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It is well known that the use of antenna arrays at both sides of communication link can
result in high channel capacities provided that the propagation medium is rich scatter-
ing. In most previous works presented on MIMO wireless structures, Rayleigh fading
conditions were considered. In this work, the capacity of MIMO systems under fully cor-
related (i.e., correlations between rows and columns of channel matrix) fading is con-
sidered. We use replica method and character expansions to calculate the capacity of
correlated MIMO channel in closed form. In our calculations, it is assumed that the re-
ceiver has perfect channel state information (CSI) but no such information is available at
the transmitter.

1. Introduction

The Shannon capacity of a channel defines its theoretical upper bound for maximum
rate of data transmission at an arbitrary small bit error probability, without any delay
or complexity constraints. Therefore, this capacity represents not only an optimistic up-
per bound but also a benchmark against which to compare the spectral efficiency of all
practical communications systems. In the context of wireless communications systems,
initial publication dealt with capacity of (i) single-input single-output (SISO) (no di-
versity) Rayleigh [7, 13], Rice [12], and Nakagami [21] channels, then (ii) single-input
multiple-output (SIMO) (i.e., receiver diversity) Rayleigh [1], and Rice [12] channels.
More recently, multiple-input multiple-output (MIMO) has been an important subject
of research during the past few years [17, 20]. When there is enough multipath, that
is, in a rich scattering environment, the capacity of a MIMO channel can be efficiently
multiplied, by adding antenna elements at both transmitter and receiver. MIMO systems
are hence a promising solution for high bit rate applications that will provide a break-
through in the future wireless communication. In a very recent paper [19], Smith and
Shafi used central limit argument to show that the capacity of MIMO channels is asymp-
totically/approximately Gaussian and based on simulations, they found that this approxi-
mation was surprisingly accurate for virtually all numbers of transmitter/receiver antenna
elements over Rayleigh environment. The implication of this result is that only mean and
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variance are needed to fully characterize a useful performance measure of MIMO systems.
However, their result is limited to Rayleigh channel.

The highest spectral efficiency of a point-to-point MIMO system is only achieved
when there is uncorrelated fading among pairs of transmitter and receiver antennas. In
practice, this can be achieved with sufficient spacing among the base station, (mobile or
portable) terminal antennas. At the base station, decorrelation is achieved using approx-
imately 10 λ separation between the nearest elements in a linear array. A mobile station
operating in an urban outdoor area or indoor in a home or in office environment is
likely to be surrounded by multiple scatterers that contribute to wide-angle scattering.
Therefore, only 0.5 λ spacing maybe adequate. At 2 GHz, this wavelength is 15 cm. This
means that even modest four-element antenna array at the base station will have a span
of 4.5 m. Thus, contrary to popular belief, the spacing issue is of considerable significance
at the base station where mounting of antennas is subject to strict environmental regula-
tions. Note that design and mounting of closely spaced antennas on a small form-factor
portable devices (laptops, PDA, etc.) pose additional problems (to just using separation
to decorrelate received signals) due to coupling via substrate.

It is of interest to investigate the capacity of multiple-antenna communications sys-
tems when there are correlations. In [6, 14], the authors consider capacity when there are
correlations at only one end of the system, that is, correlations between rows or columns
of the channel matrix, and gives asymptotic results. In [16], the authors give the exact ex-
pression for the ergodic capacity of MIMO systems when there is correlation at one end
of the system with arbitrary number of antennas. However, their analysis cannot be ex-
tended to correlations at both ends (i.e., correlations between rows and between columns
of channel matrix) of the communication system. In this paper, we consider the problem
for the case in which there are correlations at both ends of the communication system.
We assume that the receiver has perfect knowledge of channel state information but the
transmitter does not have any knowledge of fading statistics nor instantaneous channel
state information. Borrowing the results from [3, 18], we give closed-form expression for
the capacity of fully correlated MIMO system.

