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We deal with two classes of locally compact sober spaces, namely, the class of locally spec-
tral coherent spaces and the class of spaces in which every point has a closed spectral
neighborhood (CSN-spaces, for short). We prove that locally spectral coherent spaces are
precisely the coherent sober spaces with a basis of compact open sets. We also prove that
CSN-spaces are exactly the locally spectral coherent spaces in which every compact open
set has a compact closure.

1. Introduction

A sober space is a T0-space in which every closed irreducible subset is a singleton closure.
Every sober space X can be recovered from the frame (complete distributive Brouwerian
lattice) �(X) of open sets as the prime spectrum Spec(�(X)) and each T0-space Y can be
universally embedded into the sober space Spec(�(Y)).

A space will be called compact if every open cover has a finite subcover, and locally
compact if every neighborhood of a point contains a compact neighborhood. The the-
ory of locally compact sober spaces is completely captured by the theory of continuous
frames (continuous distributive lattices), because for each locally compact sober space
X , the lattice �(X) is a continuous frame such that X ∼= Spec(�(X)) and every continu-
ous frame L has a locally compact sober space Spec(L) as its prime spectrum such that
L ∼= �(Spec(L)). A locally compact sober space has a basis of compact open sets if and
only if its frame �(X) of open sets is algebraic [1, page 115], and the spectrum of every
algebraic frame is a locally compact sober space with a basis of compact open sets. A space
X whose frame �(X) is algebraic is sometimes called a quasi-Boolean space [4].

Let X be a topological space and A a subset of X . The saturation of A is

Sat(A)=∩{U | A⊆U and U is open in X
}
. (1.1)

One says that A is saturated, if A= Sat(A). In T0-spaces the right classes of compact sub-
sets are the saturated ones. A subset is compact if and only if its saturation is compact.
A space is called coherent if the intersection of two saturated compact sets is compact.
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A space is called stably compact if it is compact, locally compact, coherent, and sober. One
of the principal results of the theory of stably compact spaces [2, page 474] is that a T0-
space is stably compact if and only if the patch topology is a compact Hausdorff topology.
The patch topology is an invention of Hochster; a basis of its open sets consists of the given
open sets plus the complements of the compact saturated sets. Stably compact spaces and
partially ordered compact Hausdorff spaces are practically one and the same thing [2,
page 482]. The frame �(X) of a stably compact space is a stably continuous frame (i.e.,
has a multiplicative way-below relation) with compact top element; conversely, a stably
continuous frame with compact maximal element has a stably compact spectrum. Thus
stably compact spaces are again practically the same as stably continuous frames with
compact top element [2, page 489].

If R is a commutative ring with an identity, then its prime ideal spectrum is the prime
spectrum of the lattice L of radical ideals and that is an algebraic frame and thus Spec(R) is
a locally compact sober space with a basis of compact open sets (and due to the presence
of an identity in R) it is compact. It is Hochster’s merit to have shown [3] that every
compact, locally compact, coherent, sober space with a basis of compact open sets arises
in this way. One says that a space is spectral, if it is a compact, locally compact, coherent,
sober space with a basis of compact open sets [3].

The primitive spectrum of a C∗-algebra is a locally compact Baire space (although if
the algebra is not separable, it may fail to be sober); so locally compact spaces receive a
considerable interest in the operator algebra community.

Due to the fact that authors in theoretical computer science dealing with the denota-
tional semantics of programming languages have been interested in T0 spaces and con-
tinuous lattices since Scott’s article [5], there is considerable interest in this topic.

The role of compact, locally compact, and sober spaces with a basis of compact open
sets in Stone’s theorem on the representation of distributive lattices and similar contexts
was discussed in [4] in 1972.

Hochster [3] has called a space locally spectral if it has a cover by open spectral sub-
spaces.

Here we are interested in the study of two classes of locally compact sober spaces,
namely, the class of locally spectral coherent spaces and the class of spaces in which every
point has a closed spectral neighborhood (CSN-spaces, for short).

This paper contributes two “local-global” results, the first one explaining that locally
spectral coherent spaces are precisely the coherent sober spaces with a basis of compact
open sets, and the second that CSN-spaces are exactly the locally spectral coherent spaces
in which every compact open set has a compact closure.

2. Locally spectral coherent spaces

This section deals with an intrinsic topological characterization of locally spectral coher-
ent spaces.

First, recall some characterizations M. Hochster.

