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The concepts of semicompactness, countable semicompactness, and the semi-Lindelöf
property are introduced in L-topological spaces, where L is a complete de Morgan alge-
bra. They are defined by means of semiopen L-sets and their inequalities. They do not
rely on the structure of basis lattice L and no distributivity in L is required. They can
also be characterized by semiclosed L-sets and their inequalities. When L is a completely
distributive de Morgan algebra, their many characterizations are presented.

1. Introduction

The notion of semicompactness [3] was introduced in L-topological spaces by Kudri. In
Kudri’s work [6], he followed the lines of his definition of compactness which is equiva-
lent to the notion of strong fuzzy compactness in [7, 8, 13]. However, Kudri’s semicom-
pactness relies on the structure of L and L is required to be completely distributive.

In [10, 12], a new definition of fuzzy compactness is presented in L-topological spaces
by means of an inequality, which does not depend on the structure of L and no dis-
tributivity is required in L. When L is a completely distributive de Morgan algebra, it is
equivalent to the notion of fuzzy compactness in [7, 8, 13].

Following the lines of [10, 12], we will introduce a new definition of semicompactness
in L-topological spaces by means of semiopen L-sets and their inequality, where L is a
complete de Morgan algebra. This definition does not rely on the structure of basis lattice
L and no distributivity in L is required. It can also be characterized by semiclosed L-
sets and their inequality. When L is a completely distributive de Morgan algebra, its many
characterizations are presented. Moreover, we also will introduce the notions of countable
semicompactness and the semi-Lindelöf property and research their properties.

2. Preliminaries

Throughout this paper, (L,
∨

,
∧

,′ ) is a complete de Morgan algebra, X a nonempty set.
LX is the set of all L-fuzzy sets (or L-sets for short) on X . The smallest element and the
largest element in LX are denoted by 0 and 1.
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An element a in L is called prime element if a ≥ b∧ c implies that a ≥ b or a ≥ c. a
in L is called a coprime element if a′ is a prime element [5]. The set of nonunit prime
elements in L is denoted by P(L). The set of nonzero coprime elements in L is denoted by
M(L).

The binary relation ≺ in L is defined as follows: for a,b ∈ L, a ≺ b if and only if for
every subset D ⊆ L, the relation b ≤ supD always implies the existence of d ∈ D with
a ≤ d [4]. In a completely distributive de Morgan algebra L, each element b is a sup of
{a ∈ L | a ≺ b}. {a ∈ L | a ≺ b} is called the greatest minimal family of b in the sense of
[7, 13], in symbol β(b). Moreover for b ∈ L, define α(b)= {a∈ L | a′ ≺ b′} and α∗(b)=
α(b)∩P(L).

For a∈ L and A∈ LX , we use the following notations in [9]:

A(a) = {x ∈ X | A(x) � a
}

, A(a) =
{
x ∈ X | a∈ β

(
A(x)

)}
. (2.1)

An L-topological space (or L-space for short) is a pair (X ,�), where � is a subfamily
of LX which contains 0, 1 and is closed for any suprema and finite infima. � is called an L-
topology on X . Each member of � is called an open L-set and its quasicomplementation
is called a closed L-set.

Definition 2.1 (see [7, 13]). For a topological space (X ,τ), let ωL(τ) denote the family
of all the lower semicontinuous maps from (X ,τ) to L, that is, ωL(τ)= {A∈ LX | A(a) ∈
τ,a∈ L}. Then ωL(τ) is an L-topology on X , in this case, (X ,ωL(τ)) is topologically gen-
erated by (X ,τ).

Definition 2.2 (see [7, 13]). An L-space (X ,�) is weak induced if for all a ∈ L, for all
A∈�, it follows that A(a) ∈ [�], where [�] denotes the topology formed by all crisp sets
in �.

It is obvious that (X ,ωL(τ)) is weak induced.

Lemma 2.3 (see [11]). Let (X ,�) be a weakly induced L-space, a∈ L, A∈�. Then A(a) is
an open set in [�].

For a subfamily Φ⊆ LX , 2(Φ) denotes the set of all finite subfamilies of Φ. 2[Φ] denotes
the set of all countable subfamilies of Φ.

