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The class of w-closed subsets of a space (X, 1) was defined to introduce w-closed func-
tions. The aim of this paper is to introduce and study the class of gw-closed sets. This
class of sets is finer than g-closed sets and w-closed sets. We study the fundamental prop-
erties of this class of sets. In the space (X,7,), the concepts closed set, g-closed set, and
gw-closed set coincide. Further, we introduce and study gw-continuous and gw-irresolute
functions.

1. Introduction

Throughout this work, a space will always mean a topological space on which no separa-
tion axiom is assumed unless explicitly stated. Let (X, 7) be a space and let A be a subset of
X. A point x € X is called a condensation point of A if for each U € 7 with x € U, the set
U N A is uncountable. A is called w-closed [10] if it contains all its condensation points.
The complement of an w-closed set is called w-open. It is well known that a subset W of
a space (X, 1) is w-open if and only if for each x € W, there exists U € 7 such that x € U
and U — W is countable. The family of all w-open subsets of a space (X, 1), denoted by
T, forms a topology on X finer than .

In 1970, Levine [13] introduced the notion of generalized closed sets. He defined a
subset A of a space (X, 7) to be generalized and closed (briefly g-closed) if cl;(A) = U
whenever U € Tand A c U.

Generalized semiclosed [4] (resp., a-generalized closed [14], 08-generalized closed [8],
generalized semi-preclosed [6], §-generalized closed [7]) sets are defined by replacing
the closure operator in Levine’s original definition by the semiclosure (resp., a-closure,
0-closure, semi-preclosure, §-closure) operator.

In Section 2 of the present work, we follow a similar line to introduce generalized w-
closed sets by utilizing the w-closure operator. We study g-closed sets and gw-closed sets
in the spaces (X, 1) and (X,7,). In particular, we show that a subset A of a space (X, 1)
is closed in (X, 7,) if and only if it is g-closed in (X, 7,,) if and only if it is gw-closed in
(X,70)-
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In Section 3, we introduce gw-continuity and gw-irresoluteness by using gw-closed
sets and study some of their fundamental properties.

Now we begin to recall some known notions, definitions, and results which will be
used in the work.

Let (X, 1) be a space and let A be a subset of X. The closure of A, the interior of A, and
the relative topology on A will be denoted by cl;(A), int;(A), and 74, respectively. The
w-interior (w-closure) of a subset A of a space (X, ) is the interior (closure) of A in the
space (X, 7,), and is denoted by int,, (A)(cl;, (A)).

Definition 1.1. A space (X, 1) is called
(a) locally countable [3] if each point x € X has a countable open neighborhood;
(b) anti-locally countable [1] if each nonempty open set is uncountable;
(c) Thz-space [13] if every g-closed set is closed (equivalently if every singleton is open
or closed, see [8]).

Definition 1.2. A function f : (X,7) — (Y, 0) is called
(a) g-continuous [5] if f~1(V) is g-closed in (X, 7) for every closed set V of (Y,0);
(b) g-irresolute [5] if f~1(V) is g-closed in (X, 7) for every g-closed set V of (Y,0);
(¢) w-continuous [11] if f~1(V) is w-open in (X,7) for every open set V of (Y,0);
(d) w-irresolute [2] if f~1(V) is w-open in (X, T) for every w-open set V of (Y,0);
(e) a-continuous [15] if f~1(V) is a-set in (X,T) for every open set V of (Y,0).

LemMa 1.3 [3]. Let A be a subset of a space (X, 7). Then,
(a) (Tw)w = Tws
() (a)w = (T0)a.

2. Generalized w-closed sets

Definition 2.1. A subset A of a space (X, ) is called generalized w-closed (briefly, gw-
closed) if cl;, (A) = U whenever U € T and A < U.

We denote the family of all generalized w-closed (generalized closed) subsets of a space
(X,7) by GwC(X,1)(GC(X, 1)).

It is clear that if (X,7) is a countable space, then GwC(X,7) = P(X), where P(X) is
the power set of X.

ProrosiTION 2.2. Every g-closed set is gw-closed.

