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LetR be a ring andM a rightR-module with S= End(MR). The moduleM is called almost
principally quasi-injective (or APQ-injective for short) if, for any m∈M, there exists an
S-submodule Xm of M such that lMrR(m) = Sm

⊕
Xm. The module M is called almost

quasiprincipally injective (or AQP-injective for short) if, for any s∈ S, there exists a left
ideal Xs of S such that lS(ker(s))= Ss

⊕
Xs. In this paper, we give some characterizations

and properties of the two classes of modules. Some results on principally quasi-injective
modules and quasiprincipally injective modules are extended to these modules, respec-
tively. Specially in the case RR, we obtain some results on AP-injective rings as corollaries.

1. Introduction

Throughout R is a ring with identity and M is a right R-module with S= End(MR). Re-
call a ring R is called right principally injective [5] (or right P-injective for short) if, every
homomorphism from a principally right ideal of R to R can be extended to an endo-
morphism of R, or equivalently, lr(a) = Ra for all a ∈ R. The notion of right P-injective
rings has been generalized by many authors. For example, in [4, 8], right P-injective rings
are generalized to modules in two ways, respectively. Following [4], the module M is
called principally quasi-injective (or PQ-injective for short) if, each R-homomorphism
from a principal submodule of M to M can be extended to an endomorphism of M. This
is equivalent to saying that lMrR(m) = Sm for all m ∈M, where lMrR(m) consists of all
elements z ∈M such that mx = 0 implies zx = 0 for any x ∈ R. In [8], the module M
is called quasiprincipally injective (or QP-injective for short) if, every homomorphism
from an M-cyclic submodule of M to M can be extended to an endomorphism of M,
or equivalently, lS(ker(s))= Ss for all s∈ S. In [6], right P-injective rings are generalized
to almost principally injective rings, that is, a ring R is said to be almost principally in-
jective (or AP-injective for short) if, for any a ∈ R, there exists a left ideal Xa such that
lr(a)= Ra

⊕
Xa. The nice structure of PQ-injective modules, QP-injective modules, and

AP-injective rings draws our attention to define almost PQ-injective modules and almost
QP-injective modules in similar ways to AP-injective rings, and to investigate their char-
acterizations and properties.
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2. APQ-injective modules

Definition 2.1. Let M be a right R-module and let S= End(MR). The module M is called
almost principally quasi-injective (briefly, APQ-injective) if, for any m∈M, there exists
an S-submodule Xm of M such that lMrR(m)= Sm

⊕
Xm.

The concept of APQ-injective modules is explained by the following lemma.

Lemma 2.2. Let MR be a module and let S= End(MR), and m∈M.
(1) If lMrR(m) = Sm

⊕
X for some X ⊆ M as left S-modules, then HomR(mR,M)

= S
⊕

Γ as left S-modules, where Γ= { f ∈HomR(mR,M) | f (m)∈ X}.
(2) If HomR(mR,M) = S

⊕
Γ as left S-modules, then lM(rR(m)) = Sm

⊕
X as left S-

modules, where X = { f (m) | f ∈ Γ}.
(3) Sm is a summand of lM(rR(m)) as left S-modules if and only if S is a summand of

HomR(mR,M) as left S-modules.

Proof. The map θ : lM(rR(m))→HomR(mR,M) with θ(a) = λa is a left S-isomorphism,
where λa : mR→M is defined by λa(mr)= ar, so the lemma follows. Moreover, S(Sm) is
nonsmall in lM(rR(m)) if and only if S is nonsmall in HomR(mR,M). �

From Lemma 2.2, the following corollary follows.

Corollary 2.3 [4, Lemma 1.1]. Let MR be a right R-module with S= End(MR) and m∈
M. Then lM(rR(m))= Sm if and only if every R-homomorphism of mR into M extends to M.