This paper is organized as follows. Section 2 gives system and channel models.
Section 3 gives ergodic capacity of correlated Rayleigh channel. In Section 4, we briefly
discuss replica method and evaluate the expression for correlated Rayleigh MIMO ca-
pacity. Section 5 briefly explains the direct evaluation of the correlated MIMO capacity.
Conclusions are given in the last section.

2. System and channel models

A discrete-time baseband channel model is considered, and flat (nondispersive) fad-
ing conditions are assumed and for simplicity, we assume equal number of elements of
transmit-receive pairs (N ,N). The channel matrix H of dimension N ×N will character-
ize the channel. The received signal at jth antenna is

yj =
N∑
i=1

hi jxi + vj , (2.1)
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where yj is the received signal at the receiver antenna j, reflecting contributions from
all transmit antennas, signals xi, and vj represents additive white Gaussian noise seen at
each receiver antenna. We will assume (without loss of generality) that the noise has unit
generalized variance (i.e., E[vvT]= IN ). The signal vector (N × 1) received at the output
can be written as



y1
...
yN


=



h11 ··· hN1

...
...

...
h1N ··· hNN





x1
...
xN


+



v1
...
vN


 , (2.2)

or in vector notation, we have

y =Hx+ v. (2.3)

It is assumed that the channel is stationary, ergodic (i.e., time average converges to its
ensemble average), and is independent of channel input x and the noise v. The channel
gains {Hij} are complex gains from jth transmitter antenna element to the ith receiver
antenna element.

The input power is constrained to ρ, that is, transmit power available at the transmitter,

Tr
(
E
[
xxH

])≤ ρ. (2.4)

We assume that the receiver has perfect channel state information (CSI) while the
transmitter has neither instantaneous nor statistical CSI and as such, the total transmit-
ted power is distributed equally among N transmitting antenna elements (may not be
optimal power-allocation scheme when there are correlations), that is,

E
[
xxH

]= ρ

N
IN , (2.5)

where ρ is the signal-to-noise ratio (SNR). Our expression can be thought of as lower
bound on the capacity of fully correlated MIMO system (owing to the fact that we divide
power equally across each antenna, which may not be capacity-achieving scheme). The
following notations are used in the paper. IN represents N ×N identity matrix, Tr(X) is
the trace of X , detY is determinant of Y,

⊗
denotes the kronecker product.

We will deal exclusively with the above linear model and derive the capacity of MIMO
channel models.

3. Ergodic capacity of MIMO channels

We assume that H is Gaussian random matrix whose realization is known at the receiver,
or equivalently, the channel output consists of the pair y, H . The input power is dis-
tributed equally over all transmitting antennas. Owing to the correlations at both ends,
the MIMO channel may be modeled as

H = R1/2HS1/2. (3.1)
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Assuming block-fading model, then the ergodic capacity of a random MIMO channel
is given by

C = EH
{

logdet
(
IN +

ρ

N
HHH

)}
, (3.2)

where EH denotes that the expectation is taken with respect to ensemble statistics of H ,
which is correlated complex Gaussian density in our case.

4. Replica method and evaluation of correlated MIMO capacity

Now we will also briefly introduce a technique found in theoretical physics termed as
replica analysis [9, 22]. In 1975, Edwards and Anderson, when studying disordered sys-
tems of spins, proposed a new method for the investigation of disordered systems—the
so-called replica method. In this method, one replaces a single disordered system by n
systems which are identical to the original. Then, for example, instead of calculating the
free energy F = T logZ, one calculates the quantity Fn = T(d/dn)Zn. The limit of Fn as
n→ 0 coincides with the free energy F. Mathematically, this is represented by

F = T logZ. (4.1)

The above expression can be calculated as

F = T
(

Lim
n→0

d

dn
Zn
)
. (4.2)

Using the above expression, we can write the capacity expression (3.2) as

C = Lim
n→0

d

dn
EH

{
det

(
IN +

ρ

N
HHH

)n}
, (4.3)

where the expectation is with respect to

P(H)= C1 exp
(−Tr{R−1HS−1HH

})
, (4.4)

where the constant C1 is given by

C1 = π−N2

det(R)N det(S)N
. (4.5)

