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Interpolation theorems on several graph parameters obtained in the past few years will
be reviewed in this paper. Some simplified proofs are provided. Open problems in this
direction are reviewed.

1. Introduction

Only finite simple graphs are considered in this paper. For the most part, our notation
and terminology follows that of Bondy and Murty [4]. Let G = (V ,E) denote a graph
with vertex set V = V(G) and edge set E = E(G). We will use the following notation and
terminology for a typical graph G. Let V(G)= {v1,v2, . . . ,vn} and E(G)= {e1,e2, . . . ,em}.
We use |S| to denote the cardinality of a set S and therefore we define n= |V | the order
of G and m = |E| the size of G. To simplify writing, we write e = uv for the edge e that
joins the vertex u to the vertex v. The degree of a vertex v of a graph G is defined as
dG(v)= |{e ∈ E : e = uv for some u∈ V}|. The maximum degree of a graph G is usually
denoted by ∆(G). If S ⊆ V(G), the graph G[S] is the subgraph induced by S in G. For a
graph G and X ⊆ E(G), we denote by G−X the graph obtained from G by removing all
edges in X . If X = {e}, we write G− e for G−{e}. For a graph G and X ⊆V(G), the graph
G−X is the graph obtained from G by removing all vertices in X and all edges incident
with vertices in X . For a graph G and X ⊆ E(G), we denote by G+X the graph obtained
from G by adding all edges in X . If X = {e}, we simply write G+ e for G+ {e}. Two graphs
G andH are disjoint ifV(G)∩V(H)=∅. For any two disjoint graphsG andH , we define
G∪H (their union) by V(G∪H)=V(G)∪V(H) and E(G∪H)= E(G)∪E(H). We can
extend this definition to a finite union of pairwise disjoint graphs, since the operation “∪”
is associative. For a positive integer p and a graph G, pG is denoted for the union of p
copies of G. A graph G is said to be r-regular if all of its vertices have degree r. A 3-regular
graph is called a cubic graph.

Let G be a graph of order n and let V(G) = {v1,v2, . . . ,vn} be the vertex set of G.
The sequence (dG(v1),dG(v2), . . . ,dG(vn)) is called a degree sequence of G. A sequence
d = (d1,d2, . . . ,dn) of nonnegative integers is a graphic degree sequence if it is a degree
sequence of some graph G. In this case, G is called a realization of d.
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An algorithm for determining whether or not a given sequence of nonnegative integers
is graphic was independently obtained by Havel [22] and Hakimi [14]. We state their
results in the following theorem.

Theorem 1.1. Let d = (d1,d2, . . . ,dn) be a nonincreasing sequence of nonnegative integers
and denote the sequence

(
d2− 1,d3− 1, . . . ,dd1+1− 1,dd1+2, . . . ,dn

)= d′. (1.1)

Then d is graphic if and only if d′ is graphic.

Let G be a graph and let ab,cd ∈ E(G) be independent, where ac,bd /∈ E(G). Put

Gσ(a,b;c,d) = (G−{ab,cd})+ {ac,bd}. (1.2)

The operation σ(a,b;c,d) is called a switching operation. It is easy to see that the graph
obtained from G by a switching has the same degree sequence as G. The following theo-
rem has been shown by Havel [22] and Hakimi [14].

Theorem 1.2. Let d = (d1,d2, . . . ,dn) be a graphic degree sequence. If G1 and G2 are any
two realizations of d, then G2 can be obtained from G1 by a finite sequence of switchings.

As a consequence of Theorem 1.2, Eggleton and Holton [10] defined in 1979 the graph
�(d) of realizations of d whose vertices are the graphs with degree sequence d; two ver-
tices being adjacent in the graph �(d) if one can be obtained from the other by a switch-
ing. They obtained the following theorem.

Theorem 1.3. The graph �(d) is connected.

The following theorem was shown by Taylor [38] in 1980.

Theorem 1.4. For a graphic degree sequence d, let ��(d) be the set of all connected real-
izations of d. Then the induced subgraph ��(d) of �(d) is connected.

Let G be the class of all simple graphs, a function f : G→ Z is called a graph param-
eter if G ∼= H , then f (G) = f (H). If f is a graph parameter and J ⊆ G, f is called an
interpolation graph parameter with respect to J if there exist integers x and y such that

{
f (G) : G∈ J}= [x, y]= {k ∈ Z : x ≤ k ≤ y}. (1.3)

If f is an interpolation graph parameter with respect to J, { f (G) : G ∈ J} is uniquely
determined by min( f ,J) =min{ f (G) : G ∈ J} and max( f ,J) =max{ f (G) : G ∈ J}. In
the case where J=�(d), we simply write min( f ,d) and max( f ,d) for min( f ,�(d)) and
max( f ,�(d)), respectively, and in the case where J = ��(d), we write Min( f ,d) and
Max( f ,d) for min( f ,��(d)) and max( f ,��(d)), respectively.

2. Interpolation theorems

Studying interpolation theorems for graph parameters may be divided into two parts: the
first part deals with the question that given a graph parameter f and a subset J ofG, does
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f interpolate over J? If f interpolates over J, then { f (G) : G∈ J} is uniquely determined
by min( f ,J)=min{ f (G) : G∈ J} and max( f ,J)=max{ f (G) : G∈ J}; thus the second
part of the interpolation theorems for graph parameters is to find the values of min( f ,d)
and max( f ,d) for the corresponding interpolation graph parameters and this part is, in
fact, the extremal problem in graph theory.

The interest in the interpolation properties of graph parameters was motivated by an
open question posed by Chartrand during a conference held at Kalamazoo in 1980. He
posed the following question: If a graph G contains spanning trees having m and n end-
vertices, with m< n, does G contain a spanning tree with k end-vertices for every integer k
with m< k < n? This question (which was answered affirmatively) led to a host of papers
studying the interpolation properties of invariants of spanning trees of a given graph.
Details can be found in [15, 16, 17, 18, 19, 20, 21]. Another interpolation theorem for the
graph parameter χ + χ was obtained by Fink [12].

Let d be a graphic degree sequence. It was shown that the graph �(d) is connected
and its subgraph induced by the set ��(d) is also connected.

Theorem 2.1. For a graph G of degree sequence d and a switching σ if | f (G)− f (Gσ)| ≤ 1,
then f is an interpolation graph parameter with respect to �(d).

Theorem 2.2. For a graph G of degree sequence d and a switching σ if | f (G)− f (Gσ)| ≤ 1,
then f is an interpolation graph parameter with respect to ��(d).

Theorem 2.3. Let J ⊆�(d) and the subgraph of �(d) induced by J be connected. For a
graph G of degree sequence d and a switching σ if | f (G)− f (Gσ)| ≤ 1, then f is an interpo-
lation graph parameter with respect to J.

We will now review interpolation results on various graph parameters with respect to
�(d). Since our work started with the graph parameter χ, we first state the definition of
χ.

Graph coloring takes its name from the map-coloring application. We assign labels to
vertices when the numerical value of labels is unimportant, we call them colors to indicate
that they may be elements of any set.