The proof follows immediately from the definitions and the fact that 7, is finer than 7
for any space (X, 7). However, the converse is not true in general as the following example
shows.

Example 2.3. Let X = {a,b,c} with the topology 7 = {¢,X,{a},{a,b}} and let A = {a}.
Then A € GwC(X,7). But A ¢ GC(X,7) sinceAc Aetand c(A) =X Z A.

LemMA 2.4. Let (A, 74) be an anti-locally countable subspace of a space (X, 7). Then cl;(A) =
cl;, (A).

Proof. We need to prove that cl;(A) < cl;, (A). Suppose that there exists x € cl;(A) —
cl;, (A). Then, x & cl;,(A), and so there exists W, € 7, such thatx € Wyand W, n A = &.
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Now choose V, € T such that x € V, and V,, — W, = C, is countable. Then @ # V, N A c
ANn(W,UC)=(ANW)UMANC)=ANC,cV,NnA. Thus V,NA=ANC, E 1y
(i.e., Vy N A is a nonempty countable open set in (A,74)), which is a contradiction and
the result follows. O

CoROLLARY 2.5. Let (A,7a) be an anti-locally countable subspace of a space (X, 7). Then
A e GC(X,t)ifand only if A € GwC(X,T).

THEOREM 2.6. Let (X,7) be any space and A < X. Then the following are equivalent.
(a) A is w-closed in (X, ) (equivalently A is closed in (X,1,)).
(b) A e GC(X,14).
(c) A € GwC(X,1y).

Proof. (a)=(b). It follows from the fact that every closed set is g-closed.

(b)=(c). It is obvious by using Proposition 2.2.

(c)=(a). We show that cl; (A) < A. Suppose that xo € A. Then U = X — {x¢} is an w-
open set containing A. Since A € GwC(X, ), clr,),(A) = cl;, (A) € U (Lemma 1.3(a)),
and thus xo € cl;, (A). Therefore, cl;, (A) = A, that is, A is w-closed in (X, 7).

In the same way, it can be shown that a subset A of a space (X, ) is closed if and only
ifcl;(A) € U whenever U € 7,and A € U.

ProrositioN 2.7. IfA € GC(X,7,), then A € GwC(X,T) but not conversely.
The proof is obvious. 0

Example 2.8. Let X = R be the set of all real numbers with the topology 7 = {¢,X, {1}}
and put A = R — Q. Then A is an w-open subset of (X, 7) such thatcl,,(A) =R — {1} £ A
(i.e, A &€ GC(X,7,)). However, A € GwC(X, 1) since the only open set in (X, ) contain-
ing A is X.

In Example 2.8, A € GC(X,7) — GC(X,1,). In the following, we give an example of a
space (X,7) and a subset A of X such that A € GC(X,1,) — GC(X, 7). In other words, for
a space (X, 1), the collections GC(X, 1) and GC(X,1,) are independent from each other.

Example 2.9. Consider X = R with the usual topology 7,. Put A = (0,1) n Q. Then
clz,),(A) =A (A is countable), and so A € GC(R,(7,)e). On the other hand, A ¢
GC(R,,) since U = (0,1) is open in (R, 7,) such that A = U and cl;,(A) = [0,1] € U.

Note that in Example 2.9, (R,7,) is anti-locally countable and A = (0,1)(1Q
GwC(R,1,) — GC(R,7,). Thus the condition that (A,74) is anti-locally countable in
Corollary 2.5 cannot be replaced by the condition that (X, 7) is anti-locally countable.

ProrosiTioN 2.10. Let A be a gw-closed subset of a space (X,7) and B < X. Then the
following hold.

(a) clr, (A) — A contains no nonempty closed set.

(b) If A< B cdl;, (A), then Be GwC(X,T).

