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The concepts of semicompactness, countable semicompactness, and the semi-Lindelof
property are introduced in L-topological spaces, where L is a complete de Morgan alge-
bra. They are defined by means of semiopen L-sets and their inequalities. They do not
rely on the structure of basis lattice L and no distributivity in L is required. They can
also be characterized by semiclosed L-sets and their inequalities. When L is a completely
distributive de Morgan algebra, their many characterizations are presented.

1. Introduction

The notion of semicompactness [3] was introduced in L-topological spaces by Kudri. In
Kudri’s work [6], he followed the lines of his definition of compactness which is equiva-
lent to the notion of strong fuzzy compactness in [7, 8, 13]. However, Kudri’s semicom-
pactness relies on the structure of L and L is required to be completely distributive.

In [10, 12], a new definition of fuzzy compactness is presented in L-topological spaces
by means of an inequality, which does not depend on the structure of L and no dis-
tributivity is required in L. When L is a completely distributive de Morgan algebra, it is
equivalent to the notion of fuzzy compactness in [7, 8, 13].

Following the lines of [10, 12], we will introduce a new definition of semicompactness
in L-topological spaces by means of semiopen L-sets and their inequality, where L is a
complete de Morgan algebra. This definition does not rely on the structure of basis lattice
L and no distributivity in L is required. It can also be characterized by semiclosed L-
sets and their inequality. When L is a completely distributive de Morgan algebra, its many
characterizations are presented. Moreover, we also will introduce the notions of countable
semicompactness and the semi-Lindelof property and research their properties.

2. Preliminaries

Throughout this paper, (L,\/,\,") is a complete de Morgan algebra, X a nonempty set.
LX is the set of all L-fuzzy sets (or L-sets for short) on X. The smallest element and the
largest element in LX are denoted by 0 and 1.
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An element a in L is called prime element if a > b A ¢ implies thata>bora=>c.a
in L is called a coprime element if 4" is a prime element [5]. The set of nonunit prime
elements in L is denoted by P(L). The set of nonzero coprime elements in L is denoted by
M(L).

The binary relation < in L is defined as follows: for a,b € L, a < b if and only if for
every subset D € L, the relation b < supD always implies the existence of d € D with
a < d [4]. In a completely distributive de Morgan algebra L, each element b is a sup of
facLla<b}.{ac L|a< b} is called the greatest minimal family of b in the sense of
[7, 13], in symbol 5(b). Moreover for b € L, define a(b) = {a€ L|a’ < b’} and a*(b) =
a(b) N P(L).

For a € L and A € LX, we use the following notations in [9]:

Al = {xeX|A(x) £a}, A ={xeXlacp(Ax))}. (2.1)

An L-topological space (or L-space for short) is a pair (X,J ), where J is a subfamily
of L* which contains 0, 1 and is closed for any suprema and finite infima. J is called an L-
topology on X. Each member of J is called an open L-set and its quasicomplementation
is called a closed L-set.

Definition 2.1 (see [7, 13]). For a topological space (X, ), let w(7) denote the family
of all the lower semicontinuous maps from (X, 1) to L, that is, w; (1) = {A € X A@ ¢
7,a € L}. Then w(7) is an L-topology on X, in this case, (X, wr (7)) is topologically gen-
erated by (X, 7).

Definition 2.2 (see [7, 13]). An L-space (X,J) is weak induced if for all a € L, for all
A € 9, it follows that A € [T ], where [T ] denotes the topology formed by all crisp sets
inJ.

It is obvious that (X, w; (7)) is weak induced.

Lemma 2.3 (see [11]). Let (X,T) be a weakly induced L-space, a € L, A € J. Then A, is
an open set in [T ].

For a subfamily ® < L, 2(®) denotes the set of all finite subfamilies of ®. 2!/ denotes
the set of all countable subfamilies of ®.

Definition 2.4 (see [10, 12]). Let (X,7) be an L-space, G € LX is called (countably) com-
pact if for every (countably) family U < 7, it follows that

A (va V A(x)) <V A (G’(x)v V A(x)). (22)
xeX A€l Ve2w xeX AT

Definition 2.5 (see [10]). Let (X,J) be an L-space, G € L is said to have the Lindel6f
property if for every family U < F, it follows that

A (G'(x)v \/ A(x)) <V A (G’(x)v \/ A(x)). (2.3)

xeX A el xeX AV



Fu-Gui Shi 1871

LEmMMaA 2.6 (see [10]). Let L be a complete Heyting algebra, let f : X — Y be a map, f; :
LX — LY is the extension of f, then for any family P < LY,

V (ff(G)(y) WA B(y)) =\ (G(xm A f;(B)(x)). (2.4)

yeY Be® xeX Be®

Definition 2.7 (see [1]). An L-set G in an L-space (X, ) is called semiopen if there exists
A € T such that A < G < cl(A). Gis called semiclosed if G’ is semiopen.

