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We give a simple proof of the well-known quintuple product identity. The strategy of our
proof is similar to a proof of Jacobi (ascribed to him by Enneper) for the triple product
identity.

1. Introduction

The well-known quintuple product identity can be stated as follows. For z �= 0 and |q| < 1,

f (z,q) :=
∞∏
n=0

(
1− q2n+2)(1− zq2n+1)(1− 1

z
q2n+1

)(
1− z2q4n)(1− 1

z2
q4n+4

)

=
∞∑

n=−∞
q3n2+n(z3nq−3n− z−3n−1q3n+1).

(1.1)

The quintuple identity has a long history and, as Berndt [5] points out, it is difficult
to assign priority to it. It seems that a proof of the identity was first published in H. A.
Schwartz’s book in 1893 [19]. Watson gave a proof in 1929 in his work on the Rogers-
Ramanujan continued fractions [20]. Since then, various proofs have appeared. To name
a few, Carlitz and Subbarao gave a simple proof in [8]; Andrews [2] gave a proof involv-
ing basic hypergeometric functions; Blecksmith, Brillhart, and Gerst [7] pointed out that
the quintuple identity is a special case of their theorem; and Evans [11] gave a short and
elegant proof by using complex function theory. For updated history up to the late 80s
and early 90s, see Hirschhorn [15] (in which the author also gave a beautiful generaliza-
tion of the quintuple identity) and Berndt [5] (in which the author also gave a proof that
ties the quintuple identity to the larger framework of the work of Ramanujan on q-series
and theta functions; see also [1]). Since the early 90s, several authors gave different new
proofs of the quintuple identity; see [6, 13, 12, 17]. See also Cooper’s papers [9, 10] for
the connections between the quintuple product identity and Macdonald identities [18].
Quite recently, Kongsiriwong and Liu [16] gave an interesting proof that makes use of the
cube root of unity.
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Our proof below is similar to the proof of the triple product identity by Jacobi (as-
cribed to him by Enneper; see the book by Hardy and Wright [14]). First, we set f (z,q)=∑
anzn. Then, by considering the symmetry of f (z,q) as an infinite product, we relate

all an to a single coefficient a0. All we need to do is to evaluate a0. This is achieved by
comparing f (i,q) and f (−q4,q4).

2. Proof of the identity

The first step of our proof is pretty standard, for example, see [16] or [4]. Set

f (z,q)=
∞∑

n=−∞
anz

n. (2.1)

From the definition of f (z,q), one can show that

f (z,q)= qz3 f
(
zq2,q

)
, f (z,q)=−z2 f

(
1
z

,q
)
. (2.2)

The first equality implies that for each n,

a3n = a0q
3n2−2n, a3n+1 = a1q

3n2
, a3n+2 = a2q

3n2+2n, (2.3)

whereas the second equality implies that a2 = −a0 and a1 = 0. By putting all these to-
gether, we have

f (z,q)= a0(q)
∞∑

n=−∞
q3n2+n(z3nq−3n− z−3n−1q3n+1). (2.4)

Comparing (2.4) to (1.1) shows that all we need to do is to prove that a0(q) = 1. Note
that a0(0)= 1.

We can also write (2.4) in the following forms (which will be useful later):

f (z,q)= a0(q)
∞∑

n=−∞
q3n2−2n

(
z3n− 1

z3n−2

)
(2.5a)

= a0(q)
∞∑

n=−∞
q3n2+n

((
z

q

)3n

−
(
q

z

)3n+1
)
. (2.5b)

To obtain (2.5a), we let n→ n− 1 in the second sum on the right-hand side of (2.4).
Equation (2.5b) is simply another way of writing (2.4).

By putting z = i in (2.5a), we have, on the one hand,

f (i,q)= a0(q)
∞∑

n=−∞
q3n2−2n

(
i3n− 1

i3n−2

)
= 2a0(q)

∞∑
n=−∞

q12n2−4n(−1)n. (2.6)

Note that, in the second equality, we have used the fact that

i3n− 1
i3n−2

= 2cos
3n
2
π =


0, if n is odd,

2(−1)n/2, if n is even.
(2.7)
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On the other hand, let us evaluate f (i,q) as an infinite product:

f (i,q)= 2
∞∏
n=1

(
1− q2n)(1− iq2n−1)(1 + iq2n−1)(1 + q4n)2

= 2
∞∏
n=1

(
1− q2n)(1 + q4n−2)(1 + q4n)2

= 2
∞∏
n=1

(
1− q2n)(1 + q2n)(1 + q4n)

= 2
∞∏
n=1

(
1− q4n)(1 + q4n)

= 2
∞∏
n=1

(
1− q8n).

(2.8)

Note that we have used the fact that
∏

(1 + q4n−2)(1 + q4n)=∏(1 + q2n) to derive the third
equality.

By putting (2.6) and (2.8) together, we arrive at

∞∏
n=1

(
1− q8n)= a0(q)

∞∑
n=−∞

q12n2−4n(−1)n. (2.9)

Note that, at this stage, if we appeal to Euler’s pentagonal number theorem (with q re-
placed by q8) [4], we have

∞∏
n=1

(
1− q8n)= ∞∑

n=−∞
q12n2−4n(−1)n. (2.10)

Compared with (2.9), we see that a0(q)= 1. Alternatively, we can find a0(q) by evaluating
f (z,q) in a different way.

Precisely, let us evaluate f (−q4,q4). By (2.5b), we have

f
(− q4,q4)= a0

(
q4) ∞∑

n=−∞
q12n2+4n((−1)3n− (−1)3n+1)

= 2a0
(
q4) ∞∑

n=−∞
q12n2+4n(−1)n

= 2a0
(
q4) ∞∑

n=−∞
q12n2−4n(−1)n.

(2.11)

For the second equality, we have used the fact that (−1)3n − (−1)3n+1 = 2(−1)n. For the
last equality, we let n→−n in the second line.

Again, evaluating f (−q4,q4) as an infinite product gives

f
(− q4,q4)= 2

∞∏
n=1

(
1− q8n)( ∞∏

k=1

(
1 + q8k)(1− q16k−8))2

= 2
∞∏
n=1

(
1− q8n). (2.12)
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The second equality is obtained by direct computation, similar to the derivation of (2.8).
Alternatively, it follows from an identity due to Euler (e.g., see [3, page 60]) that

∞∏
k=1

(
1 + q8k)(1− q16k−8)= 1. (2.13)

By putting together (2.11) and (2.12), we have

∞∏
n=1

(
1− q8n)= a0

(
q4) ∞∑

n=−∞
q12n2−4n(−1)n. (2.14)

Finally, by comparing (2.9) and (2.14), we conclude that a0(q)= a0(q4). This implies that

a0(q)= a0
(
q4)= a0

(
q16)= ··· = a0

(
q4k)= ··· = a0(0)= 1 (2.15)

and (1.1) is proven.
We remark that the evaluation of f (−q4,q4) above also gives a simple proof of Euler’s

pentagonal number theorem.
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