
ON THE BASIS NUMBER OF THE COMPOSITION OF
DIFFERENT LADDERS WITH SOME GRAPHS

MAREF Y. ALZOUBI AND M. M. M. JARADAT

Received 31 October 2004 and in revised form 9 June 2005

The basis number b(G) of a graph G is defined to be the least integer k such that G has
a k-fold basis for its cycle space. In this paper, we investigate the basis number of the
composition of paths and cycles with ladders, circular ladders, and Möbius ladders.

1. Introduction

The graphs considered in this paper are finite, undirected, simple, and connected. Most
of the notations that follow can be found in [6] or [8]. Let G= (V ,E) be a graph, where
V and E are the vertex and the edge sets of G, respectively. If e1,e2, . . . ,eq is an ordering of
the edges in G, then any subset S of edges corresponds to a (0,1)-vector (a1,a2, . . . ,aq) in
the usual way, with ai = 1 (ai = 0) if and only if ei ∈ S (ei /∈ S). These vectors form a q-
dimensional vector space (Z2)q over the field Z2. The vectors in (Z2)q which correspond to
the cycles in G generate a subspace called the cycle space of G denoted by �(G). We will
say that the cycles themselves, rather than the vectors corresponding to them, generate
�(G). It is known that for a connected graph G,

dim�(G)= ∣∣E(G)
∣∣−∣∣V(G)

∣∣+ 1. (1.1)

The first important use of the basis number dates back to MacLane [11] when he
made the connection between the basis number of a graph and the planarity. Thereafter,
in 1981, Schmeichel [12] formalized the definition of the basis number of a graph as
follows: a basis of a cycle space �(G) is called a k-fold basis if each edge of G occurs in at
most k of the cycles in the basis. The basis number of G, denoted by b(G), is the smallest
integer k such that �(G) has a k-fold basis.

In light of MacLane’s ideas and Schmeichel’s formal definition, we notice that studying
the basis number of nonplanar graphs is more interesting than the planar ones.

Schmeichel investigated the basis number of certain important classes of nonplanar
graphs, specifically, complete graphs and complete bipartite graphs. Then Banks and
Schmeichel [5] proved that for n ≥ 7, the basis number of Qn is 4, where Qn is the n-
cube. After that, many researchers were attracted to work on finding the basis number of

Copyright © 2005 Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences 2005:12 (2005) 1861–1868
DOI: 10.1155/IJMMS.2005.1861

http://dx.doi.org/10.1155/S0161171205410583


1862 Basis number of composition of graphs

special kinds of graphs, mainly, those that are obtained from different kinds of products
of given graphs. We refer the interested readers to [1, 2, 3, 4, 7, 9, 10].

The following results due to MacLane [11] and Hailat and Alzoubi [7] will be used
frequently in our work.

Theorem 1.1 (MacLane). A graph G is planar if and only if b(G)≤ 2.

Lemma 1.2 (Hailat and Alzoubi). LetG be a graph with p vertices and q edges. If |C| denotes
the length of the cycle C, and �= {C1,C2, . . . ,Cd : |Ci| ≥ r} is a k-fold basis of �(G), then
rd ≤∑d

i=1 |Ci| ≤ kq, where d = dim�(G).

Definition 1.3. The composition (lexicographic) of two graphs G1(V1,E1) and G2(V2,E2),
denoted by G1[G2], is a graph with vertex set V1×V2 and edge set E(G1[G2])= {(u1,v1)
(u2,v2) : u1u2 ∈ E1 or u1 = u2 and v1v2 ∈ E2}.

It is worth mentioning that, in general, G1[G2] and G2[G1] are not isomorphic graphs
since |E(G1[G2])| = p1q2 + p2

2q1 and |E(G2[G1])| = p2q1 + p2
1q2.

Definition 1.4. The ladder graph Lm is a graph with vertex set V(Lm)= {ui,vi : 1≤ i≤m}
and edge set E(Lm)= {uiui+1,vivi+1 : 1≤ i≤m− 1}∪{uivi : 1≤ i≤m}. The circular lad-
der CLm is a graph obtained from the ladder graph Lm by adding the two edges umu1,
vmv1. The Möbius ladder MLm is a graph obtained from the circular ladder CLm by delet-
ing two parallel curved edges and replace them by two edges that cross.