Proof. (a) Suppose by contrary that cl; (A) — A contains a nonempty closed set C. Then
AcX-Cand X - Cisopenin (X,7). Thus, cl;,(A) € X — C or equivalently, C < X —
cl;, (A). Therefore, C = (X —cl;, (A)) N (cl,, (A) —A) = D.
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(b) Let U e 7 and B< U. Then A < B < U. Since A € GwC(X,7), ¢l (B) =
cly, (cly, (A)) = cl;, (A) = U, and the result follows. O

TaeoreM 2.11. If (X, 1) is a Typx-space, then every gw-closed set in (X,) is g-closed in
(X) Tw)~

Proof. Let A be a gw-closed subset of (X,7). By Theorem 2.6, we show that A is w-
closed in (X, 7). Suppose, to the contrary, that there exists x € cl; (A) — A. Then, by
Proposition 2.10(a), {x} is not closed. Since (X, 1) is a T/,-space, {x} is open in (X, ),
and thus it is w-open. Therefore, {x} N A # @, a contradiction. O

In the space X from Example 2.3, every gw-closed set is w-closed while (X, 7) is not a
T1/,-space. Thus, the converse of Theorem 2.11 is not true in general.

THEOREM 2.12. Let (X, 1) be an anti-locally countable space. Then (X, 1) is a T\-space if
and only if every gw-closed set is w-closed.

Proof. We need to show the sufficiency part only. Let x € X and suppose that {x} is not
closed. Then A = X — {x} is not open, and thus A is gw-closed (the only open set con-
taining A is X). Therefore, by assumption, A is w-closed, and thus {x} is w-open. So there
exists U € 7 such that x € U and U — {x} is countable. It follows that U is a nonempty
countable open subset of (X, ), a contradiction. O

ProrosiTioN 2.13. If s = {Ay: a € I} is a locally finite collection of gw-closed sets of a
space (X, 1), then A = U,er Aq is gw-closed (in particular, a finite union of gw-closed sets is
gw-closed).

Proof. Let U be an open subset of (X,7) such that A < U. Since A, € GwC(X,7) and
Ay c U foreach a €I, cl; (Ay) € U. As 7, is a topology on X finer than 7, o is locally
finite in (X, 7,). Therefore, cl;, (A) = cly, (Uper Aa) = Ugerclr, (Aa) € U. Thus, A is gw-
closed in (X, 7). O

The following two examples show that a countable union of gw-closed sets and a finite
intersection of gw-closed sets need not be gw-closed.

Example 2.14. (a) Consider X = R with the usual topology 7,. For each n € N, put A, =
[1/n,1] and A = U, -y As. Then A is a countable union of gw-closed sets but A is not
gw-closed since U = (0,2) € 74, A< U and cl;, (A) = [0,1] Z U.

(b) Let X be an uncountable set and let A be a subset of X such that A and X — A are
uncountable. Let 7 = {J,A, X }. Choose xg,x; € A and xy # x;. Then Ay = AU {xp} and
Ay = AU {x;} are two gw-closed subsets of (X, 7). But Ag()A; = A is not gw-closed since
AcAerandd, (A) +A.

ProrosritioN 2.15. IfA € GwC(X, ) and B is closed in (X, 1), then AN B € GwC(X,1).

Proof. Let U be an open set in (X,7) such that AnB < U. Put W =X —B. Then A <
UuW €. Since A € GwC(X,7),cl;,(A) € Uu W.Now, cl;, (AN B) = cl;, (A)cly, (B)
cd, (A)nc;B)=d, ,(A)NnB=s (UUW)nBc U. O

In [11], Hdeib shows that if A is an w-open subset of a space (X,7) and B is an w-
open subset of a space (Y,0), then A X B need not be w-open in (X X Y, 7 X ¢), that is,
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Ty X 0y € (7 X 0),. To prove that the other inclusion always holds, we need the following
lemma.

LEmMA 2.16. (a) If A is an w-open subset of a space (X, ), then A — C is w-open for every
countable subset C of X.
(b) The open image of an w-open set is w-open.

Proof. Part (a) is clear. To prove part (b), let f : (X,7) — (Y,0) be an open function and
let W be an w-open subset of (X, 7). Let y € f(W). There exists x € W such that y =
f(x). Choose U € 7 such that x € U and U — W = C is countable. Since f is open, f(U)
is open in (Y,0) such that y = f(x) € f(U) and f(U) - f(W) c f(U-W) = f(C) is
countable. Therefore, f(W) is w-open in (Y,0). O

THEOREM 2.17. Let (X,7) and (Y, o) be two topological spaces. Then (T X 0)y S Ty X 0.

