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JOSÉ SAÚL CAMPOS OROZCO AND ANTONI WAWRZYŃCZYK
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We introduce regularities in commutative Banach algebras in such a way that each regu-
larity defines a joint spectrum on the algebra that satisfies the spectral mapping formula.

1. Introduction

Let B be a complex commutative Banach algebra with unit element denoted by e. The
space of linear continuous functionals on B is denoted by B′.

We call regularity in B every nontrivial open subset R⊂ B which satisfies the following
conditions:

ab ∈ R iff a∈ R,b ∈ R, (1.1)

R= R#, where R# = {b∈ B | ∀ϕ∈ B′ ϕ(b)= 0=⇒ 0∈ ϕ(R)
}
. (1.2)

The set G(B) of invertible elements of B is the main example of a regularity. As was
proved in [4], the set of elements of B which are not topological zero divisors is also a
regularity.

In the present paper, we investigate a construction of joint spectra in B by means of
regularities in B.

Let σ(a)= {µ∈ C | a−µe �∈G(B)} be the ordinary spectrum in B.
Recall that according to the terminology introduced by Żelazko [6], a subspectrum τ

in B is a mapping which associates to every k-tuple (a1, . . . ,ak)∈ Bk a nonempty compact
set τ(a1, . . . ,ak) such that

(a) τ(a1, . . . ,ak)⊂∏k
i=1 σ(ai),

(b) τ(p(a1, . . . ,ak))= p(τ(a1, . . . ,ak)) for every polynomial mapping p = (p1, . . . , pm) :
Ck → Cm.

In Theorem 2.1, we prove that an arbitrary subspectrum τ in B defines a regularity Rτ
by the formula

Rτ =
{
a∈ B | 0 �∈ τ(a)

}
. (1.3)
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Lemma 2.3 used in the proof of this theorem permits us to obtain an elementary proof
of a theorem belonging to Żelazko which provides the complete description of all sub-
spectra in B.

Let M(B) be the space of multiplicative functionals on B as usually identified with the
space of maximal ideals in B. M(B) endowed with the Gelfand topology is a compact
space. For a∈ B, ϕ∈M(B), we denote by â(ϕ)= ϕ(a) the Gelfand transform of a.

Theorem of Żelazko [6] states that for every subspectrum τ in B, there is a unique
compact subset K ⊂M(B) such that

τ
(
a1, . . . ,ak

)= {(ϕ(a1
)
, . . . ,ϕ

(
ak
)) | ϕ∈ K}, (1.4)

for (a1, . . . ,ak)∈ Bk.
Our proof emphasizes the role played by the spectral mapping formula (b) while the

original elegant proof in [6] involves more advanced methods.
The principal result of the paper is Theorem 4.1 which states that for an arbitrary

regularity R the formula

σR =
(
a1, . . . ,ak

)= {(λ1, . . . ,λk
)∈ Ck | IB(a1− λ1, . . . ,ak − λk

)∩R=∅} (1.5)

defines a subspectrum in B. By IB(a1 − λ1, . . . ,ak − λk) the ideal generated in B by the
elements a1− λ1, . . . ,ak − λk is denoted.

It follows that, given an arbitrary subspectrum τ, we can construct the regularity Rτ
and then the subspectrum σRτ . Both subspectra τ and σRτ , according to Żelazko theorem,
are uniquely determined by compact subsets of M(B), say K and K1, respectively.

We show that

K1 = K̃ =
{
ϕ∈M(B) | ∀a∈ B ϕ(a)= 0 =⇒ 0∈ â(K)

}
. (1.6)

The idea of describing spectra of single elements in a (noncommutative) Banach algebra
by means of regularities appears in [1] by Kordula and Müller (see also [2]). The present
paper is concerned with the case of a commutative Banach algebra and characterizes those
regularities and corresponding spectra which admit an extension to a subspectrum.

2. Regularity corresponding to a subspectrum

Let τ be a subspectrum in a commutative unital Banach algebra B and let Rτ = {a∈ B |
0 �∈ τ(a)}.

For the completness of the paper, we include the elementary proof of the basic fact
in the following theorem.

Theorem 2.1. Rτ is a regularity.