Definition 2.4 (see [10, 12]). Let (X ,�) be an L-space, G∈ LX is called (countably) com-
pact if for every (countably) family �⊆�, it follows that

∧
x∈X

(
G′(x)∨

∨
A∈�

A(x)

)
≤

∨
�∈2(�)

∧
x∈X

(
G′(x)∨

∨
A∈�

A(x)

)
. (2.2)

Definition 2.5 (see [10]). Let (X ,�) be an L-space, G ∈ LX is said to have the Lindelöf
property if for every family �⊆�, it follows that

∧
x∈X

(
G′(x)∨

∨
A∈�

A(x)

)
≤

∨
�∈2[�]

∧
x∈X

(
G′(x)∨

∨
A∈�

A(x)

)
. (2.3)
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Lemma 2.6 (see [10]). Let L be a complete Heyting algebra, let f : X → Y be a map, f →L :
LX → LY is the extension of f , then for any family �⊆ LY ,

∨
y∈Y

(
f →L (G)(y)∧

∧
B∈�

B(y)

)
=
∨
x∈X

(
G(x)∧

∧
B∈�

f ←L (B)(x)

)
. (2.4)

Definition 2.7 (see [1]). An L-set G in an L-space (X ,�) is called semiopen if there exists
A∈� such that A≤G≤ cl(A). G is called semiclosed if G′ is semiopen.

Definition 2.8. Let (X ,�1) and (Y ,�2) be two L-spaces. A map f : (X ,�1)→ (Y ,�2) is
called

(1) semicontinuous [1] if f ←L (G) is semiopen in (X ,�1) for every open L-set G in
(Y ,�2);

(2) irresolute [2] if f ←L (G) is semiopen in (X , !.�1) for every semiopen L-set G in
(Y ,�2).

3. Definition and characterizations of semicompactness

Definition 3.1. Let (X ,�) be an L-space. G∈ LX is called (countably) semicompact if for
every (countable) family � of semiopen L-sets, it follows that

∧
x∈X

(
G′(x)∨

∨
A∈�

A(x)

)
≤

∨
�∈2(�)

∧
x∈X

(
G′(x)∨

∨
A∈�

A(x)

)
. (3.1)

Definition 3.2. Let (X ,�) be an L-space.G∈ LX is said to have the semi-Lindelöf property
(or be a semi-Lindelöf L-set) if for every family � of semiopen L-sets, it follows that

∧
x∈X

(
G′(x)∨

∨
A∈�

A(x)

)
≤

∨
�∈2[�]

∧
x∈X

(
G′(x)∨

∨
A∈�

A(x)

)
. (3.2)

Example 3.3. Let X be any nonempty set and let A be a [0,1]-set on X defined as A(x)=
0.5, for all x ∈ X . Let � = {∅,X ,A}. Then the set of all semiopen [0,1]-sets in (X ,�) is
�. In this case, any [0,1]-set in (X ,�) is semicompact, hence it is countably semicompact
and has the semi-Lindelöf property.

Obviously, we have the following theorem.

Theorem 3.4. Semicompactness implies countably semicompactness and the semi-Lindelöf
property. Moreover, an L-set having the semi-Lindelöf property is semicompact if and only if
it is countably semicompact.

Since an open L-set must be semiopen, we have the following theorem.

Theorem 3.5. Semicompactness implies compactness, countably semicompactness implies
countably compactness, and the semi-Lindelöf property implies the Lindelöf property.
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From Definitions 3.1 and 3.2, we can obtain the following two theorems by using
quasicomplementation.

Theorem 3.6. Let (X ,�) be an L-space. G∈ LX is (countably) semicompact if and only if
for every (countable) family � of semiclosed L-sets, it follows that

∨
x∈X

(
G(x)∧

∧
B∈�

B(x)

)
≥

∧
�∈2(�)

∨
x∈X

(
G(x)∧

∧
B∈�

B(x)

)
. (3.3)

Theorem 3.7. Let (X ,�) be an L-space. G∈ LX has the semi-Lindelöf property if and only
if for every family � of semiclosed L-sets, it follows that

∨
x∈X

(
G(x)∧

∧
B∈�

B(x)

)
≥

∧
�∈2[�]

∨
x∈X

(
G(x)∧

∧
B∈�

B(x)

)
. (3.4)

In order to present characterizations of semicompactness, countable semicompact-
ness and the semi-Lindelöf property, we generalize the notions of a–shading and a–R-
neighborhood family in [10, 12] as follows.