A k-coloring of a graph G= (V ,E) is a partition of its vertex set V as V1∪V2∪···∪
Vk such that no two vertices in Vi (1 ≤ i ≤ k) are adjacent. The Vi’s are called the color
classes. A function f : V → {1,2, . . . ,k} such that f (v) = i for each v ∈ Vi (1 ≤ i ≤ k) is
called a color function. If G has a k-coloring, it is said to be k-colorable and the minimum
integer k for which G is k-colorable is called the chromatic number of G and is denoted by
χ(G). If χ(G)= k, we say that G is k-chromatic.

Remark 2.4. In a proper coloring, each color class contains no edge, so G is k-colorable if
and only if G is a k-partite graph. Thus a graph is 2-colorable if and only if it is bipartite.
Thus a graph containing an odd cycle must be at least 3-colorable.

We proved in [25] the following results.

Theorem 2.5. Let G be a graph and let σ be a switching on G. Then |χ(G)− χ(Gσ)| ≤ 1.

Proof. Without loss of generality, we can assume that χ(G) < χ(Gσ). Since Gσ is the graph
obtained from G by a switching, there exist a,b,c,d ∈ V(G) such that ab,cd ∈ E(G),
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ac,bd /∈ E(G), ac,bd ∈ E(Gσ), and ab,cd /∈ E(Gσ). Let π : V(G) → {1,2, . . . ,χ(G)} be a
color function of G such that π(a)= i, π(b)= j, π(c)= p, and π(d)= q. Then we will de-
fine π′ : V(Gσ)→ {1,2, . . . ,χ(G),χ(G) + 1} by π′(c) = π′(d) = χ(G) + 1 and π′(v) = π(v)
for all v ∈ V(Gσ)−{c,d}. Thus the graph Gσ is (χ(G) + 1)-colorable. This completes the
proof. �

A maximal complete subgraph of a graph G is called a clique of G. The maximum order
of clique of G is called the clique number of G and is denoted by ω(G).

In general, there is no formula for the chromatic number of a graph. In fact, determin-
ing the chromatic number of even a relatively small graph is often a challenging problem.
However, lower bounds for the chromatic number of a graph G can be given in terms of
the clique number of G. That is for any graph G, χ(G)≥ ω(G).

We proved in [26]the following results on interpolation theorems on ω.

Theorem 2.6. Let G be a graph and let σ be a switching on G. Then |ω(G)−ω(Gσ)| ≤ 1.

Proof. Let σ(a,b;c,d) = σ be a switching on G, such that ab,cd ∈ E(G), ac,bd /∈ E(G).
Then Gσ is the graph obtained from G by deleting edges ab, cd and adding edges ac, bd.
Since vertices a and c cannot lie in the same complete subgraph of G, ω(Gσ) ≥ ω(G)−
1. By symmetry of switching, we may assume that ω(G) ≥ ω(Gσ). Thus ω(Gσ) is either
ω(G)− 1 or ω(G). In both cases, we have |ω(G)−ω(Gσ)| ≤ 1. �

Acyclic graph is a graph containing no cycle as its subgraph. An acyclic graph is called a
forest. Therefore, each component of an acyclic graph is a tree. Since a tree is connected,
every two vertices in a tree are connected by a unique path.

Let G be a graph and F ⊆ V(G), F is called an induced forest of G, if the induced
subgraph G[F] of G contains no cycle. For a graph G, we define I(G) as

I(G) :=max
{|F| : F is an induced forest in G

}
. (2.1)

We proved in [28] the following results on interpolation theorems on the graph pa-
rameter I .

Theorem 2.7. If S is any subset of vertices of G such that G[S] is a forest, and σ is any
switching on G, then Gσ[S] contains at most one cycle.

Corollary 2.8. If σ is any switching on G, then |I(G)− I(Gσ)| ≤ 1.

The problem of determining the minimum number of vertices whose removal elimi-
nates all cycles in a graph G is difficult even for some simply defined graphs. For a graph
G, this minimum number is known as the decycling number of G, and is denoted by φ(G).
It is easy to see that for a graph G of order n, φ(G) + I(G) = n. Thus the interpolation
result for φ in �(d) is easily obtained.

A subset U of the vertex set V of a graph G= (V ,E) is said to be an independent set of
G if the induced subgraph G[U] of G is an empty graph. An independent set of G with
maximum number of vertices is called a maximum independent set of G. The number of
vertices of a maximum independent set of G is called the independence number of G and
is denoted by α0(G).
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It is clear that α0(G) is a graph parameter and α0(G)= ω(G), for any graph G. Observe
that for a graph G and a switching σ on G, G

σ = Gσ . Thus the interpolation result for α0

in �(d) follows directly from the graph parameter ω.
A vertex of a graph G= (V ,E) is said to cover the edges incident with it. A vertex cover

of a graph G is a set of vertices covering all the edges of G. The minimum cardinality of
a vertex cover of a graph G is called the vertex covering number of G and is denoted by
β0(G).

Within a set of people, some pairs are compatible as roommates; under what condition
can we pair them all up? Many applications of graphs involve such pairings. Problem of
job assignment with qualified applicants is also an example of matching.

A subset M of the edge set E of a graph G= (V ,E) is an independent edge set or match-
ing in G if no two distinct edges in M have a common vertex. A matching M is maximum
in G if there is no matching M′ of G with |M′| > |M|. The cardinality of a maximum
matching of G is denoted by α1(G) and is called the matching number of G.

There is an analogous covering concept for edges.
An edge of a graph G= (V ,E) is said to cover the two vertices incident with it. An edge

cover of a graph G is a set of edges covering all the vertices of G. The minimum cardinality
of an edge cover of G is called the edge covering number of G and is denoted by β1(G).

Theorem 2.9 [31]. If G is a graph with α1(G)=α1 and σ is a switching on G, then α1(Gσ)≥
α1− 1.

Proof. Let M be an independent set of edges of E with |M| = α1(G). Let σ(a,b;c,d) = σ
be a switching on G. If {ab,cd}∩M =∅, then |M| = |Mσ |. If {ab,cd} ⊆M, then |M| =
|Mσ |. Finally, if M contains exactly one edge from the set {ab,cd}, then |Mσ | = |M|− 1.
Therefore, α1(Gσ)≥ α1− 1. �

Corollary 2.10 [31]. If σ is a switching on G, then |α1(G)−α1(Gσ)| ≤ 1.

Let n be a positive integer. The star of order n+ 1 is the complete bipartite graph Kn,1.
The edges covered by one vertex in a vertex cover are the edges incident to it; they form
a star. The vertex cover problem can be described as covering the edge set with the fewest
number of stars. This is equivalent to our next graph parameter.

A dominating set of a graphG= (V ,E) is a subsetD ofV such that each vertex ofV −D
is adjacent to at least one vertex of D. The domination number γ(G) is the cardinality of a
minimal dominating set with the least number of elements.

Theorem 2.11 [31]. If G is a graph with γ(G)= γ and σ is a switching on G, then γ(Gσ)≤
γ+ 1.