Using replica method, we can write

C = Lim
n→0

d

dn
EH
{

det
(
I +αHHH

)n}
, (4.6)

where we have defined α= ρ/N . Now we define

G= EH
{

det
(
I +αHHH

)n}
. (4.7)
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Performing the eigendecomposition of matrix HHH , we get

G= C1C2

∫ N∏
i=1

dλi
(
1 +αλi

)n
∆(λ)2Z(λ), (4.8)

where C2 is normalization constant of the transformation and is given in [16]. In the
above equation, we have that λi are the eigenvalues of HHH , ∆(λ)2 =∏i< j(λi− λj)2 is the
square of the Vandermonde determinant, which is Jacobian of transformation fromHHH

→UΣUH . Z(λ) is given by

Z(λ)=
∫
dU

∫
dV exp

(−Tr{R−1UhVS−1VHhHUH
})

, (4.9)

where h are the singular values of matrix H and U , V are unitary matrices which are
integrated with the Haar measure over U(N) (unitary group). It is clear from the ex-
pression for Z(λ) that this integral cannot be solved using well-known HIZ (Harish-
Chandra-Itzykson-Zuber) formula, which would have been possible if either matrix R
or S is multiple of identity matrix. To tackle the integral Z(λ), we employ character ex-
pansion method. Character expansion has been used successfully to reduce the number
of degrees of freedom from N2 to N in matrix models and solve the resulting problem
by saddle-point method (for large systems) [10, 11]. Group characters have been used by
number of researchers to solve mathematical problems. In this paper, we follow [3, 18].
In character expansion method, exp(−Tr{R−1UhVS−1VHhHUH}) is expanded as an in-
variant function of variable R−1UhVS−1VHhHUH of irreducible representation of r of
the general linear group (GL(N) group),

exp
(−Tr{R−1UhVS−1VHhHUH

})=∑
r

frχr
(
R−1UhVS−1VHhHUH

)
, (4.10)

where the coefficients are functions of the N highest weight components of the represen-
tation

r = {0≤ kN ≤ ···≤k1 <∞
}
. (4.11)

∑
r is nothing but is the sum over N ordered integers (kj = N + nj − j) [3]. nj is the

partition of a U(N) group into N parts (n1, . . . ,nN ), where n1 ≥ ···≥nN . A character is
just the trace taken in the proper representation, that is, r in our case, so we have

χr
(
R−1UhVS−1VHhHUH

)= R−rab Ur
bch

r
cdV

r
deS

−r
e f V

r∗
g f h

r∗
hg U

r∗
ah . (4.12)

We now state the orthogonality property [3, 5, 8]

∫
dUUr

abU
s∗
cd =

1
dr
δrsδacδbd, (4.13)

where Ur and Us are the group matrix elements in the representations r and s, respec-
tively, dr is the dimension of the representation, and δ(·) is Kronecker delta. Combining
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(4.9), (4.12), and (4.13), we can write

Z(λ)=
∑
r

fr
d2
r
χr
(
R−1)χr(S−1)χr(λ). (4.14)

Now we evaluate the term fr /d2
r in the above equation. To do so, we observe that the

author in [3] found that

fr = s(k)det

(
1(

kj + i−N)!
)
= s(k)∆(k)

C(k)
, (4.15)

where C(k) =∏N
j=1 kj !. s(k) = (−1)v with v = N(N − 1)/2−∑N

j=1 kj . In [3], it is also
shown that

fr
dr
= s(k)FN

C(k)
(4.16)

with FN =
∏N−1

j=1 j!. From (4.15) and (4.16), it is straightforward to obtain

fr
d2
r
= s(k)F2

N

∆(k)C(k)
. (4.17)

A character is defined by Weyl’s classical formula [4, 10, 11]

χr(A)=
det

(
a
kj
i

)
i, j=1,...,N

∆(a)
, (4.18)

where ai are the eigenvalues of matrix A. ∆(a) is the Vandermonde determinant. The

expression det(a
kj
i )i, j=1,...,N is the generalized Vandermonde determinant. An alternative

form for the character formula is given by [3]

χ(A)= det
(
γnj+i− j

)
, (4.19)

where γn is the complete symmetric function in the argument t1, . . . , tN of degree n.
Substituting (4.18) into (4.14), we get

Z(λ)= 1
∆(λ)

∑
r

βr det
(
λ
kj
i

)
i, j=1,...,N

, (4.20)

where βr is given by

βr = fr
d2
r
χr
(
R−1)χr(S−1). (4.21)
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The Vandermonde determinant can be written as [5]

∆(λ)=
∏
i< j

(
xi− xj

)= det




1 ··· 1
λ1 ··· λN
...

