SEMICOMPACTNESS IN L-TOPOLOGICAL SPACES

FU-GUI SHI

Received 8 October 2004 and in revised form 8 June 2005

The concepts of semicompactness, countable semicompactness, and the semi-Lindelöf property are introduced in L-topological spaces, where L is a complete de Morgan algebra. They are defined by means of semiopen L-sets and their inequalities. They do not rely on the structure of basis lattice L and no distributivity in L is required. They can also be characterized by semiclosed L-sets and their inequalities. When L is a completely distributive de Morgan algebra, their many characterizations are presented.

1. Introduction

The notion of semicompactness [3] was introduced in *L*-topological spaces by Kudri. In Kudri's work [6], he followed the lines of his definition of compactness which is equivalent to the notion of strong fuzzy compactness in [7, 8, 13]. However, Kudri's semicompactness relies on the structure of *L* and *L* is required to be completely distributive.

In [10, 12], a new definition of fuzzy compactness is presented in *L*-topological spaces by means of an inequality, which does not depend on the structure of *L* and no distributivity is required in *L*. When *L* is a completely distributive de Morgan algebra, it is equivalent to the notion of fuzzy compactness in [7, 8, 13].

Following the lines of [10, 12], we will introduce a new definition of semicompactness in *L*-topological spaces by means of semiopen *L*-sets and their inequality, where *L* is a complete de Morgan algebra. This definition does not rely on the structure of basis lattice *L* and no distributivity in *L* is required. It can also be characterized by semiclosed *L*sets and their inequality. When *L* is a completely distributive de Morgan algebra, its many characterizations are presented. Moreover, we also will introduce the notions of countable semicompactness and the semi-Lindelöf property and research their properties.

2. Preliminaries

Throughout this paper, $(L, \bigvee, \bigwedge, ')$ is a complete de Morgan algebra, X a nonempty set. L^X is the set of all L-fuzzy sets (or L-sets for short) on X. The smallest element and the largest element in L^X are denoted by $\underline{0}$ and $\underline{1}$.

Copyright © 2005 Hindawi Publishing Corporation International Journal of Mathematics and Mathematical Sciences 2005:12 (2005) 1869–1878 DOI: 10.1155/IJMMS.2005.1869

An element *a* in *L* is called prime element if $a \ge b \land c$ implies that $a \ge b$ or $a \ge c$. *a* in *L* is called a coprime element if *a*' is a prime element [5]. The set of nonunit prime elements in *L* is denoted by *P*(*L*). The set of nonzero coprime elements in *L* is denoted by *M*(*L*).

The binary relation \prec in *L* is defined as follows: for $a, b \in L$, $a \prec b$ if and only if for every subset $D \subseteq L$, the relation $b \leq \sup D$ always implies the existence of $d \in D$ with $a \leq d$ [4]. In a completely distributive de Morgan algebra *L*, each element *b* is a sup of $\{a \in L \mid a \prec b\}$. $\{a \in L \mid a \prec b\}$ is called the greatest minimal family of *b* in the sense of [7, 13], in symbol $\beta(b)$. Moreover for $b \in L$, define $\alpha(b) = \{a \in L \mid a' \prec b'\}$ and $\alpha^*(b) = \alpha(b) \cap P(L)$.

For $a \in L$ and $A \in L^X$, we use the following notations in [9]:

$$A^{(a)} = \{ x \in X \mid A(x) \nleq a \}, \qquad A_{(a)} = \{ x \in X \mid a \in \beta(A(x)) \}.$$
(2.1)

An *L*-topological space (or *L*-space for short) is a pair (X, \mathcal{T}) , where \mathcal{T} is a subfamily of L^X which contains $\underline{0}, \underline{1}$ and is closed for any suprema and finite infima. \mathcal{T} is called an *L*-topology on *X*. Each member of \mathcal{T} is called an open *L*-set and its quasicomplementation is called a closed *L*-set.

Definition 2.1 (see [7, 13]). For a topological space (X, τ) , let $\omega_L(\tau)$ denote the family of all the lower semicontinuous maps from (X, τ) to L, that is, $\omega_L(\tau) = \{A \in L^X \mid A^{(a)} \in \tau, a \in L\}$. Then $\omega_L(\tau)$ is an L-topology on X, in this case, $(X, \omega_L(\tau))$ is topologically generated by (X, τ) .

Definition 2.2 (see [7, 13]). An *L*-space (X, \mathcal{T}) is weak induced if for all $a \in L$, for all $A \in \mathcal{T}$, it follows that $A^{(a)} \in [\mathcal{T}]$, where $[\mathcal{T}]$ denotes the topology formed by all crisp sets in \mathcal{T} .