Definition 2.8. Let (X,7 ) and (Y,J,) be two L-spaces. A map f : (X,T) — (Y,T,) is
called
(1) semicontinuous [1] if f;”(G) is semiopen in (X,7 ;) for every open L-set G in
(Y,75);
(2) irresolute [2] if f;”(G) is semiopen in (X,!J;) for every semiopen L-set G in
(Y,73).

3. Definition and characterizations of semicompactness

Definition 3.1. Let (X, 7 ) be an L-space. G € L is called (countably) semicompact if for
every (countable) family U of semiopen L-sets, it follows that

A (G’(x)\/ \/ A(x)) <=V A <G'(x)v \/ A(x)). (3.1)

xeX AU Ve xeX AT

Definition 3.2. Let (X, ) be an L-space. G € L is said to have the semi-Lindel6f property
(or be a semi-Lindelof L-set) if for every family U of semiopen L-sets, it follows that

A (va V A(x)) <V A <G'(x)v V A(x)). (3.2)

xeX AU Ye2lul xeX AV

Example 3.3. Let X be any nonempty set and let A be a [0,1]-set on X defined as A(x) =
0.5, for allx € X. Let T = {J,X,A}. Then the set of all semiopen [0,1]-sets in (X, ) is
I . In this case, any [0, 1]-set in (X, J) is semicompact, hence it is countably semicompact
and has the semi-Lindelof property.

Obviously, we have the following theorem.

THEOREM 3.4. Semicompactness implies countably semicompactness and the semi-Lindelif
property. Moreover, an L-set having the semi-Lindelof property is semicompact if and only if
it is countably semicompact.

Since an open L-set must be semiopen, we have the following theorem.

THEOREM 3.5. Semicompactness implies compactness, countably semicompactness implies
countably compactness, and the semi-Lindelof property implies the Lindelof property.
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From Definitions 3.1 and 3.2, we can obtain the following two theorems by using
quasicomplementation.

THEOREM 3.6. Let (X,T) be an L-space. G € LX is (countably) semicompact if and only if
for every (countable) famzly B of semiclosed L-sets, it follows that

\/ (G(x)/\ A B(x)) NV ( (x)A N\ Bx ) (3.3)

xeX Be®B Fe2®) xeX Be%

TueoreM 3.7. Let (X, T ) be an L-space. G € LX has the semi-Lindelof property if and only
if for every family % of semiclosed L-sets, it follows that

\/ (G(x)/\ A B(x)) NV ( (x)A )\ Bx ) (3.4)

xeX Be®B Fe2(Bl xeX Be%

In order to present characterizations of semicompactness, countable semicompact-
ness and the semi-Lindel6f property, we generalize the notions of a—shading and a-R-
neighborhood family in [10, 12] as follows.

Definition 3.8. Let (X,J) be an L-space, a € L\{1},and G € LX. A family o < L¥X is said
to be
(1
(2
(3
(4

an a—shading of G if for any x € X, (G'(x) V V qeqi A(x)) £ a5

a strong a—shading of G if \,cx (G’ (x) V V qcqi A(x)) £ a5

an a—R-neighborhood family of G if for any x € X, (G(x) A \peg B(x)) # a;
a strong a—R-neighborhood family of G if \/,cx (G(x) A A\peg B(x)) # a.

— — — ~—

It is obvious that a strong a—shading of G is an a-shading of G, a strong a—R-
neighborhood family of G is an a—R-neighborhood family of G, and & is a strong a—
R-neighborhood family of G if and only if %’ is a strong a—shading of G.

Definition 3.9. Let a € L\{0} and G € LX. A subfamily # of L is said to have weak a—
nonempty intersection in G if V,ex(G(x) A Ageg A(x)) = a. s is said to have the finite
(countable) weak a—intersection property in G if every finite (countable) subfamily & of
A has weak a—nonempty intersection in G.

From Definitions 3.1, 3.2, Theorems 3.5 and 3.6, we immediately obtain the following
two results.