The main focus of this paper is to investigate the basis number of the composition of
paths and cycles with ladders, circular ladders, and Möbius ladders.

2. Main results

In this section, we investigate the basis number of the compositions Pn[Lm], Pn[CLm],
Pn[MLm], Cn[Lm], Cn[CLm], and Cn[MLm], where Pn is a path on n vertices, Cn is a cycle
on n vertices, Lm denotes a ladder graph with 2m vertices and 3m− 2 edges, CLm denotes
a circular ladder graph with 2m vertices and 3m edges, and MLm denotes a Möbius ladder
graph with 2m vertices and 3m edges.

In this paper, we consider Pn = 123···n, Cn = 123···n1, and the circular ladder
CLm as a graph obtained by drawing the two concentric m-cycles u1u2 ···umu1 and
v1v2 ···vmv1 in addition to the set of edges {uivi : 1≤ i≤m}. Also, we consider the graph
of the ladder Lm as a graph obtained from the circular ladder CLm by deleting the edges
umu1 and vmv1, and the graph of the Möbius ladder MLm as a graph obtained from the
circular ladder CLm by deleting two parallel curved edges and replacing them by two
edges that cross. For the sake of simplicity in our proofs, we consider MLm to be obtained
from CLm by deleting the edges umu1 and vmv1 and replacing them by the edges umv1 and
vmu1.

The graph of Pn[Lm] has 2mn vertices that occur in the following vertex set:

V
(
Pn
[
Lm
])= {(i,uj

)
,
(
i,vj
)

: 1≤ i≤ n, 1≤ j ≤m
}
. (2.1)

It is well known that |E(Pn[Lm])| = |E(Pn)||V(Lm)|2 + |V(Pn)||E(Lm)| = 4m2(n− 1)
+ 3mn− 2n, and dim�(Pn[Lm]) = |E(Pn[Lm])| − |V(Pn[Lm])|+ 1 = 4m2(n− 1) +mn−
2n+ 1.
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The following identification of vertices plays an important role in our proofs:

um+1 = vm,um+2 = vm−1, . . . ,u2m−1 = v2,u2m = v1. (2.2)

Thus, we may consider V(Pn[Lm]) = {(i,uj) : 1 ≤ i ≤ n, 1 ≤ j ≤ 2m}. Following this
notation, we look at the graph of Pn[Lm] as a graph that consists of n− 1 copies of the
complete regular bipartite graph K2m,2m in addition to the following sets of edges:

E1 =
{(
i,uj

)(
i,uj+1

)
: 1≤ i≤ n, 1≤ j ≤ 2m− 1

}
,

E2 =
{(
i,uj

)(
i,u2m+1− j

)
: 1≤ i≤ n, 1≤ j ≤m− 1

}
.

(2.3)

Note that each copy of K2m,2m connects the vertex set {(i,uj) : 1 ≤ j ≤ 2m} with the
vertex set {(i+ 1,uj) : 1≤ j ≤ 2m} for each i, where 1≤ i≤ n− 1.

Theorem 2.1. For each n≥ 2 and m≥ 5, 3≤ b(Pn[Lm])≤ 4. Moreover, b(Pn[Lm])= 4 for
all n≥ 2 and m≥ 7.

Proof. It is clear that the graph of Pn[Lm] is nonplanar, then by MacLane’s theorem, we
have b(Pn[Lm]) ≥ 3. To prove that b(Pn[Lm]) ≤ 4, we have to find a 4-fold basis for the
cycle space of Pn[Lm]. We define �(Pn[Lm])=�s∪�1∪�2, where �s =

⋃n−1
i=1 �si, �1 =⋃n−1

i=1 �1i, and �2 =∪n
i=1�2i. The sets of cycles �si, �1i, and �2i are defined as follows:

�si = {(i,uj)(i+ 1,uk)(i,uj+1)(i+ 1,uk+1)(i,uj) : 1≤ j, k ≤ 2m− 1},
�1i = {(i,u1)(i + 1,uj)(i + 1,uj+1)(i,u1),(i + 1,u2m)(i,uj)(i,uj+1)(i + 1,u2m) : 1 ≤
j ≤ 2m− 1},
�2i = {(i,uj)(i,u2m− j+1)(i,u2m− j)(i,uj+1)(i,uj) : 1≤ j ≤m− 1}.