It is obvious that $(X, \omega_L(\tau))$ is weak induced.

LEMMA 2.3 (see [11]). Let (X, \mathcal{T}) be a weakly induced L-space, $a \in L, A \in \mathcal{T}$. Then $A_{(a)}$ is an open set in $[\mathcal{T}]$.

For a subfamily $\Phi \subseteq L^X$, $2^{(\Phi)}$ denotes the set of all finite subfamilies of Φ . $2^{[\Phi]}$ denotes the set of all countable subfamilies of Φ .

Definition 2.4 (see [10, 12]). Let (X, \mathcal{T}) be an *L*-space, $G \in L^X$ is called (countably) compact if for every (countably) family $\mathcal{U} \subseteq \mathcal{T}$, it follows that

$$\bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x) \right) \le \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{V}} A(x) \right).$$
(2.2)

Definition 2.5 (see [10]). Let (X, \mathcal{T}) be an *L*-space, $G \in L^X$ is said to have the Lindelöf property if for every family $\mathcal{U} \subseteq \mathcal{T}$, it follows that

$$\bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x) \right) \le \bigvee_{\mathcal{V} \in 2^{[\mathcal{U}]}} \bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{V}} A(x) \right).$$
(2.3)

LEMMA 2.6 (see [10]). Let *L* be a complete Heyting algebra, let $f: X \to Y$ be a map, $f_L^{-}: L^X \to L^Y$ is the extension of *f*, then for any family $\mathcal{P} \subseteq L^Y$,

$$\bigvee_{y \in Y} \left(f_L^{-}(G)(y) \wedge \bigwedge_{B \in \mathcal{P}} B(y) \right) = \bigvee_{x \in X} \left(G(x) \wedge \bigwedge_{B \in \mathcal{P}} f_L^{-}(B)(x) \right).$$
(2.4)

Definition 2.7 (see [1]). An *L*-set *G* in an *L*-space (X, \mathcal{T}) is called semiopen if there exists $A \in \mathcal{T}$ such that $A \leq G \leq cl(A)$. *G* is called semiclosed if *G*' is semiopen.

Definition 2.8. Let (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) be two *L*-spaces. A map $f : (X, \mathcal{T}_1) \to (Y, \mathcal{T}_2)$ is called

- (1) semicontinuous [1] if $f_L^-(G)$ is semiopen in (X, \mathcal{T}_1) for every open L-set G in (Y, \mathcal{T}_2) ;
- (2) irresolute [2] if $f_L^-(G)$ is semiopen in $(X, !\mathcal{T}_1)$ for every semiopen L-set G in (Y, \mathcal{T}_2) .

3. Definition and characterizations of semicompactness

Definition 3.1. Let (X, \mathcal{T}) be an *L*-space. $G \in L^X$ is called (countably) semicompact if for every (countable) family \mathfrak{U} of semiopen *L*-sets, it follows that

$$\bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x) \right) \le \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{V}} A(x) \right).$$
(3.1)

Definition 3.2. Let (X, \mathcal{T}) be an *L*-space. $G \in L^X$ is said to have the semi-Lindelöf property (or be a semi-Lindelöf *L*-set) if for every family \mathcal{U} of semiopen *L*-sets, it follows that

$$\bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x) \right) \le \bigvee_{\mathcal{V} \in 2^{[\mathcal{U}]}} \bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{V}} A(x) \right).$$
(3.2)

Example 3.3. Let X be any nonempty set and let A be a [0,1]-set on X defined as A(x) = 0.5, for all $x \in X$. Let $\mathcal{T} = \{\emptyset, X, A\}$. Then the set of all semiopen [0,1]-sets in (X, \mathcal{T}) is \mathcal{T} . In this case, any [0,1]-set in (X, \mathcal{T}) is semicompact, hence it is countably semicompact and has the semi-Lindelöf property.

Obviously, we have the following theorem.

THEOREM 3.4. Semicompactness implies countably semicompactness and the semi-Lindelöf property. Moreover, an L-set having the semi-Lindelöf property is semicompact if and only if it is countably semicompact.

Since an open *L*-set must be semiopen, we have the following theorem.

THEOREM 3.5. Semicompactness implies compactness, countably semicompactness implies countably compactness, and the semi-Lindelöf property implies the Lindelöf property.

From Definitions 3.1 and 3.2, we can obtain the following two theorems by using quasicomplementation.