Definition 3.8. Let (X ,�) be an L-space, a∈ L\{1}, and G∈ LX . A family �⊆ LX is said
to be

(1) an a–shading of G if for any x ∈ X , (G′(x)∨∨A∈�A(x)) � a;
(2) a strong a–shading of G if

∧
x∈X(G′(x)∨∨A∈�A(x)) � a;

(3) an a–R-neighborhood family of G if for any x ∈ X , (G(x)∧∧B∈�B(x)) � a;
(4) a strong a–R-neighborhood family of G if

∨
x∈X(G(x)∧∧B∈�B(x)) � a.

It is obvious that a strong a–shading of G is an a–shading of G, a strong a–R-
neighborhood family of G is an a–R-neighborhood family of G, and � is a strong a–
R-neighborhood family of G if and only if �′ is a strong a–shading of G.

Definition 3.9. Let a ∈ L\{0} and G ∈ LX . A subfamily � of LX is said to have weak a–
nonempty intersection in G if

∨
x∈X(G(x)∧∧A∈�A(x)) ≥ a. � is said to have the finite

(countable) weak a–intersection property in G if every finite (countable) subfamily � of
� has weak a–nonempty intersection in G.

From Definitions 3.1, 3.2, Theorems 3.5 and 3.6, we immediately obtain the following
two results.

Theorem 3.10. Let (X ,�) be an L-space and G ∈ LX . Then the following conditions are
equivalent.

(1) G is (countably) semicompact.
(2) For any a∈ L\{1}, each (countable) semiopen strong a–shading � of G has a finite

subfamily which is a strong a–shading of G.
(3) For any a ∈ L\{0}, each (countable) semiclosed strong a–R-neighborhood family �

of G has a finite subfamily which is a strong a–R-neighborhood family of G.
(4) For any a∈ L\{0}, each (countable) family of semiclosed L-sets which has the finite

weak a–intersection property in G has weak a–nonempty intersection in G.
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Theorem 3.11. Let (X ,�) be an L-space and G ∈ LX . Then the following conditions are
equivalent.

(1) G has the semi-Lindelöf property.
(2) For any a∈ L\{1}, each semiopen strong a–shading � of G has a countable subfamily

which is a strong a–shading of G.
(3) For any a ∈ L\{0}, each semiclosed strong a–R-neighborhood family � of G has a

countable subfamily which is a strong a–R-neighborhood family of G.
(4) For any a ∈ L\{0}, each family of semiclosed L-sets which has the countable weak

a–intersection property in G has weak a–nonempty intersection in G.

4. Properties of (countable) semicompactness

Theorem 4.1. Let L be a complete Heyting algebra. If both G and H are (countably) semi-
compact, then G∨H is (countably) semicompact.

Proof. For any (countable) family � of semiclosed L-sets, by Theorem 3.5 we have that

∨
x∈X

(
(G∨H)(x)∧

∧
B∈�

B(x)

)

=
{ ∨

x∈X

(
G(x)∧

∧
B∈�

B(x)

)}
∨
{ ∨

x∈X

(
H(x)∧

∧
B∈�

B(x)

)}

≥
{ ∧

�∈2(�)

∨
x∈X

(
G(x)∧

∧
B∈�

B(x)

)}
∨
{ ∧

�∈2(�)

∨
x∈X

(
H(x)∧

∧
B∈�

B(x)

)}

=
∧

�∈2(�)

∨
x∈X

(
(G∨H)(x)∧

∧
B∈�

B(x)

)
.

(4.1)

This shows that G∨H is (countably) semicompact. �

Analogously, we have the following result.

Theorem 4.2. Let L be a complete Heyting algebra. If both G and H have the semi-Lindelöf
property, then G∨H has the semi-Lindelöf property.

Theorem 4.3. If G is (countably) semicompact and H is semiclosed, then G∧H is (count-
ably) semicompact.

Proof. For any (countable) family � of semiclosed L-sets, by Theorem 3.5 we have that

∨
x∈X

(
(G∧H)(x)∧

∧
B∈�

B(x)

)

=
∨
x∈X

(
G(x)∧

∧
B∈�

⋃{H}
B(x)

)

≥
∧

�∈2(�∪{H})

∨
x∈X

(
G(x)∧

∧
B∈�

B(x)

)
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=
{ ∧

�∈2(�)

∨
x∈X

(
G(x)∧

∧
B∈�

B(x)

)}
∧
{ ∧

�∈2(�)

∨
x∈X

(
G(x)∧H(x)∧

∧
B∈�

B(x)

)}

=
{ ∧

�∈2(�)

∨
x∈X

(
G(x)∧H(x)∧

∧
B∈�

B(x)

)}

=
∧

�∈2(�)

∨
x∈X

(
(G∧H)(x)∧

∧
B∈�

B(x)

)
.