Proof. Let D be a dominating set of vertices of V with |D| = γ(G). Let σ(a,b;c,d)= σ be
a switching on G. If {a,b,c,d}∩D =∅, then |D| = |Dσ |. If {a,b,c,d} ⊆ D, then |D| =
|Dσ |. If a∈D and b,c,d ∈V −D, then D∪{b} is a dominating set of Gσ . If a,b ∈D and
c,d ∈ V −D, then D is a dominating set of Gσ . If a,c ∈D, then D∪{b} is a dominating
set of Gσ . Finally, if a,b,c ∈ D and d ∈ V −D, then D∪{d} is a dominating set of Gσ .
Thus γ(Gσ)≤ γ(G) + 1. �

Corollary 2.12 [31]. If σ is a switching on G, then |γ(G)− γ(Gσ)| ≤ 1.
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Proof. Since a switching is symmetric, we may assume that γ(G) ≤ γ(Gσ). By Theorem
2.11, γ(Gσ) is either γ(G) + 1 or γ(G). In both cases, we have |γ(G)− γ(Gσ)| ≤ 1. �

Gallai [13] and Norman-Rabin [23] proved the following results concerning relation-
ship between α0 and β0, and α1, and β1, respectively.

Theorem 2.13 [13]. For any graph G of order n, α0 +β0 = n.

Theorem 2.14 [23]. For any graph G of order n and δ ≥ 1, α1 +β1 = n.

The interpolation property of the graph parameters β0 and β1 follows from the last
two theorems. Thus combining the results in this section, we can conclude the following
results.

Theorem 2.15. Let d = (d1,d2, . . . ,dn), d1 ≥ d2 ≥ ··· ≥ dn ≥ 1 be a graphic degree se-
quence. Then χ, ω, I , φ, α0, α1, β0, β1, and γ are interpolation graph parameters with respect
to �(d).

Theorem 2.16. Let f ∈ {χ,ω,I ,φ,α0,α1,β0,β1,γ}. Then for any graphic degree sequence d,
there exist integers a := a( f ) and b := b( f ) such that d has a realization G with f (G)= c if
and only if c is an integer satisfying a≤ c ≤ b.

3. Extremal graph parameters

In this section, we discuss the second part of interpolation theorems for graph parame-
ters. We first recall what we mean by an extremal problem in graph theory. An extremal
problem asks for minimum and maximum values of a function over a class of objects.

Remark 3.1. Proving that A is the minimum of f (G) for graphs in a class J requires
showing two things:

(1) f (G)≥A for all G∈ J;
(2) f (G)= A for some G∈ J.
The proof of the bound must apply to every G∈ J. For equality it suffices to obtain an

example in J with the desired value of f .
Changing “≥” to “≤” yields the criteria for a maximum.
It will be seen that we have produced several results in the extremal graph theory for

graph parameters χ, ω, I , φ, and α1 in the class of all r-regular graphs of order n and some
other related classes.

We start with the graph parameter χ. In the graph-theoretic colloquium at Smolenice
in 1963, Dirac conjectured that the chromatic number of a proper regular subgraph of a
complete n-gon is at most 3n/5. Erdős and Gallai answered this conjecture immediately
and presented their result during the conference. Their article was entitled “Solution to a
problem of Dirac,” and it was appeared in the proceedings of the symposium, Smolenice,
in 1964. In fact, the result was more than of what Dirac asked. They have, in addition,
found all regular graphs reaching the upper bound as stated in the following theorem.

Theorem 3.2. An r-regular graph G of order n > r + 1 has chromatic number k ≤ 3n/5,
with equality holds if and only if the complementary graph G of G is a union of 5 cycles.
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In their proof, they used the concept of the covering number of a graph G. A covering
of a graph G is a partition P of V(G) such that for each Vi ∈ P, the induced subgraph
G[Vi] in G is a complete graph. The covering number of G, denoted by c(G), is defined
by

c(G) :=min
{|P| | P is a covering of G

}
. (3.1)

It is easy to see that for any graph G, c(G)= χ(Ḡ). We extended their result by improving
the upper bound in [24].

Let f be an interpolation graph parameter with respect to �(d). It is clear that { f (G) :
G ∈�(d)} is uniquely determined by min( f ,d) and max( f ,d). We will discuss in this
section those extremal values for various kinds of graph parameters. For simplicity rea-
son, we will consider the class of regular graphs and some other related classes of graphs.

For the graph parameter χ, we obtained in [25] the following results.

Theorem 3.3. If r ≥ 2 and n≥ 2r, then

min
(
χ,rn

)=



2 if n is even,

3 if n is odd.
(3.2)

Theorem 3.4. If r ≥ 2, then

min
(
χ,rr+1)=max

(
χ,rr+1)= r + 1,

min
(
χ,rr+2)=max

(
χ,rr+2)= r + 2

2
.

(3.3)

The proofs of Theorems 3.3 and 3.4 were based on graph constructions.

Theorem 3.5. For any r ≥ 4 and odd integer s such that 3 ≤ s ≤ r, let q and t be integers
satisfying r + s= sq+ t,0≤ t < s. Then

min
(
χ,rr+s)=




q if t = 0,

q+ 1 if 1≤ t ≤ s− 2,

q+ 2 if t = s− 1.

(3.4)

Theorem 3.6. For any even integer r ≥ 6 and any even number s such that 4≤ s≤ r, let q
and t be integers satisfying r + s= sq+ t, 0≤ t < s. Then

min
(
χ,rr+s)=



q if t = 0,

q+ 1 if t ≥ 2.
(3.5)

The proofs of Theorems 3.5 and 3.6 were based on the concept of the covering number
of graphs and graph constructions depending on the parity of s.
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Theorem 3.7. Let r ≥ 2. Then
(1)

max
(
χ,r2r)= r, (3.6)

(2)

max
(
χ,r2r+1)=




3 if r = 2,

r if r ≥ 4,
(3.7)

(3)

max
(
χ,rn

)= r + 1 for n≥ 2r + 2. (3.8)

Brooks’ theorem [5] and graph constructions were applied to prove this theorem.

Theorem 3.8. For any r and s such that 3≤ s≤ r− 1,
(1)

max
(
χ,rr+s)≥ r + s

2
if r + s is even, (3.9)

(2)

max
(
χ,rr+s)≥ r + s− 1

2
if r + s is odd. (3.10)

Purely graph constructions were used in the proof of this theorem. The exact values
of max(χ,rn) are not easy to obtain when r + 3≤ n≤ 2r − 1. Theorem 3.2 was proved by
Erdős and Gallai [11] to provide an upper bound in the class of connected proper regular
graphs of order n.

It should be noted that the bound given by Theorem 3.2 does not depend on r and
this bound may be very far from the actual values of the chromatic numbers. Also the
exact value of max(χ,rr+3) was obtained by Theorem 3.2. We gave in [24] the following
definition.

Let j be a positive integer. An F( j)-graph is a ( j − 1)-regular graph G of minimum
order f ( j) with the property that χ(G) > f ( j)/2.

It is easy to see that F(3)-graph is a unique graph C5 and f (3) = 5. We will see later
that F( j)-graphs, j ≥ 5, are not unique.

We found F( j)-graphs for all odd integers j as we state in the following theorem.

Theorem 3.9 [24]. For odd integer j with j ≥ 3, f ( j)= (5/2)( j − 1) if j ≡ 3(mod4) and
f ( j)= 1 + (5/2)( j− 1) if j ≡ 1(mod4).