THEOREM 3.6. Let (X, \mathcal{T}) be an L-space. $G \in L^X$ is (countably) semicompact if and only if for every (countable) family \mathfrak{B} of semiclosed L-sets, it follows that

$$\bigvee_{x \in X} \left(G(x) \land \bigwedge_{B \in \mathcal{B}} B(x) \right) \ge \bigwedge_{\mathcal{F} \in 2^{(\mathfrak{B})}} \bigvee_{x \in X} \left(G(x) \land \bigwedge_{B \in \mathcal{F}} B(x) \right).$$
(3.3)

THEOREM 3.7. Let (X, \mathcal{T}) be an L-space. $G \in L^X$ has the semi-Lindelöf property if and only if for every family \mathfrak{B} of semiclosed L-sets, it follows that

$$\bigvee_{x \in X} \left(G(x) \land \bigwedge_{B \in \mathfrak{B}} B(x) \right) \ge \bigwedge_{\mathfrak{F} \in 2^{[\mathfrak{B}]}} \bigvee_{x \in X} \left(G(x) \land \bigwedge_{B \in \mathfrak{F}} B(x) \right).$$
(3.4)

In order to present characterizations of semicompactness, countable semicompactness and the semi-Lindelöf property, we generalize the notions of a-shading and a-R-neighborhood family in [10, 12] as follows.

Definition 3.8. Let (X, \mathcal{T}) be an *L*-space, $a \in L \setminus \{1\}$, and $G \in L^X$. A family $\mathcal{A} \subseteq L^X$ is said to be

- (1) an *a*-shading of *G* if for any $x \in X$, $(G'(x) \vee \bigvee_{A \in \mathcal{U}} A(x)) \nleq a$;
- (2) a strong *a*-shading of *G* if $\bigwedge_{x \in X} (G'(x) \lor \bigvee_{A \in \mathcal{A}} A(x)) \nleq a$;
- (3) an *a*–R-neighborhood family of *G* if for any $x \in X$, $(G(x) \land \bigwedge_{B \in \mathcal{P}} B(x)) \not\geq a$;
- (4) a strong *a*–R-neighborhood family of *G* if $\bigvee_{x \in X} (G(x) \land \bigwedge_{B \in \mathcal{P}} B(x)) \not\geq a$.

It is obvious that a strong *a*-shading of *G* is an *a*-shading of *G*, a strong *a*-R-neighborhood family of *G* is an *a*-R-neighborhood family of *G*, and \mathcal{P} is a strong *a*-R-neighborhood family of *G* if and only if \mathcal{P}' is a strong *a*-shading of *G*.

Definition 3.9. Let $a \in L \setminus \{0\}$ and $G \in L^X$. A subfamily \mathcal{A} of L^X is said to have weak *a*-nonempty intersection in *G* if $\bigvee_{x \in X} (G(x) \land \bigwedge_{A \in \mathcal{A}} A(x)) \ge a$. \mathcal{A} is said to have the finite (countable) weak *a*-intersection property in *G* if every finite (countable) subfamily \mathcal{F} of \mathcal{A} has weak *a*-nonempty intersection in *G*.

From Definitions 3.1, 3.2, Theorems 3.5 and 3.6, we immediately obtain the following two results.

THEOREM 3.10. Let (X, \mathcal{T}) be an L-space and $G \in L^X$. Then the following conditions are equivalent.

- (1) G is (countably) semicompact.
- (2) For any a ∈ L\{1}, each (countable) semiopen strong a–shading 𝔄 of G has a finite subfamily which is a strong a–shading of G.
- (3) For any $a \in L \setminus \{0\}$, each (countable) semiclosed strong a-R-neighborhood family \mathcal{P} of *G* has a finite subfamily which is a strong a-R-neighborhood family of *G*.
- (4) For any a ∈ L\{0}, each (countable) family of semiclosed L-sets which has the finite weak a–intersection property in G has weak a–nonempty intersection in G.

 \square

THEOREM 3.11. Let (X, \mathcal{T}) be an L-space and $G \in L^X$. Then the following conditions are equivalent.

- (1) G has the semi-Lindelöf property.
- (2) For any $a \in L \setminus \{1\}$, each semiopen strong a-shading \mathfrak{A} of G has a countable subfamily which is a strong a-shading of G.
- (3) For any $a \in L \setminus \{0\}$, each semiclosed strong a-R-neighborhood family \mathcal{P} of G has a countable subfamily which is a strong a-R-neighborhood family of G.
- (4) For any $a \in L \setminus \{0\}$, each family of semiclosed L-sets which has the countable weak *a*–intersection property in *G* has weak *a*–nonempty intersection in *G*.