Proof. Let W € (1 X 0), and (x,y) € W. There exist U € 7 and V € ¢ such that (x,y) €
UxVand UxV —W = Cis countable. Put W, = (U n px(W)) — (px(C) — {x}) and
Wy = (Vnpy(W)) = (py(C) — {y}), where px : (X X Y,7X0) = (X,7) and py : (X X
Y,7 X 0) — (Y,0) are the natural projections. Then W, € 7,, W, € g, (Lemma 2.16)
and (x,y) € Wy x W, € W. Thus W € 1, X 0. O

Definition 2.18. A subset A of a space (X, 1) is called generalized w-open (briefly, gw-
open) if its complement X — A is gw-closed in (X, 7).

It is clear that a subset A of a space (X,7) is gw-open if and only if F < int, (A),
whenever F € A and F is closed in (X, 7).

THEOREM 2.19. If A X B is a gw-open subset of (X X Y, T X 0), then A is gw-open in (X,T)
and B is gw-open in (Y,0).

Proof. Let F4 be a closed subset of (X, 7) and let Fg be a closed subset of (Y,0) such that
Fy € A and Fg < B. Then F4 X Fg is closed in (X X Y,7 X 0) such that F4 X Fg € A X B.
By assumption, A X B is gw-open in (X X Y, 7 X 0), and so F4 X Fp € int(;x4), (A X B) €
int;, (A) X ints, (B) by using Theorem 2.17. Therefore, F4 < int, (A) and Fp < int,, (A),
and the result follows.

The converse of the above theorem need not be true in general. O

Example 2.20. Let X = Y = R with the usual topology 7,. Let A= R — Q and B = (0,3).
Then A and B are w-open subsets of (R, 7,), while A X B is not gw-open in (R X R, 7, X
7,), since int(z,xz,), A X B = @ and {+/2} X [1,2] is a closed set in (R X R, 7, X 7,) con-
tained in A X B.

THEOREM 2.21. Let (Y,1y) be a subspace of a space (X,7) and A < Y. Then the following
hold.

(a) IfA € GwC(X, 1), then A € GwC(Y,1y).

(b) IfA € GwC(Y,ty) and Y is w-closed in (X, 1), then A € GwC(X, 7).

Proof. (a) Let V be an open set of (Y, 7y) such that A < V. By using Lemma 1.3(b), there
exists an open set U € 7 such that V =Y N U. Since A € GwC(X,7)and A € U, cl,, (A) <
U. Now, cl(z,), (A) = clr,), (A) =l ,(A) N Y =€ Y NU = V. Therefore, A € GwC(Y,1y).
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(b)Let A < U,where U € 7. Then A = YN U € 1y.Since A € GwC(Y,7y), cl(ry), (A) =
cliz,), (A) =cl,(A)NY € Y N U. Finally, cl; (A) =, ,(AnY) cc;, (A)ncl, (V)= (Y
is w-closed) cl;,(A)NY YN U< U. Thus A € GwC(X, 7). O

If we choose A = Y in Example 2.14(b), then A € GwC(Y,7y) — GwC(X, 7). There-
fore, the condition that Y is w-closed in Theorem 2.21 (b) cannot be dropped.

3. gw-continuous functions

Definition 3.1. A function f : (X,7) — (Y, 0) is called
(a) gw-continuous if f~1(C) € GwC(X,7) for every closed subset C of (Y,0);
(b) gw-irresolute if f~1(A) € GwC(X, 1) for every A € GwC(Y,0).

It follows from the definitions that a function f : (X,7) — (Y,0) is gw-continuous
(gw-irresolute) ifand only if f~!(V) is gw-open in (X, ) for every open (gw-open) subset
Vof (Y,o0).

ProrosiTiON 3.2. Every g-continuous function and w-continuous function is gw-
continuous.

The proof follows from the definitions and Propositions 2.2 and 2.7.