Tueorem 3.10. Let (X,T) be an L-space and G € LX. Then the following conditions are
equivalent.
(1) G is (countably) semicompact.
(2) For any a € L\{1}, each (countable) semiopen strong a—shading U of G has a finite
subfamily which is a strong a—shading of G.
(3) For any a € L\ {0}, each (countable) semiclosed strong a—R-neighborhood family %P
of G has a finite subfamily which is a strong a—R-neighborhood family of G.
(4) For any a € L\ {0}, each (countable) family of semiclosed L-sets which has the finite
weak a—intersection property in G has weak a—nonempty intersection in G.
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TueOREM 3.11. Let (X,T) be an L-space and G € LX. Then the following conditions are
equivalent.
(1) G has the semi-Lindeldf property.
(2) Foranya € L\ {1}, each semiopen strong a—shading W of G has a countable subfamily
which is a strong a—shading of G.
(3) For any a € L\ {0}, each semiclosed strong a—R-neighborhood family P of G has a
countable subfamily which is a strong a—R-neighborhood family of G.
(4) For any a € L\{0}, each family of semiclosed L-sets which has the countable weak
a—intersection property in G has weak a—nonempty intersection in G.

4. Properties of (countable) semicompactness

THEOREM 4.1. Let L be a complete Heyting algebra. If both G and H are (countably) semi-
compact, then GV H is (countably) semicompact.

Proof. For any (countable) family % of semiclosed L-sets, by Theorem 3.5 we have that

\/(G\/H(x )\ B(x )

x€X Be?

- LV (oeon A B fv{ V. (sean A 5eo) |

(4.1)
2{ AV (G(x)A A\ B()C))}V{ NV <H(x)/\ A B(x))}
Fe2@®) xeX BeF Fe2@) xeX Be%F
_ A \/(GvH(x /\Bx>>
Fe2®) xeX Be%F
This shows that G v H is (countably) semicompact. O

Analogously, we have the following result.

THEOREM 4.2. Let L be a complete Heyting algebra. If both G and H have the semi-Lindelof
property, then GV H has the semi-Lindeldf property.

TaEOREM 4.3. If G is (countably) semicompact and H is semiclosed, then G A H is (count-
ably) semicompact.

Proof. For any (countable) family % of semiclosed L-sets, by Theorem 3.5 we have that

\/(G/\H(x /\ B(x) )

xeX BeP
= \/( A A B(x))
xeX BePU{H}
> /\ \/ (G(x)/\ A B(x))
2@u{H}) xeX Be%
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LA Yo o)l A (o nsan p o)
:{A v( () AH&) A N Blx )}

Fe2?) xeX Be%

=NV ((G AH)(x) A N\ B(x)).
Fe2®) xeX BeF
(4.2)
This shows that G A H is (countably) semicompact. O
Analogously, we have the following result.

THEOREM 4.4. If G has the semi-Lindelof property and H is semiclosed, then G A H has the
semi-Lindelof property.

THEOREM 4.5. Let L be a complete Heyting algebra and let f : (X, 7 1) — (Y,J,) be an
irresolute map. If G is a semicompact (resp., countably semicompact, semi-Lindelof) L-set in
(X,T1), thensois fi (G) in (Y,T,).

Proof. We only prove that the theorem is true for semicompactness. Suppose that % is a
family of semiclosed L-sets in (Y, J ), by Lemma 2.6 and semicompactness of G, we have
that

V (f[(G)(y)A A B(y))

yeY Be®

=V@mAAﬁ®m)
xeX Be® (4.3)

= A\ V (G(x)A A f[(B)(x))
Fe2@®) xeX Be%

= N\ inQmAABm>
Fe2® yeY BeF

Therefore f;”(G) is semicompact. O

Analogously, we have the following result.

THEOREM 4.6. Let L be a complete Heyting algebra and let f : (X, T 1) — (Y, T ,) be a semi-
continuous map. If G is a semicompact (resp., countably semicompact, semi-Lindelof) L-set
in (X, T1), then f;”(G) is a compact (countably compact, Lindeléf) L-set in (Y, T ).

Definition 4.7. Let (X,J) and (Y,J,) be two L-spaces. A map f : (X,7;) — (Y, J>)
is called strongly irresolute if f;”(G) is open in (X,7 ;) for every semiopen L-set G in
(Y) 'JO—Z)

It is obvious that a strongly irresolute map is irresolute.
Analogously, we have the following result.
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THEOREM 4.8. Let L be a complete Heyting algebra and let f : (X, T,) — (Y,73,) be a
strongly irresolute map. If G is a compact (resp., countably compact, Lindelof) L-set in
(X,T1), then f;"(G) is a semicompact (countably semicompact, semi-Lindelof) L-set in
(Y’ JO—Z)

5. Further characterizations of semicompactness and goodness

In this section, we assume that L is a completely distributive de Morgan algebra.
Now we generalize the notions of f,—open cover and Q,—open cover [10] as follows.