4. Properties of (countable) semicompactness

THEOREM 4.1. Let *L* be a complete Heyting algebra. If both *G* and *H* are (countably) semicompact, then $G \lor H$ is (countably) semicompact.

Proof. For any (countable) family \mathcal{P} of semiclosed L-sets, by Theorem 3.5 we have that

$$\bigvee_{x\in X} \left((G \lor H)(x) \land \bigwedge_{B\in\mathscr{P}} B(x) \right) \\
= \left\{ \bigvee_{x\in X} \left(G(x) \land \bigwedge_{B\in\mathscr{P}} B(x) \right) \right\} \lor \left\{ \bigvee_{x\in X} \left(H(x) \land \bigwedge_{B\in\mathscr{P}} B(x) \right) \right\} \\
\ge \left\{ \bigwedge_{\mathscr{F}\in 2^{(\mathscr{P})}} \bigvee_{x\in X} \left(G(x) \land \bigwedge_{B\in\mathscr{F}} B(x) \right) \right\} \lor \left\{ \bigwedge_{\mathscr{F}\in 2^{(\mathscr{P})}} \bigvee_{x\in X} \left(H(x) \land \bigwedge_{B\in\mathscr{F}} B(x) \right) \right\} \\
= \bigwedge_{\mathscr{F}\in 2^{(\mathscr{P})}} \bigvee_{x\in X} \left((G \lor H)(x) \land \bigwedge_{B\in\mathscr{F}} B(x) \right).$$
(4.1)

This shows that $G \lor H$ is (countably) semicompact.

Analogously, we have the following result.

THEOREM 4.2. Let *L* be a complete Heyting algebra. If both *G* and *H* have the semi-Lindelöf property, then $G \lor H$ has the semi-Lindelöf property.

THEOREM 4.3. If G is (countably) semicompact and H is semiclosed, then $G \land H$ is (countably) semicompact.

Proof. For any (countable) family \mathcal{P} of semiclosed *L*-sets, by Theorem 3.5 we have that

$$\bigvee_{x \in X} \left((G \land H)(x) \land \bigwedge_{B \in \mathcal{P}} B(x) \right)$$
$$= \bigvee_{x \in X} \left(G(x) \land \bigwedge_{B \in \mathcal{P} \bigcup \{H\}} B(x) \right)$$
$$\ge \bigwedge_{\mathcal{F} \in 2^{(\mathcal{P} \cup \{H\})}} \bigvee_{x \in X} \left(G(x) \land \bigwedge_{B \in \mathcal{F}} B(x) \right)$$

$$= \left\{ \bigwedge_{\mathscr{F}\in 2^{(\mathscr{P})}} \bigvee_{x\in X} \left(G(x) \wedge \bigwedge_{B\in\mathscr{F}} B(x) \right) \right\} \wedge \left\{ \bigwedge_{\mathscr{F}\in 2^{(\mathscr{P})}} \bigvee_{x\in X} \left(G(x) \wedge H(x) \wedge \bigwedge_{B\in\mathscr{F}} B(x) \right) \right\}$$
$$= \left\{ \bigwedge_{\mathscr{F}\in 2^{(\mathscr{P})}} \bigvee_{x\in X} \left(G(x) \wedge H(x) \wedge \bigwedge_{B\in\mathscr{F}} B(x) \right) \right\}$$
$$= \bigwedge_{\mathscr{F}\in 2^{(\mathscr{P})}} \bigvee_{x\in X} \left((G \wedge H)(x) \wedge \bigwedge_{B\in\mathscr{F}} B(x) \right).$$
(4.2)

This shows that $G \wedge H$ is (countably) semicompact.

Analogously, we have the following result.

THEOREM 4.4. If G has the semi-Lindelöf property and H is semiclosed, then $G \land H$ has the semi-Lindelöf property.

THEOREM 4.5. Let L be a complete Heyting algebra and let $f : (X, \mathcal{T}_1) \to (Y, \mathcal{T}_2)$ be an irresolute map. If G is a semicompact (resp., countably semicompact, semi-Lindelöf) L-set in (X, \mathcal{T}_1) , then so is $f_L^{-}(G)$ in (Y, \mathcal{T}_2) .