Proof. By the property (a) of subspectra, we have∅ �= τ(a)⊂ σ(a) for an arbitrary a∈ B.
In particular,∅ �= τ(0)⊂ σ(0)= {0}. Hence τ(0)= {0} and 0 �∈ Rτ .

For |µ| > ‖a‖, the element a−µ is invertible. So 0 �∈ σ(a−µ) and 0 �∈ τ(a−µ) neither.
The set Rτ is not empty and not equal to B.
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The particular case of the spectral mapping formula (b) is the addition formula

τ(a+ b)= {λ+µ | (λ,µ)∈ τ(a,b)
}

, (2.1)

corresponding to the polynomial p(x, y)= x+ y.
On the other hand, by (a), we have

τ(a,b)⊂ σ(a)× σ(b)⊂ σ(a)×D(0,‖b‖). (2.2)

If 0 �∈ τ(a) and ‖b‖ <min{|λ| | λ∈ τ(a)}, then 0 �∈ τ(a+ b). The set Rτ is open.
We apply the spectral mapping formula in the case of p(x, y)= xy. We obtain

τ(ab)= {λµ | (λ,µ)∈ τ(a,b)
}
. (2.3)

Immediately, we conclude that 0 �∈ τ(ab) if and only if 0 �∈ τ(a) and 0 �∈ τ(b).
The set Rτ has property (1.1).
The proof of property (1.2) is based on the following two lemmas.

Lemma 2.2. (1) If (µ1, . . . ,µk) ∈ τ(a1, . . . ,ak) and b1, . . . ,bm ∈ B, then there exist λ1, . . . ,
λm ∈ C such that (

µ1, . . . ,µk,λ1, . . . ,λm
)∈ τ(a1, . . . ,ak,b1, . . . ,bm

)
. (2.4)

(2) If (0, . . . ,0)∈ τ(a1, . . . ,ak) and bi1, . . . ,bik ∈ B, 1≤ i≤m, then

(0, . . . ,0)∈ τ
( k∑

j=1

ajb
1
j , . . . ,

k∑
j=1

ajb
m
j

)
. (2.5)

Proof. (1) The spectral mapping property (b) applied to the polynomial p(x1, . . . ,xk,
y1, . . . , ym)= (x1, . . . ,xk) gives us the first formula.

(2) We can find in τ(a1, . . . ,ak,b1
1, . . . ,b1

k , . . . ,bm1 , . . . ,bmk ) an element of the form (0, . . . ,0,
λ1

1, . . . ,λ1
k, . . . ,λm1 , . . . ,λmk ) using the first part of the lemma. If we apply the spectral mapping

property to the polynomial mapping

p
(
x1, . . . ,xk, y1

1, . . . , y1
k , . . . , ym1 , . . . , ymk )=

( k∑
j=1

xj y
1
j , . . . ,

k∑
j=1

xj y
m
j

)
, (2.6)

we obtain the desired property. �

Lemma 2.3. Let (0, . . . ,0) ∈ τ(a1, . . . ,ak) for some a1, . . . ,ak ∈ B. Then there exists a max-
imal ideal J ∈M(B) such that IB(a1, . . . ,ak) ⊂ J and (0, . . . ,0) ∈ τ(b1, . . . ,bm) for arbitrary
b1, . . . ,bm ∈ J .
Proof. If b1, . . . ,bm ∈ I0 = IB(a1, . . . ,ak), then (0, . . . ,0) ∈ τ(b1, . . . ,bm) by Lemma 2.2(2).
Denote by � the family of all ideals I in B which contain I0 and have the property that
(0, . . . ,0)∈ τ(b1, . . . ,bm) for arbitrary b1, . . . ,bm ∈ I . For every linearly ordered subfamily
Iα, α∈ S of �, the set

⋃
α∈S Iα ∈ �. So by Kuratowski-Zorn lemma, the family � contains

a maximal element J . It remains to prove that J ∈M(B). Suppose that J is not maximal.
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There exists c ∈ B such that c+ λ �∈ J for all λ∈ C.
However, by Lemma 2.2(1), for arbitrary c1, . . . ,ck ∈ J , the set

δ
(
c1, . . . ,ck

)= {λ∈ C | 0∈ τ(c1, . . . ,ck,c− λ)} (2.7)

is nonempty. It is a compact set as an intersection of the compact set τ(c1, . . . ,ck,c) with a
line.