...
...

λN−1
1 ··· λN−1

N


 . (4.22)

Vandermonde determinant can also be expressed in terms of orthogonal polynomial. We
make use of the orthogonal polynomial Pn(λ), (orthogonal with respect to the measure
or weight) [5]

∫∞
0
dλe−V(λ)Pn(λ)Pm(λ)= hnδnm, (4.23)

where δnm is Kronecker delta, and hn is normalization constant. The P′ns are orthogonal
polynomials and are functions of single real variable λ. If Pm(λ) = λm +

∑m−1
j=0 Pm, jλ j are

monic polynomials of degree m, for m= 0,1, . . . ,N − 1, then

∆(λ)= det
(
λi−1
j

)
1≤i, j≤N = det

(
Pi−1

(
λj
))

1≤i, j≤N . (4.24)

This is easily proved by performing suitable linear combinations of columns, a pro-
cedure that leaves the determinant unchanged. The determinant is indexed with i, j ∈
{1,2, . . . ,N}. Hence, the Vandermonde determinant can be written as (in terms of or-
thogonal polynomial)

∆(λ)= det




P0
(
λ1
) ··· P0

(
λN
)

P1
(
λ1
) ··· P1

(
λN
)

...
...

...
PN−1

(
λ1
) ··· PN−1

(
λN
)


 . (4.25)

Using (4.20), (4.21), and (4.24), we can further write (4.8) as

G= C1C2

∫∞
0

N∏
i=1

dλi
(
1 +αλi

)n∑
r

βr det
(
λ
kj
i

)
det

(
λi−1
j

)
. (4.26)

Let C3 = C1C2, the above equation can further be written as

G= C3

∫∞
0

N∏
i=1

dλi
(
1 +αλi

)n∑
r

βr det
(
φj(λi)

)
det

(
λi−1
j

)
, (4.27)

where we have set det(λ
kj
i )= det(φj(λi)). Here, we need the following formula. Let φ1(k),

. . . ,φN (k) and ψ1(k), . . . ,ψN (k) be arbitrary functions in k. Then [15],

det
(
φi
(
kl
))

det
(
ψj
(
kl
))= ∑

σ∈Sn
det

(
φi
(
kσ( j)

)
ψj
(
kσ( j)

))
, (4.28)
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where σ runs over all permutations of SN . The above formula can be proved straightfor-
wardly by calculating the left-hand side by the usual product formula of the determinant.
Then it becomes a summation of NN terms. Because of the multilinearity of the deter-
minants, only N ! of these terms are nonzero. Rearranging the N ! terms, we obtain the
required formula. Using the above expression, we can write

G= C3

∫∞
0

N∏
i=1

dλi
(
1 +αλi

)n∑
r

βr
∑
σ∈SN

det
(
φj
(
λσ(i)

)
λi−1
σ(i)

)

= C3

∫∞
0

N∏
i=1

dλi
∑
σ∈SN

(
1 +αλσ(i)

)n∑
r

βr det
(
φj
(
λσ(i)

)
λi−1
σ(i)

)

= C3

∑
r

βr
∑
σ∈SN

det
(∫∞

0

(
1 +αλσ(i)

)n
φj
(
λσ(i)

)
λi−1
σ(i)

) N∏
i=1

dλi,

=N !C3

∑
r

βr det
(∫∞

0

(
1 +αλi

)n
φj
(
λi
)
λi−1
i dλi

)
,

(4.29)

which can be further written as

G=N !C3

∑
r

βr det
(∫∞

0

(
1 +αλ

)n
φj(λ)λi−1dλ

)
. (4.30)