Theorem 3.10 [24]. Any r-regular graph of order n with n− r = j odd and j ≥ 3 has
chromatic number at most (( f ( j) + 1)/2 f ( j)) · n, and this bound is achieved precisely for
those graphs with complement equal to a disjoint union of F( j)-graphs.

Note that our results in Theorems 3.9 and 3.10 can be considered as a generalization
of Theorem 3.2 as F(3)-graph is C5 and f (3)= 5.
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Problem 3.11. Find an F( j)-graph for even integer j ≥ 4.

Problem 3.12. Find the value of max(χ,rr+ j) for even integer j and 4≤ j ≤ r− 2.

For the graph parameter ω, we completely answered in [26] the second part of inter-
polation theorem with respect to the class of r-regular graphs of order n as stated in the
following results.

Theorem 3.13. Let G be a graph of order n and maximum degree ∆. Then ω(G)≥ n/(n−
∆).

Since the complete graph Kn is a clique, min(ω,rr+1) = max(ω,rr+1) = r + 1. Given
positive integers n and k with k ≤ n, there exists a connected graph G of order n with
ω(G)= k. However, if G is regular, we have the following remarkable result.

Theorem 3.14. Let d = rn be a graphic degree sequence with r + 2 ≤ n ≤ 2r + 1. Then
max(ω,rn)= �n/2.
Theorem 3.15. For any r ≥ 6 and odd integer s such that 5≤ s < r, let q and t be integers
satisfying r + s= sq+ t, 0≤ t < s. Then

min
(
ω,rr+s)=




q if t = 0,

q+ 1 if 1≤ t ≤ s− 2,

q+ 2 if t = s− 1.

(3.11)

Theorem 3.16. For any even integer r ≥ 6 and any even number s such that 4≤ s≤ r, let q
and t be integers satisfying r + s= sq+ t, 0≤ t < s. Then

min
(
ω,rr+s)=



q if t = 0,

q+ 1 if t ≥ 2.
(3.12)

Observe that results of Theorems 3.15 and 3.16, respectively, coincide with Theorems
3.5 and 3.6 above.

For graph parameter I , we found in [27] a lower bound of min(I ,d) by using the
probabilistic method. In particular, we proved that if G is a graph with degree sequence
d= (d1,d2, . . . ,dn), d1 ≥ d2 ≥ ···dn ≥ 1, then

I(G)≥ 2
n∑
i=1

1
di + 1

. (3.13)

As an application, we found all minimum values of the order of maximum induced forest
in a (∆,n)-graph.

First of all we would like to introduce basic tools from discrete probability theory
which will be used for calculation of some bounds of graph parameters.

Let (Ω, p) be a finite probability space, where Ω is a finite set and p is a probability
function that maps from Ω into the interval [0,1] with

∑
ω∈Ω

p(ω)= 1. (3.14)
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A random variable X on Ω is a mapping X : Ω→R. We define a probability space on the
image set X(Ω) as

p(X = x) :=
∑

X(ω)=x
p(ω). (3.15)

The expectation E(X) of X is

E(X)=
∑
ω∈Ω

p(ω)X(ω). (3.16)

Now suppose X and Y are two random variables on Ω, then the sum X +Y is again a
random variable, sharing a property E(X +Y)= E(X) +E(Y).

Clearly, this can be extended to any finite linear combination of random variables
(the linearity of expectation). Note that it is not necessary that the random variables are
“independent.”

Thus we have the following theorems.

Theorem 3.17 [27]. Let G be a graph with degree sequence

d= (d1,d2, . . . ,dn
)
, d1 ≥ d2 ≥ ···dn ≥ 1. (3.17)

Then

I(G)≥ 2
n∑
i=1

1
di + 1

. (3.18)

Proof. Let G be an arbitrary graph on the vertex set V = {v1,v2, . . . ,vn}. Denote the degree
of vi by di. We choose with equal probability 1/n! a random permutation π = π1π2 ···πn
of V and construct the following set Fπ . We put πi into Fπ if and only if πi is adjacent
to at most one πj ( j < i). It is clear that Fπ is an induced forest of G. Let X(π) = |Fπ|
be the corresponding random variable. We have X =∑n

i=1Xi, where Xi is the indicator
random variable of the vertex vi, in other words Xi = 1 if vi ∈ Fπ and Xi = 0 if vi /∈ Fπ . In
order to calculate E(Xi), we first calculate the number of permutations π which contain

the vertex vi. Since vi has di neighbors, we partition n! permutations on V into
(

n
di+1

)
classes according to di + 1 positions that vi and its neighbors appeared. It is clear that
each class contains (di + 1)!(n−di− 1)! permutations and 2di!(n−di− 1)! of which have
the property that vi ∈ Fπ . Thus

E
(
Xi
)=∑

π

p(π)Xi(π)= 2
di + 1

. (3.19)

Therefore,

E(X)=
n∑
i=1

E
(
Xi
)= 2

n∑
i=1

1
di + 1

. (3.20)

�
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Corollary 3.18. If the average degree of G is at most d, then I(G)≥ 2n/(d+ 1).

We now have the following corollary as a result of Caro [7].

Corollary 3.19. Let G be a graph with degree sequence

d= (d1,d2, . . . ,dn
)
, d1 ≥ d2 ≥ ···dn ≥ 0. (3.21)

Then

α0(G)≥
n∑
i=1

1
di + 1

, (3.22)

where α0(G) is the independence number of G.

Proof. The proof follows easily from the fact that a forest is bipartite. �

Corollary 3.20. Let G be a graph with degree sequence

d= (d1,d2, . . . ,dn
)
, d1 ≥ d2 ≥ ···dn ≥ 0. (3.23)

Then

ω(G)≥
n∑
i=1

1
n−di

, (3.24)

where ω(G) is the clique number of G.

Proof. The proof follows from the fact that ω(G)= α0(G). �

Let G be a graph. The problem of determining the decycling number φ(G) of G is
equivalent to finding the greatest order of an induced forest I(G) of the graph G and
the sum of the two numbers equals the order of the graph. Observe that for a minimum
decycling set S of a graph G, if v ∈ S, then there exists a connected component C of G− S
such that v is adjacent to at least two vertices of C. Thus ∆(G[S]) ≤ ∆(G)− 2. With this
observation, we find that if G is an r-regular graph and S is a minimum decycling set of
G, the graph G[S] may not be an (r− 2)-regular graph. This causes a difficulty in finding
max(φ,rn) if we consider only the class of regular graphs. It is reasonable to enlarge the
class of regular graphs into the following class of graphs. Let ∆ be a nonnegative integer
and let n be a positive integer such that n ≥ ∆+ 1. Let G(∆,n) be the class of all graphs
of order n and of maximum degree ∆. The (∆,n)-graph is a graph having G(∆,n) as its
vertex set and two such graphs being adjacent if one can be obtained from the other by
either adding or deleting an edge.

Lemma 3.21 [27]. The (∆,n)-graph is connected.

