
. (2.4)

Here, the incomplete quotients or digits an(x), n∈N+ of x ∈ (0,1) are natural numbers.
Let �I be the σ-algebra of Borel subsets of I . There is a probability measure ν on �I

defined by

ν(A)= 1
log(4/3)

∫
A

dx

(x+ 1)(x+ 2)
, A∈�I , (2.5)

such that ν(τ−1(A))= ν(A) for any A∈�I , that is, ν is τ-invariant.

3. An operator treatment

In the sequel we will derive the Perron-Frobenius operator of τ under the invariant mea-
sure ν.

Let µ be a probability measure on �I such that µ(τ−1(A))= 0 whenever µ(A)= 0, A∈
�I , where τ is the continued fraction transformation defined in Section 2. In particular,
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this condition is satisfied if τ is µ-preserving, that is, µτ−1 = µ. It is known from [10,
Section 2.1] that the Perron-Frobenius operator Pµ of τ under µ is defined as the bounded
linear operator on L1

µ = { f : I → C | ∫I | f |dµ <∞} which takes f ∈ L1
µ into Pµ f ∈ L1

µ with

∫
A
Pµ f dµ=

∫
τ−1(A)

f dµ, A∈�I . (3.1)

In particular the Perron-Frobenius operator Pλ of τ under the Lebesgue measure λ is

Pλ(x)= d

dx

∫
τ−1([0,x])

f dλ a.e. in I. (3.2)

Proposition 3.1. The Perron-Frobenius operator Pν =U of τ under ν is given a.e. in I by
the equation

U f (x)=
∑
k∈N

pk(x) f
(
uk(x)

)
, f ∈ L1

ν, (3.3)

where

pk(x)= γk+1(x+ 1)(x+ 2)(
γk + x+ 1

)(
γk+1 + x+ 1

) , x ∈ I ,

uk(x)= γk

x+ 1
, x ∈ I ,

(3.4)

with γ = 1/2.

The proof is entirely similar to that of [10, Proposition 2.1.2].
An analogous result to [10, Proposition 2.1.5] is shown as follows.

Proposition 3.2. Let µ be a probability measure on �I . Assume that µ� λ and let h =
dµ/dλ. Then

µ
(
τ−n(A)

)=
∫
A

Un f (x)
(x+ 1)(x+ 2)

dx (3.5)

for any n∈N and A∈�I , where f (x)= (x+ 1)(x+ 2)h(x), x ∈ I .

4. A Wirsing-type approach

Let µ be a probability measure on �I such that µ� λ. For any n∈N, put

Fn(x)= µ
(
τn < x

)
, x ∈ I , (4.1)

where τ0 is the identity map. As (τn < x)= τ−n((0,x)), by Proposition 3.2 we have

Fn(x)=
∫ x

0

Un f0(u)
(u+ 1)(u+ 2)

du, n∈N, x ∈ I , (4.2)

with f0(x)= (x+ 1)(x+ 2)F′0(x), x ∈ I , where F′0 = dµ/dλ.
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In this section we will assume that F′0 ∈ C1(I). So, we study the behaviour of Un as
n→∞, assuming that the domain of U is C1(I), the collection of all functions f : I → C
which have a continuous derivative.

Let f ∈ C1(I). Then the series (3.3) can be differentiated term-by-term, since the series
of derivatives is uniformly convergent. Putting ∆k = γk − γ2k, k ∈N we get

pk(x)= γk+1 +
∆k

γk + x+ 1
− ∆k+1

γk+1 + x+ 1
,

(U f )′(x)=
∑
k∈N

[
p′k(x) f

(
γk

x+ 1

)
− pk(x)

γk

(x+ 1)2
f ′
(

γk

x+ 1

)]

=
∑
k∈N

[(
∆k+1(

γk+1 +x+1
)2 −

∆k(
γk+x+1

)2

)
f
(

γk

x+1

)
− pk(x)

γk

(x+ 1)2
f ′
(

γk

x+ 1

)]