Proof. We only prove that the theorem is true for semicompactness. Suppose that \mathcal{P} is a family of semiclosed *L*-sets in (Y, \mathcal{T}_2) , by Lemma 2.6 and semicompactness of *G*, we have that

$$\bigvee_{y \in Y} \left(f_{L}^{-}(G)(y) \wedge \bigwedge_{B \in \mathcal{P}} B(y) \right) \\
= \bigvee_{x \in X} \left(G(x) \wedge \bigwedge_{B \in \mathcal{P}} f_{L}^{-}(B)(x) \right) \\
\ge \bigwedge_{\mathcal{F} \in 2^{(\mathcal{P})}} \bigvee_{x \in X} \left(G(x) \wedge \bigwedge_{B \in \mathcal{F}} f_{L}^{-}(B)(x) \right) \\
= \bigwedge_{\mathcal{F} \in 2^{(\mathcal{P})}} \bigvee_{y \in Y} \left(f_{L}^{-}(G)(y) \wedge \bigwedge_{B \in \mathcal{F}} B(y) \right).$$
(4.3)

Therefore $f_L^{\rightarrow}(G)$ is semicompact.

Analogously, we have the following result.

THEOREM 4.6. Let *L* be a complete Heyting algebra and let $f : (X, \mathcal{T}_1) \to (Y, \mathcal{T}_2)$ be a semicontinuous map. If *G* is a semicompact (resp., countably semicompact, semi-Lindelöf) *L*-set in (X, \mathcal{T}_1) , then $f_L^-(G)$ is a compact (countably compact, Lindelöf) *L*-set in (Y, \mathcal{T}_2) .

Definition 4.7. Let (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) be two *L*-spaces. A map $f : (X, \mathcal{T}_1) \to (Y, \mathcal{T}_2)$ is called strongly irresolute if $f_L^-(G)$ is open in (X, \mathcal{T}_1) for every semiopen *L*-set *G* in (Y, \mathcal{T}_2) .

It is obvious that a strongly irresolute map is irresolute. Analogously, we have the following result. THEOREM 4.8. Let L be a complete Heyting algebra and let $f : (X, \mathcal{T}_1) \to (Y, \mathcal{T}_2)$ be a strongly irresolute map. If G is a compact (resp., countably compact, Lindelöf) L-set in (X, \mathcal{T}_1) , then $f_L^-(G)$ is a semicompact (countably semicompact, semi-Lindelöf) L-set in (Y, \mathcal{T}_2) .

5. Further characterizations of semicompactness and goodness

In this section, we assume that *L* is a completely distributive de Morgan algebra.

Now we generalize the notions of β_a -open cover and Q_a -open cover [10] as follows.

Definition 5.1. Let (X, \mathcal{T}) be an *L*-space, $a \in L \setminus \{0\}$, and $G \in L^X$. A family $\mathcal{U} \subseteq L^X$ is called a β_a -cover of *G* if for any $x \in X$, it follows that $a \in \beta(G'(x) \vee \bigvee_{A \in \mathcal{U}} A(x))$. \mathcal{U} is called a strong β_a -cover of *G* if $a \in \beta(\bigwedge_{x \in X} (G'(x) \vee \bigvee_{A \in \mathcal{U}} A(x)))$.

It is obvious that a strong β_a -cover of *G* must be a β_a -cover of *G*.

Definition 5.2. Let (X, \mathcal{T}) be an *L*-space, $a \in L \setminus \{0\}$, and $G \in L^X$. A family $\mathfrak{U} \subseteq L^X$ is called a Q_a -cover of *G* if for any $x \in X$, it follows that $G'(x) \vee \bigvee_{A \in \mathfrak{U}} A(x) \ge a$.

It is obvious that a β_a -cover of *G* must be a Q_a -cover of *G*.

Analogous to the proof of [10, Theorem 2.9], we can obtain the following theorem.

THEOREM 5.3. Let (X,\mathcal{T}) be an L-space and $G \in L^X$. Then the following conditions are equivalent.

(1) G is (countably) semicompact.

(2) For any $a \in L \setminus \{0\}$, each (countable) semiclosed strong a-R-neighborhood family \mathcal{P} of G has a finite subfamily which is a strong a-R-neighborhood family of G.

(3) For any $a \in L \setminus \{0\}$, each (countable) semiclosed strong a-R-neighborhood family \mathcal{P} of G has a finite subfamily which is an a-R-neighborhood family of G.

(4) For any $a \in L \setminus \{0\}$ and any (countable) semiclosed strong a-R-neighborhood family \mathcal{P} of G, there exist a finite subfamily \mathcal{F} of \mathcal{P} and $b \in \beta(a)$ such that \mathcal{F} is a strong b-R-neighborhood family of G.