Example 3.3. (a) Let X be an uncountable set and let A be a proper uncountable sub-
set of X. Let f : (X, Tingis) — (X, 74is) be the identity function. Then f is gw-continuous
(GC(X ,Tindis) =P (X)). However, f is not w-continuous since A is closed in (X, 74is) and
A = f1(A) is not w-closed in (X, Tindis)-

(b) Let (X 7) be as in Example 2.3. Then, the identity function f : ( — (X, 14i) is
gw-continuous but not g-continuous.

Let f : (X,7) — (Y,0) be a function. Then a function (% : (X,7,) — (Y,0,) (resp., fu:
(X,70) = (Y,0), f¢:(X,7) — (Y,04,)) associated with f is defined as follows: f%(x) =
f(x) (resp., fo(x) = f(x), f°(x) = f(x)) for each x € X.

THEOREM 3.4. Let f: (X, 1) — (Y,0) be a function. Then the following are equivalent.
(a [& 4s continuous.

b) f¥ is g-continuous.

) f&is w-continuous.

d) f&is gw-continuous.

e) f2 is gw-irresolute.

w is w-irresolute.

(g) f& is g-irresolute.

The proof follows from Theorem 2.6.
The following result follows immediately from the definitions, Theorem 2.6, and
Propositions 2.2 and 2.7.

TaEOREM 3.5. Let f: (X,7) — (Y,0) be a function. Then the following hold.
(a) fo is gw-continuous if and only if it is g-continuous.
b) If f., is gw-irresolute, then f is g-irresolute.
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(¢) If fu is g-continuous, then f is gw-continuous.
(d) If f* is gw-continuous, then f is gw-continuous.

In Example 3.3(a), f is both gw-continuous and g-irresolute. However, f, is neither
g-continuous nor gw-irresolute ((Tindis)w = Tcoc is the cocountable topology). Therefore,
the converses of parts (b) and (c) of Theorem 3.5 are not true in general. Example 3.8
shows that also the converse of part (d) is not true.

PROPOSITION 3.6. Every gw-irresolute function is gw-continuous but not conversely.
The proof follows immediately from the definitions. For the converse, see Example 3.8.

Tueorem 3.7. If f:(X,7) = (Y,0) is closed and f* is gw-continuous, then f is gw-
irresolute.

Proof. Assume that A is a gw-open subset of (Y,0) and that F = f~1(A), where F is closed
in (X, 7). Then, f(F) is closed in (Y, o) such that f(F) < A. Since A is gw-open in (Y,0),
f(F) < int,, (A), and thus F < f~!(int,, (A)). Since f* is gw-continuous and int,, (A) is
openin (Y,0,), f~'(ints, (A)) is gw-open in (X, 7). Therefore, F < int,, (f ~!(int,, (A))) <
int;, (f"'(A)). This means that f~!(A) is gw-open in (X, 1), and thus f is gw-irresolute.

O

The following example shows that the condition that f is gw-continuous in Theorem
3.7 cannot be weakened to f being gw-continuous.

Example 3.8. Let (X,7) and A C X be as in Example 2.14(b). Let Y = R with the topology
c={UcR:1e€ U} U{D}. Define f: (X,7) — (Y,0) as follows:

0, xeX-A,
f(x)=<| (3.1)
1, xe€A.

Then f is closed, open, and gw-continuous. To show that f is gw-continuous, let U € ¢
and let F be any closed set in (X,7) such that F < f~!(U). Then f~!(U) must be X,
and hence f~!(U) is gw-open in (X, 7). But neither f is gw-irresolute nor f* is gw-
continuous since {0} is w-open, hence gw-open in (Y,0), while f‘l({O}) =X - Aisnot
gw-open in (X,7) (X — A is closed but not w-open in (X, 7)).

ProrosrtionN 3.9. If f: (X,7) — (Y,0) is gw-continuous, then for each x € X and each
open set V in (Y,0) with f(x) € V, there exists a gw-open set U in (X, ) such that x € U
and f(U) S V.