(4.2)

This shows that G∧H is (countably) semicompact. �

Analogously, we have the following result.

Theorem 4.4. If G has the semi-Lindelöf property and H is semiclosed, then G∧H has the
semi-Lindelöf property.

Theorem 4.5. Let L be a complete Heyting algebra and let f : (X ,�1)→ (Y ,�2) be an
irresolute map. If G is a semicompact (resp., countably semicompact, semi-Lindelöf) L-set in
(X ,�1), then so is f →L (G) in (Y ,�2).

Proof. We only prove that the theorem is true for semicompactness. Suppose that � is a
family of semiclosed L-sets in (Y ,�2), by Lemma 2.6 and semicompactness of G, we have
that

∨
y∈Y

(
f →L (G)(y)∧

∧
B∈�

B(y)

)

=
∨
x∈X

(
G(x)∧

∧
B∈�

f ←L (B)(x)

)

≥
∧

�∈2(�)

∨
x∈X

(
G(x)∧

∧
B∈�

f ←L (B)(x)

)

=
∧

�∈2(�)

∨
y∈Y

(
f →L (G)(y)∧

∧
B∈�

B(y)

)
.

(4.3)

Therefore f →L (G) is semicompact. �

Analogously, we have the following result.

Theorem 4.6. Let L be a complete Heyting algebra and let f : (X ,�1)→ (Y ,�2) be a semi-
continuous map. If G is a semicompact (resp., countably semicompact, semi-Lindelöf) L-set
in (X ,�1), then f →L (G) is a compact (countably compact, Lindelöf) L-set in (Y ,�2).

Definition 4.7. Let (X ,�1) and (Y ,�2) be two L-spaces. A map f : (X ,�1)→ (Y ,�2)
is called strongly irresolute if f ←L (G) is open in (X ,�1) for every semiopen L-set G in
(Y ,�2).

It is obvious that a strongly irresolute map is irresolute.
Analogously, we have the following result.



Fu-Gui Shi 1875

Theorem 4.8. Let L be a complete Heyting algebra and let f : (X ,�1)→ (Y ,�2) be a
strongly irresolute map. If G is a compact (resp., countably compact, Lindelöf) L-set in
(X ,�1), then f →L (G) is a semicompact (countably semicompact, semi-Lindelöf) L-set in
(Y ,�2).

5. Further characterizations of semicompactness and goodness

In this section, we assume that L is a completely distributive de Morgan algebra.
Now we generalize the notions of βa–open cover and Qa–open cover [10] as follows.

Definition 5.1. Let (X ,�) be an L-space, a∈ L\{0}, and G∈ LX . A family �⊆ LX is called
a βa–cover of G if for any x ∈ X , it follows that a ∈ β(G′(x)∨∨A∈�A(x)). � is called a
strong βa–cover of G if a∈ β(

∧
x∈X(G′(x)∨∨A∈�A(x))).

It is obvious that a strong βa–cover of G must be a βa–cover of G.

Definition 5.2. Let (X ,�) be an L-space, a∈ L\{0}, and G∈ LX . A family �⊆ LX is called
a Qa–cover of G if for any x ∈ X , it follows that G′(x)∨∨A∈�A(x)≥ a.

It is obvious that a βa–cover of G must be a Qa–cover of G.
Analogous to the proof of [10, Theorem 2.9], we can obtain the following theorem.

Theorem 5.3. Let (X ,�) be an L-space and G ∈ LX . Then the following conditions are
equivalent.

(1) G is (countably) semicompact.
(2) For any a ∈ L\{0}, each (countable) semiclosed strong a–R-neighborhood family �

of G has a finite subfamily which is a strong a–R-neighborhood family of G.
(3) For any a ∈ L\{0}, each (countable) semiclosed strong a–R-neighborhood family �

of G has a finite subfamily which is an a–R-neighborhood family of G.
(4) For any a∈ L\{0} and any (countable) semiclosed strong a–R-neighborhood family

� of G, there exist a finite subfamily � of � and b ∈ β(a) such that � is a strong b–R-
neighborhood family of G.