(5) For any $a \in L \setminus \{0\}$ and any (countable) semiclosed strong a-R-neighborhood family \mathcal{P} of G, there exist a finite subfamily \mathcal{F} of \mathcal{P} and $b \in \beta(a)$ such that \mathcal{F} is a b-R-neighborhood family of G.

(6) For any $a \in M(L)$, each (countable) semiclosed strong a-R-neighborhood family \mathcal{P} of G has a finite subfamily which is a strong a-R-neighborhood family of G.

(7) For any $a \in M(L)$, each (countable) semiclosed strong a-R-neighborhood family \mathcal{P} of G has a finite subfamily which is an a-R-neighborhood family of G.

(8) For any $a \in M(L)$ and any (countable) semiclosed strong a-R-neighborhood family \mathcal{P} of G, there exist a finite subfamily \mathcal{F} of \mathcal{P} and $b \in \beta^*(a)$ such that \mathcal{F} is a strong b-R-neighborhood family of G.

(9) For any $a \in M(L)$ and any (countable) semiclosed strong a-R-neighborhood family \mathcal{P} of G, there exist a finite subfamily \mathcal{F} of \mathcal{P} and $b \in \beta^*(a)$ such that \mathcal{F} is a b-R-neighborhood family of G.

(10) For any $a \in L \setminus \{1\}$, each (countable) semiopen strong a-shading \mathfrak{A} of G has a finite subfamily which is a strong a-shading of G.

(11) For any $a \in L \setminus \{1\}$, each (countable) semiopen strong a-shading \mathfrak{U} of G has a finite subfamily which is an a-shading of G.

(12) For any $a \in L \setminus \{1\}$ and any (countable) semiopen strong a-shading \mathfrak{U} of G, there exist a finite subfamily \mathfrak{V} of \mathfrak{U} and $b \in \alpha(a)$ such that \mathfrak{V} is a strong b-shading of G.

(13) For any $a \in L \setminus \{1\}$ and any (countable) semiopen strong a-shading \mathfrak{U} of G, there exist a finite subfamily \mathfrak{V} of \mathfrak{U} and $b \in \alpha(a)$ such that \mathfrak{V} is a b-shading of G.

(14) For any $a \in P(L)$, each (countable) semiopen strong a-shading \mathfrak{A} of G has a finite subfamily which is a strong a-shading of G.

(15) For any $a \in P(L)$, each (countable) semiopen strong a-shading \mathfrak{A} of G has a finite subfamily which is an a-shading of G.

(16) For any $a \in P(L)$ and any (countable) semiopen strong a-shading \mathfrak{U} of G, there exist a finite subfamily \mathfrak{V} of \mathfrak{U} and $b \in \alpha^*(a)$ such that \mathfrak{V} is a strong b-shading of G.

(17) For any $a \in P(L)$ and any (countable) semiopen strong a-shading \mathfrak{U} of G, there exist a finite subfamily \mathfrak{V} of \mathfrak{U} and $b \in \alpha^*(a)$ such that \mathfrak{V} is a b-shading of G.

(18) For any $a \in L \setminus \{0\}$, each (countable) semiopen strong β_a -cover \mathfrak{A} of G has a finite subfamily which is a strong β_a -cover of G.

(19) For any $a \in L \setminus \{0\}$, each (countable) semiopen strong β_a -cover \mathfrak{A} of G has a finite subfamily which is a β_a -cover of G.

(20) For any $a \in L \setminus \{0\}$ and any (countable) semiopen strong β_a -cover \mathfrak{U} of G, there exist a finite subfamily \mathfrak{V} of \mathfrak{U} and $b \in L$ with $a \in \beta(b)$ such that \mathfrak{V} is a strong β_b -cover of G.

(21) For any $a \in L \setminus \{0\}$ and any (countable) semiopen strong β_a -cover \mathfrak{U} of G, there exist a finite subfamily \mathfrak{V} of \mathfrak{U} and $b \in L$ with $a \in \beta(b)$ such that \mathfrak{V} is a β_b -cover of G.

(22) For any $a \in M(L)$, each (countable) semiopen strong β_a -cover \mathfrak{A} of G has a finite subfamily which is a strong β_a -cover of G.

(23) For any $a \in M(L)$, each (countable) semiopen strong β_a -cover \mathfrak{A} of G has a finite subfamily which is a β_a -cover of G.

(24) For any $a \in M(L)$ and any (countable) semiopen strong β_a -cover \mathfrak{A} of G, there exist a finite subfamily \mathcal{V} of \mathfrak{A} and $b \in M(L)$ with $a \in \beta^*(b)$ such that \mathcal{V} is a strong β_b -cover of G.