Theorem 2.1 [3]. The locally spectral spaces are precisely the underlying spaces of pre-
schemes.
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Theorem 2.2 [3]. The following conditions on a topological space X are equivalent:
(i) X is a coherent locally spectral;

(ii) X is the underlying space of an open subscheme of an affine scheme;
(iii) X is the underlying space of some scheme;
(iv) X is homeomorphic with an open subspace of a spectral space.

First, we need two lemmas, the first one is cited in [1, Proposition 7, page 122].

Lemma 2.3. Let X be a topological space and U a nonempty open set of X . Then the mapping
V �→ V defines a bijection from the set of irreducible nonempty closed subsets of U onto
the set of irreducible nonempty closed subsets of X meeting U . The inverse bijection is Z �→
Z∩U .

The second lemma is a special case of [2, Exercise O-5.15(ii)].

Lemma 2.4. Let X be a sober space and U a nonempty open set of X . Then U is sober.

Theorem 2.5. The following conditions on a topological space X are equivalent:
(i) X is a locally spectral coherent space;

(ii) there exists a spectral space Y with a unique closed point ω such that X is homeomor-
phic with the subspace Y \ {ω} of Y ;

(iii) X is a coherent sober space with a basis of compact open sets;
(iv) X is an open subset of a spectral space.

Proof. As (i)⇔ (iv) according to Theorem 2.2, it suffices to prove the equivalence between
conditions (ii), (iii), and (iv).

(ii)⇒(iii). Let (Y ,�) be a spectral space with a unique closed point ω.
(a) Since Y is the unique open set of Y containing ω, the topology of X is {U ∈� |

ω /∈U}. Hence X is coherent with a basis of compact open sets.
(b) By Lemma 2.4, the open subset X of the sober space Y is also sober.
(iii)⇒(ii) and (iv).
(c) Let ω /∈ X and X̃ = X ∪{ω}. Consider the topology �̃=�∪{X̃} on X̃ . It is easily

seen that (X̃ ,�̃) is a compact coherent T0-space with a basis of compact open sets.
(d) Let C be a nonempty irreducible closed subset of (X̃ ,�̃). Then ω ∈ C and C =

K ∪{ω}, where K is a closed subset of (X ,�). We discuss two cases.
Case 1. K =∅. In this case, C = {ω} has a generic point.
Case 2. K �= ∅. Necessarily K is an irreducible closed subset of (X ,�). Hence there exists

x ∈ X such that C = {x}X = {x}X̃ .
Therefore, X̃ is a spectral space with a unique closed point ω (ii) and X is an open

subspace (iv).
(iv)⇒(iii). Applying Lemma 2.4, X is sober. Let U be an open set of a topological

space X . If X has a basis � of compact open sets closed under finite intersections, then
�U = {O ∈� | O ⊆ U} is a basis of compact open sets of U which is closed under fi-
nite intersections, proving that X is a coherent sober space with a basis of compact open
sets. �
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3. CSN-spaces

We divide the proof of our main result into a sequence of lemmas.

Lemma 3.1. Let X be a CSN-space. Then X is coherent and has a basis of compact open sets.

Proof. (1) Let x ∈ X . Since X is a CSN-space, there exists an open set Ox and a closed
spectral subset Cx of X such that x ∈ Ox ⊆ Cx. Let �x be a basis of compact open sets
of Cx and ��x = {O ∈�x |O ⊆Ox}. The elements of ��x are compact open sets of X .
Thus �=⋃x∈X ��x is a basis of compact open sets of X .

(2) To prove that X is coherent, it suffices to show that the intersection of two elements
of � is compact. Let O1, O2 be two elements of �. Then there exist x, y ∈ X such that
O1 ∈��x and O2 ∈��y . Since O1 and O2∩Cx are two compact open sets of Cx, O1∩
O2 =O1∩ (O2∩Cx) is compact. �

Lemma 3.2. A space X in which every point has a closed sober neighborhood is sober.

Proof. Let C be a nonempty irreducible closed subset of X and x ∈ C. There exists an
open set Ox and a closed sober subset Cx of X such that x ∈ Ox ⊆ Cx. Of course, C =
(Ox ∩C)∪ ((X −Ox)∩C) yields C =Ox ∩C ⊆ Cx, by irreducibility of C. Hence C is an
irreducible closed subset of the sober space Cx. Therefore, C has a generic point. �

Since spectral spaces are precisely the coherent compact sober spaces with a base of
compact open sets, the following result is an immediate consequence of Lemmas 3.1 and
3.2.