For each i, �si is the Schmeichel basis for the ith copy of K2m,2m which is proved in Schme-
ichel [12, Theorem 4]. Then each �si is linearly independent, and since all the copies of
K2m,2m are edge-disjoint, we conclude that �s is linearly independent.

For each 1≤ i≤ n− 1, �1i is a basis for the cycle subspace of �(Pn[Lm]) correspond-
ing to the planar subgraph of Pn[Lm] obtained by pasting all the cycles of �1i, which are
3-cycles, at the common edges of the successive cycles. Thus the cycles of �1i are linearly
independent for each i. Moreover, every 3-cycle in �1i contains two edges that cannot
occur in any other cycle of �1\�1i, which implies that such a 3-cycle is linearly inde-
pendent with all the other 3-cycles of �1\�1i. Therefore, �1 is linearly independent of
3-cycles. Every cycle in �1 contains an edge of the form (i,uj)(i,uj+1) for some i and j,
where 1≤ i≤ n and 1≤ j ≤ 2m− 1, that does not occur in any other cycle of �s. Thus,
every cycle in �1 is linearly independent with all the other cycles in �s. Hence, �1∪�s

is linearly independent.
For each i, 1≤ i≤ n, �2i is a basis of the cycle subspace of �(Pn[Lm]) that corresponds

to the ith copy of the ladder Lm which is obtained by pasting all the 4-cycles in �2i succes-
sively at their common edges. Then �2i is linearly independent for each i. Furthermore,
the cycles of �2i are edge-disjoint with all the cycles in �2\�2i for every i. Therefore, �2

is linearly independent.
Now, every cycle in �2 contains an edge of the form (i,uj)(i,u2m− j+1), 1≤ j ≤m− 1,

which does not occur in any cycle of �1∪�s. So, every cycle in �2 is linearly independent
with all the cycles in �1∪�s. Hence, �s∪�1∪�2 =�(Pn[Lm]) is linearly independent.
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Moreover,

∣∣�
(
Pn
[
Lm
])∣∣= ∣∣�s

∣∣+
∣∣�1

∣∣+
∣∣�2

∣∣

=
n−1∑

i=1

∣∣�si

∣∣+
n−1∑

i=1

∣∣�1i
∣∣+

n∑

i=1

∣∣�2i
∣∣

= (n− 1)(2m− 1)2 + (n− 1)
(
2(2m− 1)

)
+n(m− 1)

= 4m2(n− 1) +mn− 2n+ 1= dim�
(
Pn
[
Lm
])
.

(2.4)

Since �(Pn[Lm]) is linearly independent and |�(Pn[Lm])| = dim�(Pn[Lm]), then
�(Pn[Lm]) is a basis of �(Pn[Lm]). It is an easy task to verify that �(Pn[Lm]) is a 4-
fold basis. Hence, b(Pn[Lm])≤ 4 for all n≥ 2 and m≥ 5. On the other hand, to prove that
b(Pn[Lm]) = 4 for all n ≥ 2 and m ≥ 7, we need to exclude any possibility that the cycle
space �(Pn[Lm]) has a 3-fold basis for all n≥ 2 and m≥ 7. To this end, we suppose that
B is a 3-fold basis of the cycle space �(Pn[Lm]) with n≥ 2 and m≥ 7. Then we consider
the following three cases.