Proof. For any graph G ∈ G(∆,n), if F = K1,∆ ∪ (n−∆− 1)K1 and G �= F, G can be ob-
tained from F by a finite sequence of adding edges. The proof is complete. �
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Theorem 3.22 [27]. Let d = (d1,d2, . . . ,dn), d1 ≥ d2 ≥ ··· ≥ dn ≥ 1 be a graphic degree
sequence and d1 + 1≤ n≤ 2d1 + 1. Then

(1) min(I ,d)= 2 if and only if d1 = d2 = d3 = ··· = dn and n= d1 + 1,
(2) if d does not have a complete graph as its realization, then min(I ,d)= 3 if and only

if d has a union of stars as its realization.

Theorem 3.23 [27]. Let n= (∆+ 1)q+ t, 0≤ t ≤ ∆. Then
(1) min(I ,G(∆,n))= 2q if t = 0,
(2) min(I ,G(∆,n))= 2q+ 1 if t = 1,
(3) min(I ,G(∆,n))= 2q+ 2 if 2≤ t ≤ ∆.

We obtained in [28] the values of max(I ,rn), for all r and n as stated in the following
theorems.

Theorem 3.24.

max(I ,rn)=


n− r + 1 if r + 1≤ n≤ 2r− 1,⌊

nr− 2
2(r− 1)

⌋
if n≥ 2r.

(3.25)

The values of min(I ,rn), for all r and n, were obtained in [33] in terms of the graph
parameter φ as stated in the following theorems. Note that min(I ,rn) + max(φ,rn)= n.

Theorem 3.25. For r ≥ 3, and n= r + j, 1≤ j ≤ r + 1,
(1) min(I ,rn)= 2 if and only if n= r + 1,
(2) min(I ,rn)= 3 if and only if n= r + 2,
(3) min(I ,rn)= 4 for all even integers n, r + 3≤ n,
(4) min(I ,rn)= 4 for all odd integers n, r + 3≤ n and n≥ f ( j),
(5) min(I ,rn)= 5 for all odd integers n, r + 3≤ n and n < f ( j),

where

f ( j)= 5
2

( j− 1) if j ≡ 3(mod4),

f ( j)= 1 +
5
2

( j− 1) if j ≡ 1(mod4).
(3.26)

Theorem 3.26. For n≥ 2r + 2 and r ≥ 3, write n= (r + 1)q+ t, q ≥ 2 and 0≤ t ≤ r. Then
(1) min(I ,rn)= 2q if t = 0,
(2) min(I ,rn)= 2q+ 1 if t = 1,
(3) min(I ,rn)= 2q+ 2 if 2≤ t ≤ r− 1,
(4) min(I ,rn)= 2q+ 3 if t = r.

In [32], we investigated the values of min(α1,rn) and max(α1,rn) for all r and n. It is
easy to see that min(α1,0n) =max(α1,0n) = 0 and min(α1,12n) =max(α1,12n) = n. Be-
cause of this fact, from now on we will consider r ≥ 2 and n≥ r + 1.

We first investigate the value of max(α1,rn) by the following theorem.

Theorem 3.27. For r ≥ 2, n≥ r + 1, and nr ≡ 0(mod2), there exists an r-regular Hamil-
tonian graph of order n. In particular, max(α1,rn)= �n/2.
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Proof. Since there is a well-known result by Dirac (cited from [4]) that an r-regular graph
of order n with r ≥ n/2 is Hamiltonian, we need to consider only when r < n/2. It is easy
to construct a Hamiltonian graph with 10 or fewer vertices. It is also easy to construct
such a graph with r = 2 or 3. Let X = {x0,x1, . . . ,xt−1} and Y = {y0, y1, . . . , yt−1}, where
t ≥ 5. For an integer r with 1≤ r ≤ t, take the edge set

E = {xi yi+ j : i= 0,1,2, . . . , t− 1, j = 0,1,2, . . . ,r− 1
}

, (3.27)

where all subscripts are taken mod t. It is clear that the graph B(r;X ,Y) = (X ∪Y ,E) is
an r-regular bipartite graph and it is Hamiltonian if r ≥ 2. Suppose that n= 2t + 1 and r
is an even integer with 4 ≤ r ≤ t, the graph G = (X ∪Y ∪{u},E′), where E′ = [E(B(r −
2;X ,Y))−{xi yi : i = 0,1,2, . . . ,r/2}]∪{xixi+1, yi yi+1 : i = 0,1,2, . . . , t− 1}∪ {uxi,uyi : i =
0,1,2, . . . ,r/2}, is an r-regular Hamiltonian graph. �

We will use the generalized result of Tutte and the result of Wallis [41] to obtain all
values of min(α1,rn).

A 1-factor of a graph G is a 1-regular spanning subgraph of G. A 1-factorization of G is
a set of pairwise edge-disjoint 1-factors which together contain each edge of G.

It is well known that K2n and Kn,n have 1-factorizations for all positive integers n.
The question of which graphs contain 1-factors is one that has attracted considerable
attention. For a comprehensive review, we refer to the survey of Akiyama and Kano [1]
and of Wallis in [9].

A necessary and sufficient condition for a graph to have a perfect matching was ob-
tained by Tutte [40]. A component of a graph is odd or even according as it has an odd or
even number of vertices. We denote by O(G) the number of odd components of G. The
following theorem is due to Tutte [40]

Theorem 3.28. A graph G has a perfect matching if and only if

O(G− S)≤ |S| ∀S⊆V. (3.28)

Berge [3] generalized Tutte’s result and it makes easier for application.

Theorem 3.29 [3]. The number of edges in a maximum matching of a graph G is
(1/2)(|V(G)|−d), where d =maxS⊆V(G){O(G− S)−|S|}.

Let F(r,d) be the minimum order of an r-regular graphGwith α1(G)=(1/2)(|V(G)|−
d). It is clear that |V(G)| ≡ d(mod2). Wallis [41] found F(r,2) for all r ≥ 3. In other
words, he proved the following theorem.

Theorem 3.30. Let G be an r-regular graph with no 1-factor and no odd component. Then

∣∣V(G)
∣∣≥




3r + 7 if r is odd , r ≥ 3,

3r + 4 if r is even , r ≥ 6,

22 if r = 4.

(3.29)

Furthermore, no such graphs exist for r = 1 or 2.
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Suppose that G is an r-regular graph with α1(G) = (1/2)(|V(G)| − d). There exists a
k-subset K of V(G) such that O(G−K)= k+d. If k = 0, then r is even, G contains d odd
components, and each component of G has order at least r + 1. Suppose k ≥ 1 and G−K
has an odd component with p vertices, where p is less than or equal to r. The number
of edges within the component is at most (1/2)p(p− 1). This means that the sum of
degree of these p vertices in G−K is at most p(p− 1). But G is an r-regular graph, so
the sum of these p vertices in G is pr. The number of edges joining to the component
K must be at least pr − p(p− 1). For a fixed r and for integer p satisfying 1≤ p ≤ r, the
function f (p) = pr − p(p− 1), 1 ≤ p ≤ r, has minimum value f (1) = f (r) = r. So any
odd component with r or less vertices is joined to K by r or more edges.