(25) For any $a \in M(L)$ and any (countable) semiopen strong β_a -cover \mathfrak{A} of G, there exist a finite subfamily \mathfrak{V} of \mathfrak{A} and $b \in M(L)$ with $a \in \beta^*(b)$ such that \mathfrak{V} is a β_b -cover of G.

(26) For any $a \in L \setminus \{0\}$ and any $b \in \beta(a) \setminus \{0\}$, each (countable) semiopen Q_a -cover of G has a finite subfamily which is a Q_b -cover of G.

(27) For any $a \in L \setminus \{0\}$ and any $b \in \beta(a) \setminus \{0\}$, each (countable) semiopen Q_a -cover of G has a finite subfamily which is a β_b -cover of G.

(28) For any $a \in L \setminus \{0\}$ and any $b \in \beta(a) \setminus \{0\}$, each (countable) semiopen Q_a -cover of G has a finite subfamily which is a strong β_b -cover of G.

(29) For any $a \in M(L)$ and any $b \in \beta^*(a)$, each (countable) semiopen Q_a -cover of G has a finite subfamily which is a Q_b -cover of G.

(30) For any $a \in M(L)$ and any $b \in \beta^*(a)$, each semiopen Q_a -cover of G has a finite subfamily which is a β_b -cover of G.

(31) For any $a \in M(L)$ and any $b \in \beta^*(a)$, each (countable) semiopen Q_a -cover of G has a finite subfamily which is a strong β_b -cover of G.

Analogously, we also can present characterizations of the semi-Lindelöf property.

LEMMA 5.4. Let $(X, \omega(\tau))$ be generated topologically by (X, τ) . If A is a semiopen L-set in (X, τ) , then χ_A is a semiopen set in $(X, \omega(\tau))$. If B is a semiopen L-set in $(X, \omega(\tau))$, then $B_{(a)}$ is a semiopen set in (X, τ) for every $a \in L$.

Proof. If A is a semiopen set in (X, τ) , then there exists $D \in \tau$ such that $D \subseteq A \subseteq cl(D)$. Thus we have that

$$\chi_D \le \chi_A \le \chi_{\mathrm{cl}(D)} = \mathrm{cl}(\chi_D). \tag{5.1}$$

This shows that χ_A is semiopen.

If *B* is a semiopen *L*-set in $(X, \omega(\tau))$, then there exists $E \in \omega(\tau)$ such that $E \le B \le cl(E)$. Thus we have that $E_{(a)} \subseteq B_{(a)} \subseteq cl(E)_{(a)}$. From [9], we can obtain that $cl(E)_{(a)} \subseteq cl(E_{(a)})$. Hence by Lemma 2.3, we know that $B_{(a)}$ is a semiopen set in (X, τ) .

The following two theorems show that semicompactness, countable semicompactness and the semi-Lindelöf property are good extensions.

THEOREM 5.5. Let (X, τ) be a topological space and let $(X, \omega(\tau))$ be generated topologically by (X, τ) . Then $(X, \omega(\tau))$ is (countably) semicompact if and only if (X, τ) is (countably) semicompact.

Proof. Necessity. Let \mathcal{A} be a (countable) semiopen cover of (X, τ) . Then $\{\chi_A \mid A \in \mathcal{A}\}$ is a family of semiopen *L*-sets in $(X, \omega(\tau))$ with $\bigwedge_{x \in X} (\bigvee_{A \in \mathcal{U}} \chi_A(x)) = 1$. From (countable) semicompactness of $(X, \omega(\tau))$, we know that

$$\bigvee_{\mathcal{V}\in 2^{(\mathfrak{Q})}}\bigwedge_{x\in X}\left(\bigvee_{A\in\mathcal{V}}\chi_A(x)\right)=\bigvee_{\mathcal{V}\in 2^{(\mathfrak{Q})}}\bigwedge_{x\in X}\left(\bigvee_{A\in\mathcal{V}}\chi_A(x)\right)=1.$$
(5.2)

This implies that there exists $\mathcal{V} \in 2^{(\mathfrak{U})}$ such that $\bigwedge_{x \in X} (\bigvee_{A \in \mathcal{V}} \chi_A(x)) = 1$. Hence, \mathcal{V} is a cover of (X, τ) . Therefore (X, τ) is (countably) semicompact.