Case 1. Suppose that all the cycles in B are 3-cycles. Then, |B| ≤ 3(2m− 1)n+ 3n(m− 1)
because any 3-cycle in Pn[Lm] must contain exactly one edge from E1∪E2 of fold at most
3. Thus, 4m2(n− 1) + mn− 2n + 1 = |B| ≤ 9mn− 6n, which implies that 4m2(n− 1) +
1 ≤ 8mn− 4n. Then, m2 ≤ 2m(n/(n− 1))− n/(n− 1)− 1/4(n− 1). Since n ≥ 2, we have
m2 ≤ 4m, or m≤ 4, a contradiction.

Case 2. Suppose that all the cycles in B have length greater than or equal to 4. Then,
by Lemma 1.2, we have 4(4m2(n− 1) +mn− 2n+ 1)≤ 3(4m2(n− 1) + 3mn− 2n), which
is equivalent to the inequality 16m2(n− 1) + 4mn− 8n + 4 ≤ 12m2(n− 1) + 9mn− 6n.
Rearranging this inequality implies that 4m2(n− 1)≤ 5mn+ 2n− 4. Dividing by 4(n− 1)
gives m2 ≤ (5m/4)(n/(n− 1)) + (n− 2)/2(n− 1). Since n≥ 2, we have m2 < (5m/4)(n/(n
− 1)) < 3m. Hence, m< 3, a contradiction.

Case 3. Suppose that B contains s 3-cycles and t cycles of length greater than or equal
to 4. At most 3s edges will be used to form the s 3-cycles, because the fold of every
edge in Pn[Lm] is at most 3. Then, t ≤ �(3(4m2(n− 1) + 3mn− 2n)− 3s)/4�, where �x�
is the greatest integer less than or equal to x. Now, 4m2(n− 1) + mn− 2n + 1 = |B| =
s+ t ≤ s+ �(3(4m2(n− 1) + 3mn− 2n)− 3s)/4� ≤ s+ (3(4m2(n− 1) + 3mn− 2n)− 3s)/4.
Then, 16m2(n− 1) + 4mn− 8n + 4 ≤ 4s + 12m2(n− 1) + 9mn− 6n− 3s = s + 12m2(n−
1) + 9mn− 6n. But, as we have seen in Case 1, s ≤ 9mn− 6n, so 16m2(n− 1) + 4mn−
8n+ 4≤ 12m2(n− 1) + 18mn− 12n. This implies that 4m2(n− 1)≤ 14mn− 4(n+ 1). Di-
viding by 4(n− 1) implies that m2 ≤ (7m/2)(n/(n− 1))− (n + 1)/(n− 1) < 7m. Hence,
m < 7, a contradiction, because this inequality is not satisfied for all m ≥ 7. This com-
pletes the proof. �

We turn our attention to the graph Pn[CLm] which is obtained from the graph of
Pn[Lm] by adding the following set of edges:

E∗ = {(i,um
)(
i,u1

)
,
(
i,um+1

)(
i,u2m

)
: 1≤ i≤ n

}
. (2.5)
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It is clear that |E(Pn[CLm])| = 4m2(n− 1) + 3mn, |V(Pn[CLm])| = 2m, and dim�
(Pn[CLm])= 4m2(n− 1) +mn+ 1.

Theorem 2.2. For each n≥ 2 and m≥ 5, 3≤ b(Pn[CLm])≤ 4. Moreover, b(Pn[CLm])= 4
for all n≥ 2 and m≥ 7.

Proof. Since Pn[CLm] is nonplanar, MacLane’s theorem implies that b(Pn[CLm])≥ 3. To
prove that b(Pn[CLm])≤ 4, we have to prove that the set �(Pn[CLm])=�(Pn[Lm])∪�∗

is a 4-fold basis for �(Pn[CLm]), where �(Pn[Lm]) is the 4-fold basis of �(Pn[Lm]) which
was constructed in Theorem 2.1 and �∗ is defined as follows:

�∗ = {(i+ 1,u1
)(
i,um

)(
i,u1

)(
i+ 1,u1

)
,

(
i+ 1,u1

)(
i,um+1

)(
i,u2m

)(
i+ 1,u1

) | 1≤ i≤ n− 1
}∪{a,b},

(2.6)

where a and b are two cycles given by

a= (n− 1,u2m
)(
n,u1

)(
n,um

)(
n− 1,u2m

)
,

b = (n− 1,u2m
)(
n,um+1

)(
n,u2m

)(
n− 1,u2m

)
.