Suppose that there are O+ odd components of G−K with more than r vertices and
O− odd components with less than or r vertices. Thus

O+ +O− = k+d, O+ + rO− ≤ kr. (3.30)

From these two relations, we have O+ ≥ �rd/(r− 1)� = d+ �d/(r− 1)� and k ≥ �d/(r−
1)�. Thus we have the following results.

Theorem 3.31 [32]. Let r be an even integer, r ≥ 2. Then F(r,d)= d(r + 1).

Corollary 3.32 [32]. Let r be an even integer, r ≥ 2. If n = (r + 1)d + e, 0 ≤ e ≤ r, then
min(α1,rn)= dr/2 + �(1 + e)/2.

Suppose that r is odd and r ≥ 3. Let G be an r-regular graph of order n such that
α1(G)= (1/2)(n− d). Then d must be even. Put d = 2q. There exists a nonempty subset
K of V(G) of cardinality k such that O(G−K)= k+ 2q. By (3.30), we have

n≥ k+ (r + 2)O+ ≥
⌈

2q
r− 1

⌉
+ (r + 2)

(
2q+

⌈
2q
r− 1

⌉)
=
⌈

2q
r− 1

⌉
(r + 3) + 2q(r + 2).

(3.31)

Wallis [41] defined G(x, y) to be a graph with x+ y vertices, x being of degree x+ y− 3
and y of degree x + y − 2. G(x, y) exists if and only if y is even and y ≥ 2. It is noted
that for any graph G(x, y), it has y vertices of degree r and x vertices of degree r − 1. Let
xi, yi, i= 1,2, . . . ,m, be integers such that G(xi, yi) exists for all i= 1,2, . . . ,m. We construct
the graph

G
(
x1, y1

)∗G
(
x2, y2

)∗···∗G
(
xm, ym

)
(3.32)

from disjoint copies of the graphs by inserting a new vertex, say u, and joining u to all
vertices of G(xi, yi) which have the smallest degree, for i= 1,2, . . . ,m.

Using this notation, we see that for an odd integer r ≥ 3 and q = 1,2, . . . , (r − 1)/2, for
any odd positive integers ai, i= 1,2, . . . ,1 + 2q, whose sum is r,

Gq =G
(
a1,r + 2− a1

)∗G
(
a2,r + 2− a2

)∗···∗G
(
a1+2q,r + 2− a1+2q

)
(3.33)
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is an r-regular graph on (r + 2)(1 + 2q) + 1 vertices with α1(Gq) = (1/2)(|V(Gq)| − 2q).
We have the following results.

Theorem 3.33 [32]. For an odd integer r ≥ 3, then
(1) F(r,2q)= (r + 2)(1 + 2q) + 1, for q = 1,2, . . . , (r− 1)/2,
(2) if q = ((r− 1)/2)s+ t, 0≤ t < (r− 1)/2, then F(r,2q)= sF(r,r− 1) +F(r,2t), where

F(r,0)= 0.

Corollary 3.34 [32]. Let r be an odd integer, r ≥ 3. If F(r,2q)≤ n < F(r,2(q+ 1)), then
min(α1,rn)= (1/2)(n− 2q).

4. Induced subgraphs of �(d)

It was observed by Eggleton and Holton [10] that the graph �(d) is connected. It is
natural to investigate connected subgraphs of �(d).

Let P be a property which a graph may possess. Denote by �(d;P) the subgraph of
the graph �(d) induced by those vertices which correspond to graphs with property P.
Property P for which �(d;P) is connected is called complete. If a property P is complete,
we may find all the graphs of a given degree sequence with the property by switching
constrained to graphs with the property.

Colbourn [8] showed that the property of being a tree is complete and Syslo [37]
extended this to the property of being unicyclic. Taylor [38] generalized these results
by showing that the property of being connected is complete. The property of being 2-
connected was shown to be complete also by Taylor [39].

By using results in Section 2 and the results of Taylor, we immediately obtain the fol-
lowing interpolation theorems.

Theorem 4.1. Let f ∈ {χ,I ,φ,ω,α0,α1,β0,β1,γ}. Then for any graphic degree sequence d,
there exist integers a := a( f ) and b := b( f ) such that d has a connected realization G with
f (G)= c if and only if c is an integer satisfying a≤ c ≤ b.

Theorem 4.2. Let f ∈ {χ,I ,φ,ω,α0,α1,β0,β1,γ}. Then for any graphic degree sequence d,
there exist integers a := a( f ) and b := b( f ) such that d has a 2-connected realization G
with f (G)= c if and only if c is an integer satisfying a≤ c ≤ b.

Let f be an interpolation graph parameter with respect to �(d). Then { f (G) : G ∈
�(d)} is uniquely determined by min( f ,d) and max( f ,d). In particular, if f = χ, we can
define the chromatic range, χ(d), as the interval of integers as

χ(d) := [a,b]= {c ∈ Z : a≤ c ≤ b}, (4.1)

where a=min(χ,d) and b =max(χ,d). The following results concerning connected sub-
graphs of �(d) were obtained in [35].

We consider the problem of determining the structure of induced subgraphs of the
graph of realizations of a degree sequence d with prescribed chromatic number. We ob-
tained some significant results when d is a regular degree sequence.

Brooks [4] observed that every graph G may be colored by ∆(G) + 1 colors and he
characterized the graphs for which ∆(G) colors are not enough.
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Theorem 4.3. Any graph G satisfies χ(G) ≤ 1 + ∆(G), with equality holds if and only if
either of the following holds:

(1) some component of G is the complete graph K∆+1, where ∆= ∆(G);
(2) some component of G is an odd cycle, and ∆(G)= 2.

Note that Brooks’ theorem implies b=max(χ,d)≤1+∆, where∆=max{d1,d2, . . . ,dn}.
Thus for a regular degree sequence rn, we have b =max(χ,rn)≤ 1 + r. We found in [25]
the corresponding value of b for all values of r and n except the cases when r and n are
even and r + 4≤ n≤ 2r− 2. In general, the Brooks bound may be very far from the actual
value.

For each c ∈ χ(d), let �(d; χ = c) denote the subgraph of �(d) induced by the ver-
tices corresponding to graphs with chromatic number c. Similarly for any c ∈ χ(d), let
�(d; χ ≤ c) denote the subgraph of �(d) induced by the vertices corresponding to graphs
with chromatic number p ≤ c. We consider the problem of determining the structure
of induced subgraph �(d; χ = c) and �(d; χ ≤ c). In general, what is the structure of
�(d; χ = c) and of �(d; χ ≤ c)? In particular, are these graphs connected? If �(d; χ = c)
is connected, it must be possible to generate all realizations of d with chromatic number
c by beginning with one such realization and applying a suitable sequence of switchings
producing only graphs with chromatic number c. The same applies if �(d; χ ≤ c) is con-
nected.

Note that χ(0n)= {1}, χ(1n)= {2} (n is even), χ(24)= {2}, χ(2n)= {2,3} if n is even
and n≥ 6, and χ(2n)= {3} if n is odd and n≥ 3. For χ(3n), we have χ(34)= {4}, χ(36)=
{2,3}, and χ(3n)= {2,3,4} if n is even and n≥ 8.