(5) For any a∈ L\{0} and any (countable) semiclosed strong a–R-neighborhood family
� of G, there exist a finite subfamily � of � and b∈ β(a) such that � is a b–R-neighborhood
family of G.

(6) For any a∈M(L), each (countable) semiclosed strong a–R-neighborhood family � of
G has a finite subfamily which is a strong a–R-neighborhood family of G.

(7) For any a∈M(L), each (countable) semiclosed strong a–R-neighborhood family � of
G has a finite subfamily which is an a–R-neighborhood family of G.

(8) For any a ∈M(L) and any (countable) semiclosed strong a–R-neighborhood family
� of G, there exist a finite subfamily � of � and b ∈ β∗(a) such that � is a strong b–R-
neighborhood family of G.

(9) For any a∈M(L) and any (countable) semiclosed strong a–R-neighborhood family �
of G, there exist a finite subfamily � of � and b ∈ β∗(a) such that � is a b–R-neighborhood
family of G.

(10) For any a∈ L\{1}, each (countable) semiopen strong a–shading � of G has a finite
subfamily which is a strong a–shading of G.
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(11) For any a∈ L\{1}, each (countable) semiopen strong a–shading � of G has a finite
subfamily which is an a–shading of G.

(12) For any a ∈ L\{1} and any (countable) semiopen strong a–shading � of G, there
exist a finite subfamily � of � and b ∈ α(a) such that � is a strong b–shading of G.

(13) For any a ∈ L\{1} and any (countable) semiopen strong a–shading � of G, there
exist a finite subfamily � of � and b ∈ α(a) such that � is a b–shading of G.

(14) For any a ∈ P(L), each (countable) semiopen strong a–shading � of G has a finite
subfamily which is a strong a–shading of G.

(15) For any a∈ P(L), each (countable) semiopen strong a–shading � of G has a finite
subfamily which is an a–shading of G.

(16) For any a∈ P(L) and any (countable) semiopen strong a–shading � of G, there exist
a finite subfamily � of � and b ∈ α∗(a) such that � is a strong b–shading of G.

(17) For any a∈ P(L) and any (countable) semiopen strong a–shading � of G, there exist
a finite subfamily � of � and b ∈ α∗(a) such that � is a b–shading of G.

(18) For any a ∈ L\{0}, each (countable) semiopen strong βa–cover � of G has a finite
subfamily which is a strong βa–cover of G.

(19) For any a ∈ L\{0}, each (countable) semiopen strong βa–cover � of G has a finite
subfamily which is a βa–cover of G.

(20) For any a∈ L\{0} and any (countable) semiopen strong βa–cover � of G, there exist
a finite subfamily � of � and b ∈ L with a∈ β(b) such that � is a strong βb–cover of G.

(21) For any a∈ L\{0} and any (countable) semiopen strong βa–cover � of G, there exist
a finite subfamily � of � and b ∈ L with a∈ β(b) such that � is a βb–cover of G.

(22) For any a ∈M(L), each (countable) semiopen strong βa–cover � of G has a finite
subfamily which is a strong βa–cover of G.

(23) For any a ∈M(L), each (countable) semiopen strong βa–cover � of G has a finite
subfamily which is a βa–cover of G.

(24) For any a∈M(L) and any (countable) semiopen strong βa–cover � of G, there exist
a finite subfamily � of � and b ∈M(L) with a∈ β∗(b) such that � is a strong βb–cover of
G.

(25) For any a∈M(L) and any (countable) semiopen strong βa–cover � of G, there exist
a finite subfamily � of � and b ∈M(L) with a∈ β∗(b) such that � is a βb–cover of G.

(26) For any a ∈ L\{0} and any b ∈ β(a)\{0}, each (countable) semiopen Qa–cover of
G has a finite subfamily which is a Qb–cover of G.

(27) For any a ∈ L\{0} and any b ∈ β(a)\{0}, each (countable) semiopen Qa–cover of
G has a finite subfamily which is a βb–cover of G.

(28) For any a ∈ L\{0} and any b ∈ β(a)\{0}, each (countable) semiopen Qa–cover of
G has a finite subfamily which is a strong βb–cover of G.

(29) For any a∈M(L) and any b ∈ β∗(a), each (countable) semiopen Qa–cover of G has
a finite subfamily which is a Qb–cover of G.