(2.7)

Every cycle in �∗ contains an edge from E∗ that does not occur in any other cycle of
�(Pn[CLm]). This means that every cycle in �∗ is linearly independent with all the other
cycles in �(Pn[CLm]). Thus, �(Pn[CLm]) is linearly independent. Moreover,
|�(Pn[CLm])| = |�(Pn[Lm])|+ |�∗| = dim�(Pn[CLm]). Hence, �(Pn[CLm]) is a basis
of �(Pn[CLm]), and it is a simple matter to prove that �(Pn[CLm]) is 4-fold.

On the other hand, to prove that b(Pn[CLm]) = 4 for all n ≥ 2 and m ≥ 7, we have
to prove that �(Pn[CLm]) cannot have any 3-fold basis. To this end, we suppose that B
is a 3-fold basis. Then, if we consider the three cases of Theorem 2.1 with similar argu-
ments used there, taking into account that the number of 3-cycles in B is at most 9mn,
we complete the proof. �

We consider the graph of the Möbius ladder MLm as a graph obtained from the circu-
lar ladder CLm by deleting the edges umu1 and u2mum+1 and replacing them by um+1u1 and
u2mum respectively. Following these replacements, the graph of Pn[MLm] is obtained from
Pn[CLm] by deleting all the edges (i,um)(i,u1) and (i,u2m)(i,um+1) and replacing them by
(i,um+1)(i,u1) and (i,u2m)(i,um), respectively, for all i with 1≤ i≤ n. Therefore, the proof
of Theorem 2.2 works word by word for the following theorem after making the replace-
ments of the corresponding edges in the cycles of the set �(Pn[CLm]) in Theorem 2.2.

Theorem 2.3. For each n≥ 2 and m≥ 5, 3≤ b(Pn[MLm])≤ 4. Moreover, b(Pn[MLm])=
4 for all n≥ 2 and m≥ 7.

Now, for the graph Cn[Lm], we have |V(Cn[Lm])| = 2mn, |E(Cn[Lm])| = 4m2n+ 3mn
− 2n, and dim�(Cn[Lm]) = 4m2n + mn− 2n + 1. We consider the graph Cn[Lm] as a
graph obtained from the graph Pn[Lm], which is defined in Theorem 2.1, by adding a
new copy of K2m,2m from the set of vertices {(n,uj) : 1 ≤ j ≤ 2m} and the set of vertices
{(1,uj) : 1≤ j ≤ 2m}. So, we have Cn[Lm]= Pn[Lm]∪{(n,uj)(1,uk) : 1≤ j, k ≤ 2m}.
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Theorem 2.4. For each n≥ 3 and m≥ 5, 3≤ b(Cn[Lm])≤ 4. Moreover, b(Cn[Lm])= 4 for
all n≥ 4 and m≥ 7.

Proof. The graph Cn[Lm] is nonplanar for all n≥ 3 and m≥ 5, then by MacLane’s theo-
rem, we have b(Cn[Lm]) ≥ 3. To prove that b(Cn[Lm]) ≤ 4, we exhibit a 4-fold basis for
�(Cn[Lm]). Define

�
(
Cn
[
Lm
])=�

(
Pn
[
Lm
])∪�sn∪�1n∪{c}, (2.8)

where

�sn =
{(
n,uj

)(
1,uk

)(
n,uj+1

)(
1,uk+1

)(
n,uj

)
: 1≤ j, k ≤ 2m− 1},

�1n =
{(
n,u1

)(
1,uj

)(
1,uj+1

)(
n,u1

)
,
(
1,u2m

)(
n,uj

)(
n,uj+1

)(
1,u2m

)
: 1≤ j ≤ 2m− 1

}
,

(2.9)

and the cycle c is given by

c = (1,u1
)(

2,u1
)···(n− 1,u1

)(
n,u1

)(
1,u1

)
. (2.10)