Let G be a graph with χ(G) = k and let σ be a switching on G. σ is called a k-safe
switching if χ(Gσ)= k. A sequence σ1,σ2, . . . ,σt of switchings is called a sequence of k-safe
switchings if for each i, i= 1,2, . . . , t, χ(Gσ1σ2···σi)= k.

Theorem 4.4 [35]. If r ≥ 3 and max(χ,rn)= r + 1, then the graphs �(rn; χ = r + 1) and
�(rn; p ≤ r) are connected.

Proof. Note that if r ≥ 3, then max(χ,rn) = r + 1 if and only if n = r + 1 or n ≥ 2r + 2.
Moreover, if G is a realization of rn and χ(G)= r + 1 if and only if G has Kr+1 as a compo-
nent, the theorem is true for n= r + 1. For n≥ 2r + 2, letG1 andG2 be any two realizations
of rn such that χ(G1)= χ(G2)= r + 1. Thus G1 = Kr+1∪H1 and G2 = Kr+1∪H2. Since H1

and H2 are r-regular graphs of order n− r − 1, H2 can be obtained from H1 by a finite
number of switchings. Thus G2 can as well be obtained by those switchings. Furthermore,
it is easy to observe that those switchings are (r + 1)-safe switchings.

Let G be a realization of rn such that χ(G) ≤ r. If G is disconnected, then G does not
contain Kr+1 as its component. Thus there exists a suitable sequence of switchings which
transforms G to a connected realization of rn such that each resulting graph obtained
in this transformation will have chromatic number less than or equal to r. By using the
result by Taylor [38], the proof is complete. �

Let Cm be the cycle of order m. Thus Cm exists for all integer m≥ 3, we call Cm odd cycle
or even cycle according to whether m is odd or even. A realization of 2n can be written
as
⋃t

i=1Cni , where
∑t

i=1ni = n. It is well known that if G=⋃t
i=1Cni , then χ(G)= 2 if and
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only if for all i, ni is even. It is clear that for any two even cycles Cr and Cs, there is a 2-safe
switching which transforms these two cycles to Cr+s. Thus �(2n; χ = 2) is connected. The
corresponding result can be obtained for the graph �(2n; 3) with only one exception.

Theorem 4.5 [35]. If 3 ∈ χ(2n), then the graph �(2n; χ = 3) is connected if and only if
n �= 10.

Proof. Observe that if n is odd and n ≥ 3, then χ(2n) = {3}. Thus the graph �(2n; χ =
3) is connected. If n = 10, we cannot transform 2C5 to 2C3 ∪C4 without passing C10.
Thus the graph �(210; χ = 3) is not connected. For n ≥ 12, let

⋃t
i=1Cni be a realization

of 2n and suppose that n1 is odd. Then there is a sequence of 3-safe switchings which
transforms

⋃t
i=1Cni to Cn1 ∪Cn−n1 . Since n ≥ 12, C5 ∪Cn−5 can be transformed to C5 ∪

C3∪Cn−8 and to C3∪Cn−3. If m is odd and m≥ 7, then Cm∪Cn−m can be transformed
to C3∪Cm−3∪Cn−m and then to C3∪Cn−3. The proof is complete. �

Theorem 4.6 [42, page 53]. Let G and H be bipartite graphs with bipartition (X ,Y).
If dG(v)= dH(v) for all v ∈ X ∪Y , then there is a sequence of 2-safe switchings that trans-
forms G into H .

The following theorem is a consequence of Theorem 4.6.

Theorem 4.7 [35]. If 2∈ χ(rn), then the graph �(rn; χ = 2) is connected.

Theorem 4.8 [35]. If c ∈ χ(3n), then the graph �(3n; χ = c) is connected.

Proof. We have already proved when c = 2,4. Note that G ∈�(3n) with χ(G) = 3 if and
only if G does not contain K4 as its component and G has an odd cycle as its subgraph.
It is easy to check that the theorem is true if n ≤ 8. Let G be a cubic graph of order
n≥ 10 with χ(G)= 3. We first suppose that G has a triangle T with V(T)= {x, y,z} and
E(T)= {xy, yz,xz}. If x and y have a common neighbor v ∈ G−T , then there exists an
edge ab in G−T independent of the edge xv. Thus there is a 3-safe switching σ such that
Gσ contains a triangle T where any two vertices of T have no common neighbor in G−T .

Now suppose that G contains an odd cycle C of smallest order k ≥ 5. Let x, y be two
adjacent vertices in the cycle. Thus x and y have no common neighbor in G. Let z be the
neighbor of y in G−C. Then there exists a 3-safe switching σ such that Gσ contains a
triangle T = {x, y,z}. Thus for a graph G ∈�(3n) and χ(G) = 3, there is a sequence of
3-safe switchings which transforms G to G′ such that G′ contains a triangle T′ = {x, y,z}
and G′ −T′ is a graph having exactly 3 vertices of degree 2. Since G is an arbitrary graph
in �(3n), the proof is complete. �

Conjecture 4.9. If c ∈ χ(rn), then the graph �(rn; χ = c) is connected.

For the graph parameter φ, we investigated the values of φ(G) where G runs over the
class of cubic graphs in [34]. As an application, we were able to answer a problem asked
by Bau and Beineke [2].

For a graphic degree sequence d, let φ(d) = {φ(G) : G ∈�(d)}. Thus there exist in-
tegers a and b such that φ(d) = {k ∈ Z : a ≤ k ≤ b}. For each c ∈ φ(d), let �(d; φ =
c) denote the subgraph of the graph �(d) induced by the vertices corresponding to
graphs with decycling number c. We consider the problem of determining the structure
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of induced subgraph �(d; φ = c). In general, what is the structure of �(d; φ = c)? In
particular, are these graphs connected? If �(d; φ = c) is connected, it must be possible to
generate all realizations of d with decycling number c by beginning with one such realiza-
tion and applying a suitable sequence of switchings to produce only graphs with decycling
number c.

Bau and Beineke posed the following problem: Which cubic graphs G with | G |= 2n
satisfy φ(G)= �(n+ 1)/2�?

We answered the problem by finding all cubic graphs G of order 2n with φ(G) =
�(n+ 1)/2�. Furthermore, we proved that the induced subgraph �(32n; φ = �(n+ 1)/2�)
is connected. We proved in the same paper that if �(32n) is the class of all cubic graphs
of order 2n, then min{φ(G) : G∈�(32n)} = �(n+ 1)/2�. Thus to answer the problem is
equivalent to finding all cubic graphs of order 2n in �(32n) having minimum cardinality
of decycling set.

Conjecture 4.10. If c ∈ φ(rn), then the graph �(rn; φ = c) is connected.

5. New approach on graph parameters

We have introduced a new area of research on graph parameters. Let f be a graph pa-
rameter and let f (n,k,r) be the set of all connected r-regular graphs G of order n and
f (G) = k. We consider the problem of determining the set of all integers r for which
f (n,k,r) �= ∅.

Let χ(n,k,r) be the set of all connected, r-regular, k-chromatic graphs on n vertices.
By using the results in [25], we completely solved the problem for the graph parameter χ,
for all n and k with n≥ 2k as stated in the following theorems.