Corollary 3.3. Let X be a topological space. Then the following statements are equivalent:
(i) X is a spectral space;

(ii) X is a compact CSN-space.

Let X and Y be two topological spaces and f : X → Y a continuous map. Hochster [3]
has called f spectral if for each compact open set U of Y , f −1(U) is compact in X .

We need to recall the patch topology [3]. Let X be a topological space. By the patch
topology on X , we mean the topology which has as a subbasis for its closed sets the closed
sets and compact open sets of the original space. If X has a basis of compact open sets
which is closed under finite intersections, then the patch topology has the compact open
sets and their complements as an open subbasis. By a patch we mean a closed set in the
patch topology. Recall that the patch topology associated to a spectral space is Hausdorff

and compact [3]. The set X equipped with the patch topology will be denoted by Xpatch.
The following remarks are direct consequences of Hochster’s results [3].

Remarks 3.4. (1) Let X be a topological space which has a basis of compact open sets
closed under finite intersections. Then the following statements are equivalent:

(i) X is spectral;
(ii) Xpatch is compact.

(2) Let X be a spectral space and Y a subspace of X . Then Y is spectral if and only if Y
is a patch in X .

(3) If Y is a patch in a spectral space X , then Y =⋃[{y} | y ∈ Y].
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Lemma 3.5. Let X be a spectral space and Y a topological space which has a basis of compact
open sets closed under finite intersections. Let f : X → Y be a continuous map. Then the
following statements are equivalent:

(i) f is a spectral map;
(ii) f : Xpatch → Ypatch is continuous.

Proof. (i)⇒(ii). For each compact open set U of Y , f −1(U) is a compact open set of
X and f −1(Y −U) = X − f −1(U) is a complement of a compact open set of X . Thus
f : Xpatch → Ypatch is continuous.

(ii)⇒(i). Let U be a compact open set of Y . Then U is closed in Ypatch. Hence f −1(U)
is a closed subset of the compact space Xpatch. Thus f −1(U) is compact. �

Corollary 3.6. The patch topology of a closed spectral subset of a CSN-space X coincides
with the topology induced by the patch topology of X .

Proof. Let C be a closed spectral subset of X and �patch the topology induced by the patch
topology of X on C. Since C is a closed spectral subset of X , the canonical injection i : C↩
X is a spectral map. Hence using Lemma 3.5, 1C : Cpatch → (C,�patch) is continuous. Now,
since Cpatch is a compact space and (C,�patch) is Hausdorff, 1C is a homeomorphism. �

Lemma 3.7. Let X be a CSN-space. Then each closed compact subset of X is a spectral sub-
space of X .

Proof. Let C be a compact closed subset of X .
(a) Clearly, C is a T0-space, since X is T0.
(b) Let � be a basis of compact open sets of X which is closed under finite intersec-

tions. Of course, �C = {U ∩C | U ∈�} is a basis of compact open sets of C which is
closed under finite intersections.

(c) Finally, one may easily check that any closed subset of a sober space is sober.
Therefore, C is a spectral space. �

Corollary 3.8. Let X be a CSN-space. Then for each compact open set O of X , there exists
a closed spectral subspace C of X such that O ⊆ C.

Proof. For each x ∈ O, there exists a closed spectral neighborhood Cx of x. Hence O ⊆⋃
[Cx | x ∈ U]. Since O is compact, there exists a finite subset M of U such that O ⊆⋃
[Cx | x ∈M]. Let C =⋃[Cx | x ∈M]. Then C is a closed compact subspace of X . Ac-

cording to Lemma 3.7, C is a spectral subspace of X . �

Lemma 3.9. Let Y be a nonempty subset of a CSN-space X . Then the following statements
are equivalent:

(i) Y is a patch in X ;
(ii) Y is a CSN-subspace of X and for each compact open set O of X , O∩Y is compact.

Proof. (ii)⇒(i). Let x ∈ Y
Xpatch

and Ox be a compact open set of X such that x ∈Ox. Then
Ox ∩Y is a nonempty compact open set of Y . According to Corollary 3.8, there exists a
closed spectral subspace Cx of Y such that Ox ∩Y ⊆ Cx.