(30) For any a ∈M(L) and any b ∈ β∗(a), each semiopen Qa–cover of G has a finite
subfamily which is a βb–cover of G.

(31) For any a∈M(L) and any b ∈ β∗(a), each (countable) semiopen Qa–cover of G has
a finite subfamily which is a strong βb–cover of G.

Analogously, we also can present characterizations of the semi-Lindelöf property.
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Lemma 5.4. Let (X ,ω(τ)) be generated topologically by (X ,τ). If A is a semiopen L-set in
(X ,τ), then χA is a semiopen set in (X ,ω(τ)). If B is a semiopen L-set in (X ,ω(τ)), then B(a)

is a semiopen set in (X ,τ) for every a∈ L.

Proof. If A is a semiopen set in (X ,τ), then there exists D ∈ τ such that D ⊆ A ⊆ cl(D).
Thus we have that

χD ≤ χA ≤ χcl(D) = cl
(
χD
)
. (5.1)

This shows that χA is semiopen.
If B is a semiopen L-set in (X ,ω(τ)), then there exists E ∈ ω(τ) such that E ≤ B ≤ cl(E).

Thus we have that E(a) ⊆ B(a) ⊆ cl(E)(a). From [9], we can obtain that cl(E)(a) ⊆ cl(E(a)).
Hence by Lemma 2.3, we know that B(a) is a semiopen set in (X ,τ). �

The following two theorems show that semicompactness, countable semicompactness
and the semi-Lindelöf property are good extensions.

Theorem 5.5. Let (X ,τ) be a topological space and let (X ,ω(τ)) be generated topologically
by (X ,τ). Then (X ,ω(τ)) is (countably) semicompact if and only if (X ,τ) is (countably)
semicompact.

Proof. Necessity. Let � be a (countable) semiopen cover of (X ,τ). Then {χA | A∈�} is
a family of semiopen L-sets in (X ,ω(τ)) with

∧
x∈X(

∨
A∈� χA(x)) = 1. From (countable)

semicompactness of (X ,ω(τ)), we know that

∨
�∈2(�)

∧
x∈X

( ∨
A∈�

χA(x)

)
=

∨
�∈2(�)

∧
x∈X

( ∨
A∈�

χA(x)

)
= 1. (5.2)

This implies that there exists � ∈ 2(�) such that
∧

x∈X(
∨

A∈� χA(x)) = 1. Hence, � is a
cover of (X ,τ). Therefore (X ,τ) is (countably) semicompact.

Sufficiency. Let � be a (countable) family of semiopen L-sets in (X ,ω(τ)) and let∧
x∈X(

∨
B∈�B(x))= a. If a= 0, then obviously we have that

∧
x∈X

( ∨
B∈�

B(x)

)
≤

∨
�∈2(�)

∧
x∈X

( ∨
A∈�

B(x)

)
. (5.3)

Now we suppose that a �= 0. In this case, for any b ∈ β(a)\{0}, we have that

b ∈ β

( ∧
x∈X

( ∨
B∈�

B(x)

))
⊆
⋂
x∈X

β

( ∨
B∈�

B(x)

)
=
⋂
x∈X

⋃
B∈�

β
(
B(x)

)
. (5.4)

From Lemma 5.4, this implies that {B(b) | B ∈�} is a semiopen cover of (X ,τ). From
(countable) semicompactness of (X ,τ), we know that there exists � ∈ 2(�) such that
{B(b) | B ∈�} is a cover of (X ,τ). Hence b≤∧x∈X(

∨
B∈�B(x)). Further, we have that

b ≤
∧
x∈X

( ∨
B∈�

B(x)

)
≤

∨
�∈2(�)

∧
x∈X

( ∨
B∈�

B(x)

)
. (5.5)
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This implies that

∧
x∈X

( ∨
B∈�

B(x)

)
= a=

∨{
b | b ∈ β(a)

}≤ ∨
�∈2(�)

∧
x∈X

( ∨
B∈�

B(x)

)
. (5.6)

Therefore, (X ,ω(τ)) is (countably) semicompact. �

Analogously, we have the following result.

Theorem 5.6. Let (X ,τ) be a topological space and let (X ,ω(τ)) be generated topologically
by (X ,τ). Then (X ,ω(τ)) has the semi-Lindelöf property if and only if (X ,τ) has the semi-
Lindelöf property.
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