Plugging the above equation into (4.3) and taking the replica limit give the ergodic
capacity of MIMO system in fully correlated system (correlations at both ends). After
writing the paper, the authors came to know about Cauchy-Binet theorem [2] which can
be applied directly to (4.27) to get the final answer, that is, (4.30). The Cauchy-Binet
theorem is given:

∫ N∏
l=1

dµ
(
λl
)

det
(
Ak
(
λl
))

det
(
Bk
(
λl
))=N !det

(∫
dµ(λ)Ak(λ)Bl(λ)

)
, (4.31)

where dµ(λl) is the integration measure.

5. Alternative expression for correlated MIMO capacity

The channel capacity can also be calculated without the help of replica analysis, that is, it
can be calculated by direct calculation. The channel capacity for correlated MIMO system
is given by (3.2) with probability distribution given in (4.4). Performing the eigendecom-
position of HHH , we get

C = C1C2

∫ N∏
i=1

dλi

N∑
i=1

log
(
1 +αλi

)
∆(λ)2Z(λ), (5.1)

where λi, α, C1,C2, and Z(λ) are the same as in the previous section.
In Figure 5.1, we have capacity results for N =M = 2systemsat SNR = 20 dB (signal-

to-noise ratio) versus the correlation coefficient. It is clear from the figure that the corre-
lation degrades the capacity of the system. In Figure 5.2, we have shown capacity results
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Figure 5.1. Capacity results for N = 2 systems at SNR = 20 dB. The solid line represents the capacity
when there are correlations at the transmitting side as well as the receiving side with the same correla-
tion coefficient matrix. Dashed line is the capacity when there is correlation only at transmitting side.
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Figure 5.2. Capacity results for N = 2. The solid line is capacity when there is no correlation between
antennas. Dashed line represents capacity when there is correlation of 0.9 at transmitting side and 0.1
at the receiving side.

forN =M = 2. It is clear from the figure that as the SNR goes high, the difference between
the capacity without correlation and the capacity with high correlation becomes large.

6. Conclusion

In this paper, we derived an expression for the capacity of fully correlated MIMO channel.
The expression was obtained by using replica trick and a powerful technique in group
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theory, known as character expansions. In the case of semicorrelated case (correlations
on one side of the communications systems), we can solve the problem without using
character expansion, as is given in [16].

References

[1] M.-S. Alouini and A. J. Goldsmith, Capacity of Rayleigh fading channels under different adaptive
transmission and diversity-combining techniques, IEEE Trans. Veh. Technol. 48 (1999), no. 4,
1165–1181.

[2] J. Baik, P. Deift, and E. Strahov, Products and ratios of characteristic polynomials of random
Hermitian matrices, J. Math. Phys. 44 (2003), no. 8, 3657–3670.

[3] A. B. Balantekin, Character expansions, Itzykson-Zuber integrals, and the QCD partition func-
tion, Phys. Rev. D 62 (2000), no. 8, 8 pp., 085017.

[4] A. B. Balantekin and P. Cassak, Character expansions for the orthogonal and sympletic groups, J.
Math. Phys. 43 (2002), no. 1, 604–620.

[5] P. M. Bleher and A. R. Its (eds.), Random Matrix Models and Their Applications, Mathematical
Sciences Research Institute Publications, vol. 40, Cambridge University Press, Cambridge,
2001.

[6] M. Chiani, M. Z. Win, and A. Zanella, On the capacity of spatially correlated MIMO Rayleigh-
fading channels, IEEE Trans. Inform. Theory 49 (2003), no. 10, 2363–2371.

[7] C. G. Gunther, Comment on “estimate of channel capacity in Rayleigh fading environment”, IEEE
Trans. Veh. Technol. 45 (1996), no. 2, 401–403.

[8] G. James and M. Liebeck, Representations and Characters of Groups, Cambridge Mathematical
Textbooks, Cambridge University Press, Cambridge, 1993.
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