Definition 5.1. Let (X, ) be an L-space, a € L\ {0}, and G € LX. A family U < LX is called
a a—cover of G if for any x € X, it follows that a € f(G'(x) V Ve A(x)). W is called a
strong s—cover of Gif a € B(N\ex (G (x) V Vacq A(x))).

It is obvious that a strong f3,—cover of G must be a 3,—cover of G.

Definition 5.2. Let (X, T ) be an L-space, a € L\{0},and G € LX. A family AU < LX is called
a Q—cover of G if for any x € X, it follows that G'(x) vV V geq A(x) = a.

It is obvious that a f,—cover of G must be a Q,—cover of G.
Analogous to the proof of [10, Theorem 2.9], we can obtain the following theorem.

TuEOREM 5.3. Let (X,T) be an L-space and G € LX. Then the following conditions are
equivalent.

(1) G is (countably) semicompact.

(2) For any a € L\{0}, each (countable) semiclosed strong a—R-neighborhood family P
of G has a finite subfamily which is a strong a—R-neighborhood family of G.

(3) For any a € L\{0}, each (countable) semiclosed strong a—R-neighborhood family P
of G has a finite subfamily which is an a—R-neighborhood family of G.

(4) For any a € L\{0} and any (countable) semiclosed strong a—R-neighborhood family
P of G, there exist a finite subfamily F of P and b € S(a) such that F is a strong b—R-
neighborhood family of G.

(5) For any a € L\{0} and any (countable) semiclosed strong a—R-neighborhood family
P of G, there exist a finite subfamily F of P and b € (a) such that & is a b—R-neighborhood
family of G.

(6) For any a € M(L), each (countable) semiclosed strong a—R-neighborhood family %P of
G has a finite subfamily which is a strong a—R-neighborhood family of G.

(7) For any a € M(L), each (countable) semiclosed strong a—R-neighborhood family %P of
G has a finite subfamily which is an a—R-neighborhood family of G.

(8) For any a € M(L) and any (countable) semiclosed strong a—R-neighborhood family
P of G, there exist a finite subfamily & of P and b € f*(a) such that F is a strong b—R-
neighborhood family of G.

(9) For any a € M(L) and any (countable) semiclosed strong a—R-neighborhood family P
of G, there exist a finite subfamily &F of P and b € * (a) such that F is a b—R-neighborhood
family of G.

(10) For any a € L\ {1}, each (countable) semiopen strong a—shading U of G has a finite
subfamily which is a strong a—shading of G.
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(11) For any a € L\ {1}, each (countable) semiopen strong a—shading WU of G has a finite
subfamily which is an a—shading of G.

(12) For any a € L\{1} and any (countable) semiopen strong a—shading W of G, there
exist a finite subfamily V' of W and b € a(a) such that V" is a strong b—shading of G.

(13) For any a € L\{1} and any (countable) semiopen strong a—shading W of G, there
exist a finite subfamily V' of W and b € a(a) such that V' is a b—shading of G.

(14) For any a € P(L), each (countable) semiopen strong a—shading W of G has a finite
subfamily which is a strong a—shading of G.

(15) For any a € P(L), each (countable) semiopen strong a—shading WU of G has a finite
subfamily which is an a—shading of G.

(16) For any a € P(L) and any (countable) semiopen strong a—shading W of G, there exist
a finite subfamily V" of W and b € a* (a) such that V" is a strong b—shading of G.

(17) For any a € P(L) and any (countable) semiopen strong a—shading U of G, there exist
a finite subfamily V' of W and b € a* (a) such that V' is a b—shading of G.

(18) For any a € L\{03}, each (countable) semiopen strong B,—cover WU of G has a finite
subfamily which is a strong ,—cover of G.

(19) For any a € L\{03}, each (countable) semiopen strong B,—cover U of G has a finite
subfamily which is a B,—cover of G.

(20) For any a € L\{0} and any (countable) semiopen strong B,—cover WU of G, there exist
a finite subfamily V" of W and b € L with a € B(b) such that V" is a strong Sp—cover of G.

(21) For any a € L\{0} and any (countable) semiopen strong ,—cover WU of G, there exist
a finite subfamily V' of W and b € L with a € (b) such that V" is a f,—cover of G.

(22) For any a € M(L), each (countable) semiopen strong ,—cover U of G has a finite
subfamily which is a strong ,—cover of G.

(23) For any a € M(L), each (countable) semiopen strong B,—cover U of G has a finite
subfamily which is a B,—cover of G.