From Corollary 2.3, we see that all PQ-injective modules are APQ-injective. Since a
ring R is right P-injective (resp., AP-injective) if and only if the right R-module RR is
PQ-injective (resp., APQ-injective), and Page and Zhou [6] have given three examples of
rings which are right AP-injective but not right P-injective, so in general, APQ-injective
modules need not be PQ-injective.

Recall that a ring R is called right QP-injective [6, Definition 2.1], if for any 0 �= a∈ R,
there exists a left ideal Xa such that lr(a) = Ra + Xa with a /∈ Xa. Now we extend this
concept to modules.

Definition 2.4. Let M be a right R-module with S= End(MR), the module M is said to be
QPQ-injective (i.e., quasiprincipally quasi-injective) if, for any nonzero element m of M,
there exists an S-submodule Xm of M such that lMrR(m)= Sm+Xm with m /∈ Xm.

Clearly, right APQ-injective modules are QPQ-injective, but the reverse implication is
not true. For example, Z-module ZZ is QPQ-injective, but not APQ-injective.

Let M be a right R-module with S = End(MR), and J(S) the Jacobson radical of S.
Following [4], write W(S)= {w ∈ S | ker(w)⊆ess M}.
Theorem 2.5. Let MR be QPQ-injective with S= End(MR). Then

(1) J(S)⊆W(S),
(2) Soc(MR)⊆ rM(J(S)).

Proof. (1) Let a ∈ J(S). If a /∈W(S), then ker(a)
⋂
K = 0 for some 0 �= K ≤MR. Take

k ∈ K such that ak �= 0, then lM(rR(ak))= S(ak) +Xak with ak /∈ Xak. If r ∈ rR(ak), then
kr ∈ ker(a)

⋂
K , so kr = 0, and hence r ∈ rR(k). This shows that rR(ak)= rR(k). Note that
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k ∈ lM(rR(k)) = lM(rR(ak)) = S(ak) + Xak, so we may write k = b(ak) + x, where b ∈ S
and x ∈ X . Then (1− ba)k = x, and so k = (1− ba)−1x. Thus ak = a(1− ba)−1x ∈ Xak, a
contradiction.

(2) Let mR ⊆M be simple. Suppose am �= 0 for some a ∈ J(S). Then, since mR is
simple, rR(am)= rR(m). Since MR is QPQ-injective, there is a left S-module X such that
am /∈ X and lMrR(am)= S(am) +X . Note that m∈ lMrR(am), and so we may write m=
b(am) + x, where b ∈ S and x ∈ X . Then (1− ba)m = x, so m = (1− ba)−1x ∈ X . This
means that am∈ X , a contradiction. �

Corollary 2.6. Let MR be QPQ-injective with S = End(MR). If S is semilocal, then
Soc(MR)⊆ Soc(SM).

Proof. This follows from Theorem 2.5(2) and [1, Proposition 15.17]. �

Lemma 2.7. Let MR be APQ-injective with S = End(MR). If s /∈W(S), then the inclusion
ker(s)⊂ ker(s− sts) is strict for some t ∈ S.

Proof. If s /∈W(S), then ker(s)
⋂
mR= 0 for some 0 �=m∈M. Thus rR(m)= rR(sm), and

so lMrR(m) = lMrR(sm) = S(sm)
⊕

Xsm as left S-modules because MR is APQ-injective.
Write m= t(sm) + x, where x ∈ Xsm. Then (s− sts)m= sx ∈ S(sm)

⋂
Xsm, and hence (s−

sts)m= 0. Therefore, the inclusion ker(s)⊂ ker(s− sts) is strict. �

Lemma 2.8. Let M be a right R-module with S= End(MR). Suppose that for any sequence
{s1,s2, . . .} ⊆ S, the chain ker(s1)⊆ ker(s2s1)⊆ ··· terminates. Then

(1) W(S) is right T-nilpotent,
(2) S/W(S) contains no infinite set of nonzero pairwise orthogonal idempotents.