By the spectral mapping property again,

δ
(
c1, . . . ,ck,b1, . . . ,bm

)⊂ δ(c1, . . . ,ck
)∩ δ(b1, . . . ,bm

)
. (2.8)

The family of compact sets δ(c1, . . . ,ck) has the finite intersection property, so there exists
λ0 ∈ C which belongs to δ(c1, . . . ,ck) for every (c1, . . . ,ck)∈ Jk.

By Lemma 2.2(2), the ideal generated by J and c− λ0 also belongs to �, which is a
contradiction. Lemma 2.3 is proved. �

We return to the proof of Theorem 2.1.
Take a �∈ Rτ . In order to prove that R#

τ = Rτ , we must find a functional φ ∈ B′ such
that φ(a) = 0 and 0 �∈ φ(Rτ). By definition 0 ∈ τ(a) and by Lemma 2.2(2), (0, . . . ,0) ∈
τ(b1, . . . ,bm) for all b1, . . . ,bm ∈ IB(a). Lemma 2.3 says that in particular, a belongs to some
J ∈M(B) that does not intersect Rτ . J being a maximal ideal, it is equal to the kernel of a
linear (multiplicative) functional. The proof follows. �

Since the way from Lemma 2.3 to Żelazko theorem is short, we include the complete
proof of this important theorem.

Theorem 2.4 [6]. For every subspectrum τ on a commutative algebra B, there exists a
unique compact set K ⊂M(B) such that

τ
(
a1, . . . ,ak

)= {(ϕ(a1
)
, . . . ,ϕ

(
ak
)) | ϕ∈ K}. (2.9)

Proof. We define K as the set of those multiplicative functionals ϕ on B for which

(0, . . . ,0)∈ τ(b1, . . . ,bm
)

for arbitrary b1, . . . ,bm ∈ kerϕ. (2.10)

If (µ1, . . . ,µk) ∈ τ(a1, . . . ,ak), then (0, . . . ,0) ∈ τ(a1 − µ1, . . . ,ak − µk) and by Lemma 2.3,
the ideal generated by a1 − µ1, . . . ,ak − µk is contained in the kernel of a multiplicative
functional ϕ such that condition (2.10) is satisfied.

This proves that K is nonempty and

τ
(
a1, . . . ,ak

)⊂ {(ϕ(a1
)
, . . . ,ϕ

(
ak
)) | ϕ∈ K}. (2.11)

Now suppose that ϕ ∈ K and a1, . . . ,ak ∈ B. Obviously, a1 − ϕ(a1), . . . ,ak − ϕ(ak) ∈
kerϕ and (0, . . . ,0) ∈ τ(a1 − ϕ(a1), . . . ,ak − ϕ(ak)) that implies that (ϕ(a1), . . . ,ϕ(ak)) ∈
τ(a1, . . . ,ak).

It remains to prove that K is compact. Let φ �∈ K . There exist b1, . . . ,bm ∈ kerφ such
that (φ(b1), . . . ,φ(bm)) �∈ τ(b1, . . . ,bm). By the definition of the Gelfand topology and the
compactness of τ(b1, . . . ,bm), the property (ψ(b1), . . . ,ψ(bm)) �∈ τ(b1, . . . ,bm) holds for ψ
in some neighborhood of φ. The set Kc is open and K is compact. �
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3. �-rationally convex sets and regularities

Let X be a topological Hausdorff space and � a family of continuous functions on X . For
an arbitrary set C ⊂ X , we define the �-rationally convex hull of C as follows:

C̃ = {x ∈ X | ∀ f ∈� f (x)= 0=⇒ 0∈ f (C)
}
. (3.1)

The term �-rationally convex hull is justified at least when C is compact and � is a vector
space that contains constant functions.