(24) For any a € M(L) and any (countable) semiopen strong 3,—cover W of G, there exist
a finite subfamily V' of W and b € M (L) with a € $*(b) such that V' is a strong y—cover of
G.

(25) For any a € M(L) and any (countable) semiopen strong ,—cover W of G, there exist
a finite subfamily V' of W and b € M(L) with a € $*(b) such that V" is a Sp—cover of G.

(26) For any a € L\{0} and any b € f(a)\{0}, each (countable) semiopen Qz—cover of
G has a finite subfamily which is a Qy—cover of G.

(27) For any a € L\{0} and any b € f(a)\{0}, each (countable) semiopen Qz—cover of
G has a finite subfamily which is a B,—cover of G.

(28) For any a € L\{0} and any b € f(a)\{0}, each (countable) semiopen Qz—cover of
G has a finite subfamily which is a strong By—cover of G.

(29) For any a € M(L) and any b € 5*(a), each (countable) semiopen Q,—cover of G has
a finite subfamily which is a Qp—cover of G.

(30) For any a € M(L) and any b € $*(a), each semiopen Qu—cover of G has a finite
subfamily which is a Bp—cover of G.

(31) For any a € M(L) and any b € $*(a), each (countable) semiopen Q,—cover of G has
a finite subfamily which is a strong By—cover of G.

Analogously, we also can present characterizations of the semi-Lindel6f property.
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LemMa 5.4. Let (X,w(T)) be generated topologically by (X, 7). If A is a semiopen L-set in
(X, 1), then ya is a semiopen set in (X, w(7)). If B is a semiopen L-set in (X, w(7)), then B(a)
is a semiopen set in (X,7) for every a € L.

Proof. If A is a semiopen set in (X, 1), then there exists D € 7 such that D € A = cl(D).
Thus we have that

XD < Xa < xdo) = <l (xp). (5.1)

This shows that y4 is semiopen.

If Bisasemiopen L-set in (X, w(7)), then there exists E € w(7) such that E < B < cl(E).
Thus we have that E(;) € B(s) S cl(E)(q). From [9], we can obtain that cl(E) ) S cl(E(g)).
Hence by Lemma 2.3, we know that By, is a semiopen set in (X, 7). O

The following two theorems show that semicompactness, countable semicompactness
and the semi-Lindel6f property are good extensions.

THEOREM 5.5. Let (X, 7) be a topological space and let (X,w(7)) be generated topologically
by (X,7). Then (X,w(7)) is (countably) semicompact if and only if (X, ) is (countably)
semicompact.

Proof. Necessity. Let 9 be a (countable) semiopen cover of (X, 7). Then {ya | A € o} is
a family of semiopen L-sets in (X, w(7)) with Ayex(Vaeq xa(x)) = 1. From (countable)
semicompactness of (X, w(7)), we know that

VoA < V XA(x)) =V A ( \/ XA(X)> =1 (5.2)

Ye2) xeX \AeV Ve xeX \AeV

This implies that there exists V" € 2W such that A ex(Vaey xa(x)) = 1. Hence, ¥ is a
cover of (X, 7). Therefore (X, 7) is (countably) semicompact.

Sufficiency. Let U be a (countable) family of semiopen L-sets in (X,w(7)) and let
Nxex(Vpea B(x)) = a. If a = 0, then obviously we have that

/\(\/B<x>>< V /\(VB(x>). (5.3)
x€X \Bel Ye2) xeX \AeV

Now we suppose that a # 0. In this case, for any b € (a)\{0}, we have that

beﬁ( A ( \/ B(x)>) S ﬂﬁ( \/ B(x)) = U BBX). (5.4)

x€X \Bel xeX BeU xeX Beal

From Lemma 5.4, this implies that {B¢) | B € U} is a semiopen cover of (X, 7). From
(countable) semicompactness of (X,7), we know that there exists ¥ € 2 such that
{Bw) | B€ Y} isa cover of (X, 7). Hence b < A\ cx(\V ey B(x)). Further, we have that

b< A\ ( \/ B(x)) <V A ( \/ B(x)). (5.5)

xeX \BeV Ve xeX \BeV



1878  Semicompactness in L-topological spaces

This implies that
A ( V B(x)) e\ {blbep@ls VA ( V B(x)). (56)
x€X \BeWU Ve2W xeX \BeV

Therefore, (X, w(7)) is (countably) semicompact. O

Analogously, we have the following result.

THEOREM 5.6. Let (X,7) be a topological space and let (X,w(t)) be generated topologically
by (X, 7). Then (X,w(7)) has the semi-Lindelof property if and only if (X, ) has the semi-
Lindelof property.
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