Proof. Let x € X and let V be any open set in (Y,0) containing f(x). Put U = f~1(V).
Then, by assumption, U is a gw-open set in (X, ) such that x € U and f(U) € V, and
the result follows. O

The converse of the above proposition is not true in general as the following example
shows.
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Example 3.10. Let (X,7) and A C X be as in Example 2.14(b) and let Y = {0,1} with the
topology 0 = {J,{0},Y}. Define f: (X,7) — (Y,0) as follows:

0, xEX-A4,
N 52

Then f is not gw-continuous since X — A = f~!({0}) is closed but not w-open in (X, 7).
On the other hand, f satisfies the property stated in Proposition 3.9 because {x} is gw-
open in (X, ) for each x € X.

Recall that a function f : (X,7) — (Y,0) is called 8-continuous [9] (resp., almost con-
tinuous [16], weakly continuous [12]) if for each x € X and each openset V in (Y, 0) con-
taining f(x), there exists an open set U in (X, 7) such that x € U and f(cl,(U)) € cls(V)
(resp., f(U) < ints(cls(V)), f(U) < clg(V)).

The following result was obtained in [15].

TaEOREM 3.11. Let f : (X,7) — (Y,0) be a function from a space (X,T) into a regular space
(Y,0). Then the following are equivalent.
(a) [ is continuous.
b) f is O-continuous.
c) f is almost continuous.
d) f is a-continuous.
e) f is weakly continuous.

\/\_/\_/v

THEOREM 3.12. Let f : ( — (Y,0) be a function from an anti-locally countable space
(X, 1) onto a regular space (Y 0). Then the following are equivalent.
(a) f is continuous.
(b) f is w-continuous.
(c) For each x € X and each open set V in (Y,0) with f(x) € V, there exists an w-open
set Uin (X,7) such that x € U and f(U) < int(cl;(V)).
(d) For each x € X and each open set V in (Y,0) with f(x) € V, there exists an w-open
set U in (X, 1) such that x € U and f(U) < intg, (cls(V)).
(e) For each x € X and each open set V in (Y,0) with f(x) € V, there exists an w-open
set Uin (X,7) such that x € U and f(U) < cl,(V).

Proof. In general, the implications (a)=(b)=(c)=(d)=(e) follow from the definitions
and the fact that the topology g, is finer than ¢.

(e)=(a). We show that f is continuous at each x € X. Let x € X and let V be any open
set in (Y, o) such that f(x) € V. By regularity of (Y,0), choose two open sets W and H
in (Y,0) such that f(x) € H € cl,(H) € W < cl;(W) € V. By assumption, there exists
an w-open set U in (X, ) such that x € U and f(U) < cl;(H). Now, choose an open
set G in (X,7) such that x € G and G — U is countable. We claim that f(G) < cls(W).
If not, choose t € f(G) — cl,(W). Therefore, t = f(g) for some g € G. Now, t € Y —
cly (W) which is an open set in (Y,0), and so there exist U; € 7, and an open set G, €
7 such that g € Uy n Gy, f(U)) € cdp(Y — cle(W)), and G; — U, is countable. Finally,
since f(U)Nf(Uy) ccs(H)Nclp(Y —cle(W)) s Wncl (Y —cle(W) =, UNn U, =
J,andso g€ GN G € (G- U) U (G — Uy), that is, GN G is a nonempty countable



Khalid Y. Al-Zoubi 2019

open setin (X, 7), which contradicts the fact that X is anti-locally countable. Thus f(G)
cly(W) € V, and hence f is continuous at x. O

The following two examples show that the conditions that X is anti-locally countable
and Y is regular in Theorem 3.12 are essential.

Example 3.13. (a) Let (Y,0) be as in Example 3.10. Then the function f : (R,7,) = (Y,0)
defined by

3 0, xeR-Q,
f(x)—{l’ xeQ (3.3)

is w-continuous but not continuous. Here, (R,7,) is anti-locally countable and (Y, 0) is
not regular.

(b) Let (Y,0) beasin (a), Z = {0, 1} with the discrete topology 74is and let f : ( -
(Z,74is) be the identity function. Clearly, (Y,0) is not anti-locally countable, (Z, les)
regular, and f is w-continuous but not continuous.

CoROLLARY 3.14. Let f : (X,7) — (Y, 0) be a function from an anti-locally countable T)/,-
space (X,7) onto a regular space (Y,0). Then f is continuous if and only if it is gw-
continuous.