Proof. This is a corollary of [2, Lemma 1.9]. �

Theorem 2.9. Let MR be APQ-injective with S= End(MR), then the following conditions
are equivalent.

(1) S is right perfect.
(2) For any sequence {s1,s2, . . .} ⊆ S, the chain ker(s1)⊆ ker(s2s1)⊆ ··· terminates.

Proof. (1)⇒ (2). Let si ∈ S, i= 1,2, . . .. Since S is right perfect, S satisfies DCC on principal
left ideals. So the chain Ss1 ⊇ Ss2s1 ⊇ ··· terminates. Thus there exists n > 0 such that
S(sn ···s1)= S(sn+1sn ···s1)= ··· . It follows that ker(sn ···s1)=ker(sn+1sn ···s1)=··· .

(2)⇒ (1). First we prove that S/W(S) is von Neumann regular. Let s1 /∈W(S). Then
ker(s1) is not essential in M. By Lemma 2.7, there exists t1 ∈ S such that ker(s1)⊂ ker(s1−
s1t1s1) is proper. Put s2 = s1− s1t1s1. If s2 ∈W(S), then we have s1 = s1 · t1 · s1 in the ring
S/W(S). If s2 /∈W(S), then there exists s3 ∈ S such that ker(s2)⊂ ker(s3) is proper, where
s3 = s2 − s2t2s2 for some t2 ∈ S by the preceding proof. Repeating the above process, we
get a strictly ascending chain

ker
(
s1
)⊂ ker

(
s2
)⊂ ker

(
s3
)⊂ ··· , (2.1)

where si+1 = si − sitisi for some ti ∈ S, i = 1,2, . . .. Let u1 = s1, u2 = 1− s1t1, u3 = 1−
s2t2, . . . ,ui+1 = 1− siti, . . .. Then s1 = u1, s2 = u2u1, s3=u3u2u1, . . . , si+1=ui+1ui ···u2u1, . . . ,
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whence we have the following strict ascending chain

ker
(
u1
)⊂ ker

(
u2u1

)⊂ ker
(
u3u2u1

)⊂ ··· , (2.2)

which contradicts the hypothesis. So there exists a positive integer n such that sn+1 ∈
W(S). This shows that sn is a regular element of S/W(S), and hence sn−1, sn−2, . . . ,s1 are
regular elements of S/W(S). Thus S/W(S) is regular.

Note that since MR is APQ-injective, J(S)⊆W(S) by Theorem 2.5(1). Since the chain
ker(s1)⊆ ker(s2s1)⊆ ··· terminates, by Lemma 2.8(1), W(S) is right T-nilpotent, and so
it follows that W(S)⊆ J(S), and thus S/J(S) is regular. By Lemma 2.8, we get that S is right
perfect. �

By Lemma 2.8 (1) and [7, Remark 2], we have the following lemma.

Lemma 2.10. Let M be a right R-module with S = End(MR). If MR satisfies ACC on
{rM(A) |A⊆ S}, then W(S) is nilpotent.

The next corollary follows from Theorem 2.9 and Lemma 2.10.

Corollary 2.11. Let MR be APQ-injective with S = End(MR). If MR satisfies ACC on
{rM(A) |A⊆ S}, then S is semiprimary.

For a module MR, a submodule X of M is called a kernel submodule if X = ker( f )
for some f ∈ End(MR), and X is called an annihilator submodule if X =⋂ f∈A ker( f ) for
some A⊆ End(MR).

Corollary 2.12. Let MR be an APQ-injective module and S= End(MR). Then
(1) if MR satisfies ACC on kernel submodules, then S is right perfect,
(2) if MR satisfies ACC on annihilator submodules, then S is semiprimary.

3. AQP-injective modules

In this section we study a generalization of quasiprincipally injective modules.

Definition 3.1. Let M be a right R-module with S= End(MR). Then M is said to be almost
quasiprincipally injective (briefly, AQP-injective) if, for any s∈ S, there exists a left ideal
Xs of S such that lS(ker(s))= Ss

⊕
Xs as left S-modules.