Sufficiency. Let \mathfrak{A} be a (countable) family of semiopen *L*-sets in $(X, \omega(\tau))$ and let $\bigwedge_{x \in X} (\bigvee_{B \in \mathfrak{A}} B(x)) = a$. If a = 0, then obviously we have that

$$\bigwedge_{x \in X} \left(\bigvee_{B \in \mathcal{U}} B(x) \right) \le \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \left(\bigvee_{A \in \mathcal{V}} B(x) \right).$$
(5.3)

Now we suppose that $a \neq 0$. In this case, for any $b \in \beta(a) \setminus \{0\}$, we have that

$$b \in \beta\left(\bigwedge_{x \in X} \left(\bigvee_{B \in \mathcal{U}} B(x)\right)\right) \subseteq \bigcap_{x \in X} \beta\left(\bigvee_{B \in \mathcal{U}} B(x)\right) = \bigcap_{x \in X} \bigcup_{B \in \mathcal{U}} \beta(B(x)).$$
(5.4)

From Lemma 5.4, this implies that $\{B_{(b)} | B \in \mathcal{U}\}$ is a semiopen cover of (X, τ) . From (countable) semicompactness of (X, τ) , we know that there exists $\mathcal{V} \in 2^{(\mathcal{U})}$ such that $\{B_{(b)} | B \in \mathcal{V}\}$ is a cover of (X, τ) . Hence $b \leq \bigwedge_{x \in X} (\bigvee_{B \in \mathcal{V}} B(x))$. Further, we have that

$$b \leq \bigwedge_{x \in X} \left(\bigvee_{B \in \mathcal{V}} B(x) \right) \leq \bigvee_{\mathcal{V} \in 2^{(\mathfrak{R})}} \bigwedge_{x \in X} \left(\bigvee_{B \in \mathcal{V}} B(x) \right).$$
(5.5)

This implies that

$$\bigwedge_{x \in X} \left(\bigvee_{B \in \mathcal{U}} B(x) \right) = a = \bigvee \left\{ b \mid b \in \beta(a) \right\} \le \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \left(\bigvee_{B \in \mathcal{V}} B(x) \right).$$
(5.6)

Therefore, $(X, \omega(\tau))$ is (countably) semicompact.

Analogously, we have the following result.

THEOREM 5.6. Let (X, τ) be a topological space and let $(X, \omega(\tau))$ be generated topologically by (X, τ) . Then $(X, \omega(\tau))$ has the semi-Lindelöf property if and only if (X, τ) has the semi-Lindelöf property.

Acknowledgment

This work is supported by the National Natural Science Foundation of China (10371079) and the Base Research Foundation of Beijing Institute of Technology.

References

- K. K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981), no. 1, 14–32.
- [2] D. Çoker and A. H. Eş, On fuzzy S-closed spaces, Doğa Mat. 11 (1987), no. 3, 145–152.
- [3] Ch. Dorsett, Semicompact R₁ and product spaces, Bull. Malaysian Math. Soc. (2) 3 (1980), no. 1, 15–19.
- [4] Ph. Dwinger, Characterization of the complete homomorphic images of a completely distributive complete lattice. I, Nederl. Akad. Wetensch. Indag. Math. 44 (1982), no. 4, 403–414.
- [5] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. W. Mislove, and D. S. Scott, A Compendium of Continuous Lattices, Springer, Berlin, 1980.
- [6] S. R. T. Kudri, Semicompactness and S* -closedness in L-fuzzy topological spaces, Fuzzy Sets and Systems 109 (2000), no. 2, 223–231.
- [7] Y.-M. Liu and M.-K. Luo, *Fuzzy Topology*, Advances in Fuzzy Systems—Applications and Theory, vol. 9, World Scientific, New Jersey, 1997.
- [8] R. Lowen, A comparison of different compactness notions in fuzzy topological spaces, J. Math. Anal. Appl. 64 (1978), no. 2, 446–454.
- [9] F.-G. Shi, *The theory and applications of* L_{β} *-nested sets and* L_{α} *-nested sets*, Mohu Xitong yu Shuxue **9** (1995), no. 4, 65–72 (Chinese).
- [10] _____, Countable compactness and the Lindelöf property of L-fuzzy sets, Iranian Journal of Fuzzy Systems 1 (2004), no. 1, 79–88.
- [11] _____, A new notion of fuzzy compactness in L-topological spaces, Inform. Sci. 173 (2005), 35–48.
- [12] _____, Fuzzy compactness in L-topological spaces, Acta Math. Sinica, submitted.
- G. J. Wang, *Theory of L-Fuzzy Topological Space*, Shanxi Normal University Press, Xian, 1988 (Chinese).

Fu-Gui Shi: Department of Mathematics, School of Science, Beijing Institute of Technology, Beijing 100081, China

E-mail address: fuguishi@bit.edu.cn