The proof follows from Theorems 2.11 and 3.12.
Example 3.3(a) shows that the assumption that (X,7) is a Ty/,;-space in the above
corollary cannot be dropped.

TaEOREM 3.15. Let f : (X,7) — (Y,0) be a gw-continuous function and let A be a closed
subset of (X, 7). Then, the restriction f |a: (A,1a) — (Y,0) is gw-continuous.

Proof. Let F be a closed subset of (Y,0). Then (f [4) '(F) = f~1(F) N A. Since f is gw-
continuous, f1(F) € GwC(X,7) and so, by Proposition 2.15, f "1(F) N A € GwC(X, 7).
Therefore, by Theorem 2.21(a), (f |4) "' (F) € GwC(A,74) and the result follows. O

THEOREM 3.16. Let (X, 1) be a topological space such that X = A U B, where A, B are both
w-closed in (X, 7). Let f : (X,7) — (Y,0) be given such that the restricions f | and f |p are
both gw-continuous. Then f is gw-continuous.

Proof. LetF be a closed subset of (Y,0). Then, f1(F) = (f |a) U (f |p) ). Since
(f 14)"Y(F) € GwC(A,14) and A is w-closed in (X, 1), byTheorem 2 21(b), (f IA I(F) e
GwC(X,7). Similarly, (f |5)"'(F) € GwC(X, ). By Proposition 2.13, f ~}(F) € GwC(X, 7).
Thus f is gw-continuous. g

TaeOREM 3.17. Let (X, 1) and (Y,0) be topological spaces, where (Y, o) is locally countable.
Then the projection px : (X X Y,7 X 0) — (X,T) is gw-irresolute.

Proof. Let A be a gw-open subset of (X, 7) and let F be a closed subset of (X X Y,7 X 0)
such that F € py'(A) = A x Y. For each (x, y) € F, the closed set cl, {x} is contained in A.
By assumption, cl;{x} < int; (A). Therefore, (x,y) € cl.{x} X {y} < int; (A) X Y. Now,
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we show that int; (A) X Y S int(;xe), (A X Y). Let (s,t) € int,, (A) X Y. Choose U € 7,
W € 1, and a countable open subset V of (Y, 0) such that (s,t) e (Un W) x V,se€ W <
A,and U — W is countable. Since U X V — W XY = (U — W) X V is countable, W X Y €
(TX0)p and (s,t) € W XY € AX Y. Therefore, (s,t) € int(rxe), (A X Y), and hence the
result follows. It follows that (x, y) € int(;xq), (A X Y) for each (x,y) € F, which means
that F € int(;xq), (A X Y). Therefore, px'(A) = A X Y is gw-open in (X X Y,7 X 0), and
hence px is gw-irresolute. O

To show that the condition (Y, o) being locally countable in Theorem 3.17 is essential,
we consider the following example.

Example 3.18. Consider the projection p: (R X R,7, X 7,) — (R,7,) and let A =R - Q.
Then A is w-open (and hence gw-open) in (R,7,) while p~1(A) = (R — Q) X R is not
gw-open in (R X R, 7, X 7,,) (see Example 2.20). Thus p is not gw-irresolute.

The proof of the following theorem is left to the reader.

TaeoreM 3.19. Let f : (X,7) = (Y,0) and g: (Y,0) — (Z,y) be two functions. Then the
following hold.
(a) g o f is gw-continuous if g is continuous and f is gw-continuous.
(b) g o f is gw-irresolute if f and g are gw-irresolute.
(c) g o f is gw-continuous if g is gw-continuous and f is gw-irresolute.
(d) Let (Y,0) be a Typp-space. Then, g o f is gw-continuous if g is gw-continuous and f*
is gW-CONtINUOUS.

The following example shows that the composition of two gw-continuous functions
need not be gw-continuous.

Example 3.20. Let (Y,0) and f be as in Example 3.13, let (Y, ) be the set {0,1} with the
topology y = {&,{1},Y} and let g : (Y,0) — (Y,y) be the identity function. Then f and
g are both gw-continuous but g o f is not gw-continuous.
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