The set �(Pn[Lm]) is linearly independent, since it is the required 4-fold basis of
�(Pn[Lm]) which was constructed in Theorem 2.1. The sets �sn and �1n are linearly
independent for the same reasons stated in the proof of Theorem 2.1 where we proved
that the sets �si and �1i are linearly independent. Also, using similar arguments to those
used in Theorem 2.1, we conclude that �(Pn[Lm])∪�sn ∪�1n is linearly independent.
Moreover, every edge in the n-cycle c belongs to one of the n copies of the graph K2m,2m,
and since all these copies are edge-disjoint, then c must be linearly independent with all
the other cycles of �(Cn[Lm]). Hence, �(Cn[Lm]) is linearly independent. Furthermore,
we have

∣∣�
(
Cn
[
Lm
])∣∣= ∣∣�

(
Pn
[
Lm
])∣∣+

∣∣�sn

∣∣+
∣∣�1n

∣∣+ 1

= 4m2(n− 1) +mn+ 1 + (2m− 1)2 + (4m− 2) + 1

= 4m2n+mn− 2n+ 1= dim�
(
Cn
[
Lm
])
.

(2.11)

Therefore, �(Cn[Lm]) is a basis, and verifying that it is a 4-fold basis is a simple matter.
On the other hand, to prove that b(Cn[Lm])= 4 for all n≥ 4 and m≥ 7, we prove that

�(Cn[Lm]) cannot have any 3-fold basis. To this end, we suppose that B is a 3-fold basis of
�(Cn[Lm]), then using similar arguments to those used in the three cases of Theorem 2.1,
we get the required contradiction. �

For the graph Cn[CLm], |V(Cn[CLm])| = 2mn, |E(Cn[CLm])| = 4m2n + 3mn, and
dim�(Cn[CLm]) = 4m2n + mn + 1. We consider the graph of Cn[CLm] as a graph ob-
tained from the graph Pn[CLm] by adding the set of edges E∗ which we have defined after
Theorem 2.1.
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Theorem 2.5. For each n≥ 4 and m≥ 5, b(Cn[CLm])= 4.

Proof. To prove that b(Cn[CLm]) ≤ 4 for all n ≥ 4 and m ≥ 5, we look for a 4-fold basis
for the cycle space �(Cn[CLm]) . Define the set �(Cn[CLm])=�(Cn[Lm])∪�∗, where
�(Cn[Lm]) is the basis of �(Cn[Lm]) which was constructed in Theorem 2.4 and �∗ is
the set of cycles that we have defined previously in Theorem 2.2. Since we have seen that
each of these sets is linearly independent and every cycle in �∗ contains an edge that
does not occur in any other cycle in �(Cn[Lm]), we conclude that �(Cn[CLm]) is linearly
independent. Moreover, we have

∣∣�
(
Cn
[

CLm
])∣∣= ∣∣�

(
Cn
[
Lm
])∣∣+

∣∣�∗∣∣

= (4m2n+mn− 2n+ 1
)

+ 2n

= dim�
(
Cn
[

CLm
])
.

(2.12)

Hence, �(Cn[CLm]) is a basis of �(Cn[CLm]) and it can be proved easily that it is a 4-fold
basis.

On the other hand, to prove that b(Cn[CLm]) ≥ 4 for all n ≥ 4 and m ≥ 5, we use
contradiction to eliminate any possibility that �(Cn[CLm]) has a 3-fold basis, in fact,
using similar arguments to those used in the cases of Theorem 2.1. �

Finally, we consider Cn[MLm] as a graph obtained from Cn[CLm] by deleting the fol-
lowing set of edges:

B∗∗ = {(i,um
)(
i,u1

)
,
(
i,u2m

)(
i,um+1

)
: 1≤ i≤ n

}
, (2.13)

and replacing it with the following set of edges:

B∗∗∗ = {(i,um+1
)(
i,u1

)
,
(
i,u2m

)(
i,um

)
: 1≤ i≤ n

}
. (2.14)

Following these replacements of edges, we can repeat the proof of Theorem 2.5 to prove
the following theorem.

Theorem 2.6. For each n≥ 4 and m≥ 5, b(Cn[MLm])= 4.
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