The next result gives the relationship between the AQP-injectivity of a module and the
AP-injectivity of its endomorphism ring.

Theorem 3.2. Let MR be a right R-module with S= End(MR). Then
(1) if S is right AP-injective, then MR is AQP-injective,
(2) if MR is AQP-injective and M generates ker(s) for each s ∈ S, then S is right AP-

injective.

Proof. (1) Let s ∈ S. Since S is right AP-injective, there exists a left ideal Is such that
lSrS(s) = Ss

⊕
Is. If a ∈ lS(ker(s)) and b ∈ rS(s), then sb = 0, so bM ⊆ ker(s), and hence

abM = 0, that is, ab = 0. It follows that lS(ker(s))⊆ lSrS(s). Thus, we have Ss⊆ lS(ker(s))⊆
Ss
⊕

Is. This shows that lS(ker(s))= Ss
⊕

lS(ker(s))
⋂
Is, and (1) is proved.
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(2) Let 0 �= s ∈ S. As MR is AQP-injective, lS(ker(s)) = Ss
⊕

Xs for some left ideal Xs

of S. Assume a ∈ lSrS(s). Since M generates ker(s), ker(s) =∑t∈T t(M) for some subset
T of S. It is easy to see that at = 0 for each t ∈ T , thus ax = 0 for each x ∈ ker(s). This
implies that lSrS(s) ⊆ lS(ker(s)), from which we have Ss ⊆ lSrS(s) ⊆ Ss

⊕
Xs, and hence

lSrS(s)= Ss
⊕

(lSrS(s)
⋂
Xs). Therefore, S is right AP-injective. �

Theorem 3.3. Let M be a right R-module with S = End(MR). If M is an AQP-injective
module which is a self-generator, then J(S)=W(S).

Proof. Let s∈ J(S). Then we will show that s∈W(S). If not, then there exists a nonzero
submodule K of M such that ker(s)

⋂
K = 0. As M is a self-generator, K =∑t∈I t(M) for

some subset I of S, hence we have some 0 �= t ∈ I such that ker(s)
⋂
t(M) = 0. Clearly,

st �= 0 and ker(st) = ker(t). Since M is AQP-injective, lS(ker(st)) = S(st)
⊕

Xst as left S-
modules. Now t ∈ lS(ker(t)) = lS(ker(st)) = S(st)

⊕
Xst. Write t = u(st) + v, where u ∈ S

and v ∈ Xst. Then st− su(st)= sv ∈ S(st)
⋂
Xst, hence st− su(st)= 0, that is, (1− su)st =

0. Note that 1− su is left invertible, so st = 0, a contradiction.
Conversely, let s∈W(S). Then, for each t ∈ S, ts∈W(S) and so 1− ts �= 0. Since MR

is AQP-injective, lS(ker(1− ts))= S(1− ts)
⊕

X1−ts as left S-modules. Note that ker(ts)
⋂

ker(1− ts)= 0, so we have ker(1− ts)= 0, thus S= S(1− ts)
⊕

X1−ts, and then 1= e+ x
for some e ∈ S(1− ts) and x ∈ X . It follows that e2 = e and Se = S(1− ts), and so 1− ts=
ue for some u ∈ S. Since ker(ts) is essential in MR, if e �= 1, there is a nonzero element
(1− e)m∈ (1− e)M

⋂
ker(ts). Then (1− ts)(1− e)m= (1− e)m. But (1− ts)(1− e)m=

ue(1− e)m = 0. This is a contradiction. So e = 1 and hence 1− ts is left invertible. The
result follows. �

Recall that a module MR is said to satisfy the C2-condition if every submodule of M
that is isomorphic to a direct summand of M is itself a direct summand of M. A module
M is said to satisfy the C3-condition if whenever M1 and M2 are two summands of M and
M1
⋂
M2 = 0, then M1

⊕
M2 is a summand of M. It is well known that the C2-condition

implies the C3-condition.