Now, remark that the clopen subsets of Xpatch form a basis of the patch topology of X .
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Let � = {(V ∩Y)∩Cx | x ∈ V and V is clopen in Xpatch}. The intersection of any fi-
nite family of elements of � is of the form (U ∩Y)∩Cx, where U is clopen in Xpatch and

x ∈U . Now, x ∈ Y
Xpatch

implies that (Ox ∩Y)∩ (U ∩Y) �= ∅ so that (U ∩Y)∩Cx �= ∅.
Hence � has the finite intersection property.

On the one hand, since Cx is compact in Ypatch, we have
⋂

[W |W ∈�] �= ∅. On the
other hand,

⋂
[V | x ∈ V and V is clopen in Xpatch] = {x}, since Xpatch is a T2-space. It

follows that x ∈ Y , and thus Y
Xpatch = Y . Therefore, Y is a patch in X .

(i)⇒(ii). Let x ∈ Y . Since X is a CSN-space, there exists a closed spectral neighbor-
hood Cx of x. By Corollary 3.6, Cx ∩Y is a patch in Cx. Hence Cx ∩Y is a closed spectral
neighborhood of x in Y . Thus Y is a CSN-space.

Let O be a compact open set of X . Using Corollary 3.8, there exists a closed spectral
subspace C of X such that O ⊆ C. Since C∩Y is a patch in C, C∩Y is a spectral space.
According to Corollary 3.6, O∩Y = (O∩Y)∩C is a patch in C. It follows that O∩Y is
a compact open set of Y . �

Corollary 3.10. Let X be a CSN-space and let Y ⊆ X . Then the following properties hold.
(1) If U is a compact open set of X , then U and U are spectral subspaces of X .
(2) If Y is a compact subset of X , then Y is a spectral space.
(3) Y is spectral if and only if Y is a patch compact subset of X .

Proof. (1) LetU be a compact open set ofX ; by Corollary 3.8, there exists a closed spectral
subset F of X such that U ⊂ F. Hence, as U is a closed subspace of the spectral space F, it
is a spectral subspace of X . Now, U is a patch in U , so that U is spectral.

(2) Since Y is a compact subset of X , there exists a compact open set U of X such that
Y ⊆ U . Hence Y is a patch in the spectral space U by (1). It follows that Y is a spectral
space [3].

(3) Suppose that Y is spectral. Then Y is compact. Hence Y is spectral by (2). Accord-
ing to M. Hochster, a spectral subspace of a spectral space is necessarily a patch. Thus Y
is a patch in Y . By Corollary 3.6, Y is a patch in X .

Conversely, suppose that Y is a compact patch subset of X . Then Y is a CSN-subspace
of X by Lemma 3.9. Now Corollary 3.3 permits to conclude that Y is spectral. �

The following is an immediate consequence of the above corollary.

Corollary 3.11. Let X be a topological space with a basis � of compact open sets. Then
the following statements are equivalent:

(1) X is a CSN-space;
(2) for each U ∈�, U is a spectral subspace of X .

Now, we are in a position to give a characterization of CSN-spaces.

Theorem 3.12. Let X be a topological space. Then the following statements are equivalent:
(1) X is a CSN-space;
(2) X has the following properties:

(i) X is a coherent sober space with a basis of compact open sets;
(ii) every compact open set U of X has a compact closure (i.e., U is relatively compact).
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Proof. (1)⇒(2). This follows immediately from Lemmas 3.1 and 3.2 and Corollary 3.10.
(2)⇒(1). Let x ∈ X . Then there exists a compact open set O of X such that x ∈ O.

Property (ii) forces O to be a spectral subspace of X . Therefore, X is a CSN-space. �

Corollary 3.13. Let X be a topological space. Then the following statements are equiva-
lent:

(i) X is a CSN-space;
(ii) X is a locally spectral coherent space in which every compact open set has a compact

closure.

Example 3.14. (1) It is easily seen that a spectral space is a CSN-space and a CSN-space is
a locally spectral space (see Theorem 3.12).

(2) A locally spectral space need not be a CSN-space. Let N be the set of integers en-
dowed with the Alexandroff discrete topology � of the natural order (here the open sets
are ∅ and N, and ↓ x = {y ∈N | y ≤ x}, where x ∈N). Clearly, (N,�) is a noncompact
locally spectral space. But ↓ 0 is a compact open set of (N,�) with closure N. Thus, ac-
cording to Theorem 3.12, (N,�) is not a CSN-space.

(3) A CSN-space need not be spectral; the same example as in (2) does the job.
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