Theorem 5.1 [29]. Let n, k, r be integers such that 3≤ k ≤ r ≤ n− 2. Let D(n,k)=max{r :
χ(n,k,r) �= ∅}. Suppose n= kt + l with t ≥ 2 and 0≤ l ≤ k− 1. Let ε(n, t)= 1 or 0 accord-
ing to whether nt is odd or even. Then

(1) D(kt,k)= (k− 1)t,
(2) D(kt+ k− 1,k)= (k− 1)t+ k− 3− ε(n, t+ 1),
(3) D(kt+ l,k)= (k− 1)t+ l− 1− ε(n, t), 1≤ l ≤ k− 2.

Under the conditions of Theorem 5.1, we get the following theorem.

Theorem 5.2 [29]. χ(n,k,r) �= ∅ if k ≤ r ≤D(n,k).

It is interesting to solve the problem by removing the condition n≥ 2k. It is also inter-
esting to solve the problem for other graph parameters such as ω, φ, α0, α1, and γ.

6. Applications

In 1963, Erdős and Gallai [11] proved that any regular graph on n vertices has chromatic
number k ≤ 3n/5 unless the graph is complete. Commenting on their result in a personal
communication, Erdős wrote,“probably such a graph exists for every k ≤ 3n/5, except
possibly for trivial exceptional cases.”

Caccetta and Pullman [6] confirmed and strengthened their conjecture by showing
that if k > 1, then for every n≥ 5k/3, there exists a connected, regular, k-chromatic graph
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on n vertices. By using the interpolation results on graph parameter χ in [25], we are able
to provide an alternate proof of Erdős’ question.

In [24] we generalized the result of Erdős and Gallai by introducing the concept of
F( j)-graphs and showed that their result is a special case when j = 3.

Let n be an integer with n ≥ 4, r = n− 3 and n = 5p + i, 0 ≤ i ≤ 4. Then an explicit
formula for max(χ,rn) can be obtained as follows:

max
(
χ,rn

)=




3p if i= 0,1,

3p+ 1 if i= 2,3,

3p+ 2 if i= 4.

(6.1)

For an integer n≥ 4, let n= 5p+ i, 0≤ i≤ 4, and n= 3q+ t, 0≤ t ≤ 2.
If n is even and n= 2m, then

χ
(
mn
)= [2,m], χ

(
(n− 3)n

)=
[
q+ t,3p+

⌊
i

2

⌋]
. (6.2)

If n is odd, n≥ 7, and n= 2m+ 1, then

χ
(
rn
)= [3,r], χ

(
(n− 3)n

)=
[
q+ t,3p+

⌊
i

2

⌋]
, (6.3)

where r is an even integer and either r =m− 1 or r =m.
It is easy to check that

χ
(
mn
)∩ χ

(
(n− 3)n

) �= ∅, χ
(
rn
)∩ χ

(
(n− 3)n

) �= ∅. (6.4)

Thus we have the following interpolation theorem.

Theorem 6.1 [30]. (1) If n is even and n ≥ 6, then there exists a connected noncomplete
regular graph G of order n with χ(G)= k if and only if k is an integer satisfying 2≤ k ≤ 3n/5.

(2) If n is odd and n ≥ 7, then there exists a connected noncomplete regular graph G of
order n with χ(G)= k if and only if k is an integer satisfying 3≤ k ≤ 3n/5.

7. Suggested problems

This final section is to give some problems related to interpolation graph parameters. We
first consider the graph parameter φ. We have already mentioned that φ is an interpo-
lation graph parameter with respect to ��(d). The values of Min(φ,rn) and Max(φ,rn)
have been obtained in [36]. Let G be a connected r-regular graph and let S be a minimum
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decycling set ofG. Since for any v ∈ S there is a connected componentC ofG− S such that
v is adjacent to at least two vertices of C, there exists u ∈ G− S such that vu = e ∈ E(G)
and G− e is connected. Thus for two disjoint connected r-regular graphs G and H with
minimum decycling sets S and T of G and H , respectively, there exist u ∈ S, v ∈ G− S,
x ∈ T , y ∈ H −T such that uv = e ∈ E(G), xy = f ∈ E(H), and G− e, H − f are con-
nected. A connected r-regular graph K = ((G− e)∪ (H − f )) + {ux,vy} satisfies

φ(K)≤ φ(G∪H)= φ(G) +φ(H), (7.1)

and the following theorem holds.

Theorem 7.1. Let r ≥ 3 and nr be even. Then

Min
(
φ,rn

)=


r− 1 if r + 1≤ n≤ 2r− 1,⌈
nr− 2n+ 2

2(r− 1)

⌉
if n≥ 2r.

(7.2)

Thus the values of Min(φ,rn), for all r and n, are already obtained. Moreover,
Min(φ,rn)=min(φ,rn).

It is clear that Max(φ,rn)=max(φ,rn) for all r and n with r + 1≤ n≤ 2r + 1.
Let G be a K5-free graph of order n, ∆(G) = 4. Let F be a maximal induced forest of

G. We denote by c(F) the number of cycles in G−F. A pair (X ,Y), where X ⊆ F and Y ⊆
G−F, is an interchangeable pair of vertices with respect to F if (F −X)∪Y is a forest, |(F −
X)∪Y | ≥ |F|, and c((F −X)∪Y) < c(F). In general, we can define an interchangeable
pair of vertices for a graph G with ∆(G) > 4 as follows. Let G be a graph of order n,
∆(G) = ∆ > 4, and G contains no K∆+1 as its component. Let F be a maximal induced
forest of G. We denote by k(F) the number of K∆−1 in G−F. A pair (X ,Y), where X ⊆ F
and Y ⊆ G− F, is an interchangeable pair of vertices with respect to F if (F −X)∪Y is a
forest, |(F −X)∪Y | ≥ |F|, and k((F −X)∪Y) < k(F).

By using the notion of interchangeable pair of vertices, we obtained in [36] the follow-
ing results.

Theorem 7.2. Let n be an even integer where n≥ 12. Then

Max
(
φ,3n

)=




3
8
n+

1
4

if n≡ 2(mod8),
⌊

3
8
n
⌋

otherwise.
(7.3)

Theorem 7.3. Let G be a connected r-regular graph of order n ≥ 2r + 2. Then φ(G) ≤
n(r− 2)/r for all r ≥ 4.

Theorem 7.4. Let n= rq+ t. Then Max(φ,rn)= n− 2q if t = 0, Max(φ,rn)= n− 2q− 1
if t = 1,2, Max(φ,rn) = n− 2q− 2 if 2t > r, and Max(φ,rn) ∈ {n− 2q− 2,n− 2q− 1} if
3≤ t ≤ r/2.

Conjecture 7.5. Max(φ,rn)= n− 2q− 2 if 3≤ t ≤ r/2, for all r ≥ 6.

It is interesting to determine the values of Min( f ,rn) and Max( f ,rn) for other graph
parameter f .
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It is also interesting to consider the following problems.

Problem 7.6. Find all values of positive integers n≥ 10 such that the graph �(2n) contains
a Hamiltonian cycle.

Problem 7.7. Find the longest length of induced path in the graph �(2n).

Problem 7.8. Find the longest length of induced path in the subgraph of �(32n) induced
by the set of 2-connected realizations of 32n.
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