Theorem 3.4. If MR is an AQP-injective module, then it satisfies the C2-condition. In par-
ticular, right AP-injective rings are right C2-rings.

Proof. Let A be a direct summand of M with A ∼= B and S = End(MR). Let A = eM, let
e2 = e ∈ S, and let ϕ : eM → B be an isomorphism. Then B = bM with b = se for some
s ∈ S, and ker(e) = ker(b). Thus, e ∈ lS(ker(e)) = lS(ker(b)) = Sb

⊕
Xb as MR is AQP-

injective, where Xb is a left S-module. Then e = tb + x with t ∈ S and x ∈ Xb. Hence we
have b = be = btb+ bx, and thus b = btb. Let f = bt. Then f 2 = f and bM = f M. �

Corollary 3.5. Let M be a quasiprojective right R-module and let S= End(MR). Then S
is regular if and only if MR is AQP-injective and im(s) are M-projective for every s∈ S.

Proof. By combining Theorems 3.2, 3.4, and [9, Theorem 37.7], one can complete the
proof. �

Recall that a ring R is called right P.P. if every principally right ideal of R is projective.

Corollary 3.6. A ring R is regular if and only if R is right P.P. and right AP-injective.
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Following [3], a module M is said to be weakly injective if, for any finitely generated
submodule N ⊆ E(M), we have N ⊆ X ∼=M for some X ⊆ E(M).

Corollary 3.7. Let MR be an f.g. module. If M is weakly injective and AQP-injective, then
M is injective. In particular, if R is a right AP-injective and a right weakly injective ring, then
R is right self-injective.

Proof. Let x ∈ E(M). Then there exists X ⊆ E(M) such that M + xR⊆ X ∼=M, hence X is
AQP-injective , and so M | X by Theorem 3.4. This shows that M = X , so x ∈M. �

We let S= End(MR). Following [7], an element u∈ S is called a right uniform element
of S if u �= 0 and u(M) is a uniform submodule of M. In the following, we generalize some
results on maximal left ideals of the endomorphism rings of quasiprincipally injective
modules and on maximal right ideals of right AP-injective rings to maximal left ideals of
the endomorphism rings of AQP-injective modules.

Lemma 3.8. Let MR be a module with S= End(MR). Given a set {Xs | s∈ S} of left ideals of
S, the following are equivalent.

(1) lS(ker(s))= Ss
⊕

Xs for all s∈ S.
(2) lS(tM

⋂
ker(s)) = (Xst : t)l + Ss and (Xst : t)l

⋂
Ss ⊆ lS(t) for all s, t ∈ S, where (Xst :

t)l = {x ∈ S | xt ∈ Xst}.
Proof. (1)⇒ (2). Let x ∈ lS(tM

⋂
ker(s)). Then ker(st)⊆ ker(xt) and so xt ∈ lS(ker(xt))⊆

lS(ker(st))= S(st)
⊕

Xst. Write xt = s1(st) + y, where s1 ∈ S and y ∈ Xst, then (x− s1s)t =
y ∈ Xst and hence x − s1s ∈ (Xst : t)l. It follows that x ∈ (Xst : t)l + Ss. Obviously, Ss ⊆
lS(tM

⋂
ker(s)). If z ∈ (Xst : t)l, then zt ∈ Xst ⊆ lS(ker(st)). Let tm∈ tM

⋂
ker(s), then stm

= 0, hence ztm = 0. This shows that z ∈ lS(tM
⋂

ker(s)). Therefore, lS(tM
⋂

ker(s)) =
(Xst : t)l + Ss. If s′ ∈ (Xst : t)l

⋂
Ss, then s′st ∈ Xst

⋂
S(st)= 0, and thus s′s∈ lS(t).