=−
∑
k∈N

[
∆k+1(

γk+1 + x+ 1
)2

(
f
(
γk+1

x+ 1

)
− f

(
γk

x+ 1

))
+ pk(x)

γk

(x+ 1)2
f ′
(

γk

x+ 1

)]
,

(4.3)

x ∈ I . Thus, we can write

(U f )′ = −V f ′, f ∈ C1(I), (4.4)

where V : C(I)→ C(I) is defined by

Vg(x)=
∑
k∈N

(
∆k+1(

γk+1 + x+ 1
)2

∫ γk+1/(x+1)

γk/(x+1)
g(u)du+ pk(x)

γk

(x+ 1)2
g
(

γk

x+ 1

))
, (4.5)

g ∈ C(I), x ∈ I . Clearly,

(
Un f

)′ = (−1)nVn f ′, n∈N+, f ∈ C1(I). (4.6)

We are going to show that Vn takes certain functions into functions with very small
values when n∈N+ is large.

Proposition 4.1. There are positive constants v > 0.206968896 and w < 0.209364308, and
a real-valued function ϕ∈ C(I) such that vϕ≤Vϕ≤wϕ.

Proof. Let h :R+ →R be a continuous bounded function such that limx→∞h(x) <∞. We
look for a function g : (0,1]→R such that Ug = h, assuming that the equation

Ug(x)=
∑
k∈N

pk(x)g
(

γk

x+ 1

)
= h(x) (4.7)

holds for x ∈R+. Then (4.7) yields

h(x)
x+ 2

− h(2x+ 1)
2x+ 3

= x+ 1
(x+ 2)(2x+ 3)

g
(

1
x+ 1

)
, x ∈R+. (4.8)
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Hence

g(u)= (u+ 2)h
(

1
u
− 1

)
− (u+ 1)h

(
2
u
− 1

)
, u∈ (0,1], (4.9)

and we indeed have Ug = h since

Ug(x)=
∑
k∈N

pk(x)
[(

γk

x+ 1
+ 2
)
h
(
x+ 1
γk

− 1
)
−
(

γk

x+ 1
+ 1
)
h
(

2(x+ 1)
γk

− 1
)]

= x+ 2
2

∑
k∈N

γ2k(
γk + x+ 1

)(
γk+1 + x+ 1

)
×
[(

x+ 1
γk+1

+ 1
)
h
(
x+ 1
γk

− 1
)
−
(
x+ 1
γk

+ 1
)
h
(
x+ 1
γk+1

− 1
)]

= h(x), x ∈R+.

(4.10)

In particular, for any fixed a ∈ I we consider the function ha : R+ → R defined by
ha(x)= 1/(x+ a+ 1), x ∈R+. By the above, the function ga : (0,1]→R defined as

ga(x)= (x+ 2)ha

(
1
x
− 1

)
− (x+ 1)ha

(
2
x
− 1

)

= x(x+ 2)
ax+ 1

− x(x+ 1)
ax+ 2

, x ∈ (0,1],
(4.11)

satisfies Uga(x)= ha(x), x ∈ I . Setting

ϕa(x)= g′a(x)= 3ax2 + 4(a+ 1)x+ 6
(ax+ 2)2(ax+ 1)2

, (4.12)

we have

Vϕa(x)=−(Uga
)′

(x)= 1
(x+ a+ 1)2

, x ∈ I. (4.13)

We choose a by asking that (ϕa/Vϕa)(0)= (ϕa/Vϕa)(1). This amounts to 3a4 + 12a3 +
18a2 − 2a− 17 = 0 which yields as unique acceptable solution a = 0.794741181 . . .. For
this value of a, the function ϕa/Vϕa attains its maximum equal to (3/2)(a + 1)2 =
4.83164386 . . . at x = 0 and x = 1, and has a minimum m(a) � (ϕa/Vϕa)(0.39) =
4.776363306 . . .. It follows that for ϕ= ϕa with a= 0.794741181 . . ., we have

2ϕ
3(a+ 1)2

≤Vϕ≤ ϕ

m(a)
, (4.14)

that is, vϕ ≤ Vϕ ≤ wϕ, where v = 2/3(a + 1)2 > 0.206968896, and w = 1/m(a) <
0.209364308. �

Corollary 4.2. Let f0 ∈ C1(I) such that f ′0 > 0. Put α = minx∈I ϕ(x)/ f ′0 (x) and β =
maxx∈I ϕ(x)/ f ′0 (x). Then

α

β
vn f ′0 ≤Vn f ′0 ≤

β

α
wn f ′0 , n∈N+. (4.15)
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Proof. Since V is a positive operator, we have

vnϕ≤Vnϕ≤wnϕ, n∈N+. (4.16)

Noting that α f ′0 ≤ ϕ≤ β f ′0 , we can write

α

β
vn f ′0 ≤

1
β
vnϕ≤ 1

β
Vnϕ≤Vn f ′0 ≤

1
α
Vnϕ≤ 1

α
wnϕ≤ β

α
wn f ′0 , (4.17)

n∈N+, which shows that (4.15) holds. �

Theorem 4.3 (near-optimal solution to Gauss-Kuzmin-Lévy problem). Let f0 ∈ C1(I)
such that f ′0 > 0. For any n∈N+ and x ∈ I ,

(
log(4/3)

)2
αminx∈I f ′0 (x)
2β

vnF(x)
(
1−F(x)

)

≤ ∣∣µ(τn < x
)−F(x)

∣∣≤
(

log(4/3)
)2
βmaxx∈I f ′0 (x)
α

wnF(x)
(
1−F(x)

)
,

(4.18)

where α, β, v and w are defined in Proposition 4.1 and Corollary 4.2 and F(x)= (1/ log(4/
3)) log(2(x+ 1))/x+ 2. In particular, for any n∈N+ and x ∈ I ,

0.01023923vnF(x)
(
1−F(x)

)≤ ∣∣λ(τn < x
)−F(x)

∣∣
≤ 0.334467468wnF(x)

(
1−F(x)

)
.

(4.19)

Proof. For any n∈N and x ∈ I , set dn(F(x))= µ(τn < x)−F(x). Then by (4.2) we have

dn
(
F(x)

)=
∫ x

0

Un f0(u)
(u+ 1)(u+ 2)

du−F(x). (4.20)

Differentiating twice with respect to x yields

d′n
(
F(x)

) 1(
log(4/3)

)
(x+ 1)(x+ 2)

= Un f0(x)
(x+ 1)(x+ 2)

− 1(
log(4/3)

)
(x+ 1)(x+ 2)

,

(
Un f0(x)

)′ = 1(
log(4/3)

)2

d′′n
(
F(x)

)
(x+ 1)(x+ 2)

, n∈N, x ∈ I.

(4.21)

Hence by (4.6) we have

d′′n
(
F(x)

)= (−1)n
(

log
(

4
3

))2

(x+ 1)(x+ 2)Vn f ′0 (x), n∈N, x ∈ I. (4.22)

Since dn(0)= dn(1)= 0, it follows from a well-known interpolation formula that

dn(x)=−x(1− x)
2

d′′n (θ), n∈N, x ∈ I (4.23)
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for a suitable θ = θ(n,x)∈ I . Therefore

µ
(
τn < x

)−F(x)= (−1)n+1
(

log
(

4
3

))2 θ + 1
2

Vn f ′0 (θ)F(x)
(
1−F(x)

)
(4.24)

for any n ∈ N and x ∈ I , and another suitable θ = θ(n,x) ∈ I . The result stated follows
now from Corollary 4.2. In the special case µ = λ, we have f0(x) = (x + 1)(x + 2), x ∈ I .
Then with a= 0.794741181 . . ., we have

α=min
x∈I

ϕ(x)
f ′0 (x)

= 7a+ 10
5(a+ 2)2(a+ 1)2

= 0.123720515 . . . ,

β =max
x∈I

ϕ(x)
f ′0 (x)

= 0.5,
(4.25)

so that (log(4/3))2α/2β = 0.01023923 . . . and (log4/3)2β/α = 0.334467468 . . . . The proof
is complete. �
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