(2)⇒ (1). Let t = 1. �

Lemma 3.9. Let MR be an AQP-injective module with S= End(MR) and an index set {Xs |
s ∈ S} of ideals such that Xst = Xts for all s, t ∈ S. If 0 �= u(M) is a uniform submodule of
M, define Mu = {s∈ S | ker(s)

⋂
u(M) �= 0}. Then Mu is the unique maximal left ideal of S

which contains
∑

s∈S(Xsu : u)l.

Proof. It is easy to see thatMu is a left ideal. Let t ∈ (Xsu : u)l, then tu∈ Xsu, and thus tus∈
Xsu
⋂
S(us)= Xus

⋂
S(us), since Xsu = Xus is an ideal. Then tus= 0 and so t ∈Mu if us �= 0.

If us = 0, then lS(ker(us)) = 0, and so Xsu = Xus = 0. This shows that tu = 0 and hence
t ∈Mu. Consequently, (Xsu : u)l ⊆Mu for all s∈ S. Now if s /∈Mu, then ker(s)

⋂
uM = 0,

and so S= (Xsu : u)l + Ss by Lemma 3.8, hence S=Mu + Ss, showing that Mu is a maximal
left ideal.

Finally, let L be a left ideal of S such that
∑

s∈S(Xsu : u)l ⊆ L �=Mu. Then, as above,
S= (Xsu : u)l + Ss for any s∈ L−Mu. Therefore, L= S. �

Lemma 3.10. Let MR be AQP-injective with S= End(MR) and an index set {Xs | s∈ S} of
ideals such that Xst = Xts for all s, t ∈ S and let W = u1M

⊕
u2M

⊕···⊕unM be a direct
sum of uniform submodules uiM of M, where each ui ∈ S. If T ⊆ S is a maximal left ideal
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not of the form Mu for any u ∈ S such that uM is uniform, then there is t ∈ T such that
ker(1− t)

⋂
W is essential in W .

Proof. Since T �=Mu1 , let ker(a)
⋂
u1M = 0, a∈ T , then ker(au1)⊆ ker(u1), and so u1 ∈

lS(ker(au1)) = S(au1)
⊕

Xau1 . Thus, there exists s ∈ S such that (1− sa)u1 ∈ Xau, and
so 1− sa ∈ (Xau1 : u1)l ⊆Mu1 . Let a1 = sa. If 1− a1 ∈Mui for all i, we are done. If, say,
1− a1 /∈M2, then (1− a1)u2M is uniform (being isomorphic to u2M), so, as above,
(1− a′)∈M(1−a1)u2 for some a′ ∈ T . Let a2 = a′ta1− a′a1, then 1− a2 ∈Mu1

⋂
Mu2 , con-

tinue in this way to obtain t ∈ S, such that ker(1− t)
⋂
uiM �= 0 for each i, Lemma 3.10

follows. �

Theorem 3.11. Let MR be a self-generator with finite Goldie dimension and S= End(MR).
If MR is AQP-injective with an index set {Xs | s∈ S} of left ideals of S such that Xst = Xts for
all s, t ∈ S, then

(1) if T is a maximal left ideal of S, then T =Mu for some u∈ S such that uM is a uniform
submodule of M,

(2) S/J(S) is semisimple.

Proof. Since M is a self-generator, every uniform submodule of M contains an M-cyclic
submodule. Therefore, we can assume that W = u1M

⊕
u2M

⊕···⊕unM is essential as
MR has finite Goldie dimension. IfT is not of the formAu for some right uniform element
of u∈ S, then by Lemma 3.10, there exists some t ∈ T such that ker(1− t)

⋂
W is essential

in W , so ker(1− t) is essential in M. By Theorem 3.3, 1− t ∈ J(S) ⊆ T , a contradiction.
This proves (1). As to (2), if s∈Mu1

⋂···⋂Mun , then ker(s)
⋂
uiM �= 0 for each i, whence

ker(s) is essential in M. Hence, s∈ J(S), proving (2). �
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