The case is being x ∈ C̃ if and only if∣∣∣∣ fg
∣∣∣∣(x)≤ sup

y∈C

∣∣∣∣ fg
∣∣∣∣(y) (3.2)

for every f ,g ∈� with 0 �∈ g(C).
A subset C ⊂ X is �-rationally convex if C̃ = C.
The hull R# that appears in the definition of a regularity is just the B′-rationally convex

hull of a set R⊂ B. Condition (1.2) means that every regularity is B′-rationally convex.
We observe some basic properties of regularities.

Proposition 3.1. Let∅ �= R⊂ B.
(1) If R⊂ B satisfies (1.1), then it contains the set G(B) of all invertible elements in B,
(2) if R is a regularity, then

Rc =
⋃

I∈M(B),I∩R=∅
{I}. (3.3)

Proof. (1) Let b ∈ R. Then b = be ∈ R. By condition(1.1), e ∈ R. If a∈G(B), then aa−1 =
e ∈ R and again by (1.1), we obtain that a∈ R.

(2) By the definition,
⋃
I∈M(B),I∩R=∅{I} ⊂ Rc.

Let a �∈ R. By condition (1.2), there exists φ ∈ B′ such that φ(a)= 0 and 0 �∈ φ(R). In
particular, (kerφ)∩G(B)=∅. By Gleason-Kahane-Żelazko theorem, φ ∈M(B) (see [5,
page 81]) and

a∈ kerφ ⊂
⋃

I∈M(B),I∩R=∅
{I}. (3.4)

�

Proposition 3.2. A nontrivial open subset R ⊂ B is a regularity if and only if G(B) ⊂ R
and R# = R.

Proof. We show that the right-hand side condition implies the property (1.1). By con-
dition (1.2) and Gleason-Kahane-Żelazko theorem, ab �∈ R if and only if ϕ(ab) = 0 for
some ϕ ∈M(B) with kerϕ∩R =∅. This holds if and only if ϕ(a) = 0 or ϕ(b) = 0. The
proof follows. �

In general, condition (1.1) does not imply (1.2). The simplest counterexample is the
set Q = B \ {0}, where B is an integral domain.

We us observe the following hereditary property.
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Proposition 3.3. Let R be a regularity in B. Let A be a commutative unital Banach algebra
and φ : A→ B a continuous homomorphism of algebras. Then Q = φ−1(R) is a regularity in
A.

Proof. The set Q is obviously open in A. Moreover,

G(A)⊂ φ−1(G(B)
)⊂ φ−1(R)=Q. (3.5)

By Proposition 3.2, it is sufficent to prove that Q# =Q. To this end, given a �∈Q, we must
find ϕ∈ A′ such that ϕ(a)= 0 and kerϕ∩Q =∅. Since φ(a) �∈ R, there exists ψ ∈ B′ such
that ψ(φ(a))= 0 and kerψ∩R=∅. Hence, ϕ= ψ ◦φ has the desired properties. �

We denote by B̂ the set of all Gelfand transforms of elements of B.

Theorem 3.4. Let R be a regularity in B and let

K = {ϕ∈M(B) | 0 �∈ ϕ(R)
}= {ϕ∈M(B) | kerϕ∩R=∅}. (3.6)

Then K is a nonempty, compact, B̂-rationally convex set.

Proof. As we know by Proposition 3.1(2), Rc is a union of a nonempty family of maximal
ideals of B which are precisely kernels of each ϕ∈ K . Hence K is nonempty.

If ϕ∈ Kc, then â(ϕ)= 0 for some a∈ R. If at the same time ϕ∈ K̂ , we obtain 0∈ â(K).
Hence, ϕ0(a)= 0 for some ϕ0 ∈ K . This contradics the definition of K , and so K̂ \K =∅.

Take again ϕ ∈ Kc and a ∈ R such that ϕ(a) = 0. Since R is open, there exists δ >
0 such that ‖a− b‖ < δ implies that b ∈ R. The set V = {ψ ∈M(B) | |â(ψ)| < δ} is a
neighborhood of ϕ in M(B). For ψ ∈ V , we have that a−ψ(a)∈ R and ψ(a−ψ(a))= 0.
It follows that V ⊂ Kc. So Kc is open, K is closed, and hence compact. �

4. Subspectrum associated to a regularity

Let R be a regularity in B. For (a1, . . . ,ak)∈ Bk, denote

σR
(
a1, . . . ,ak

)= {(λ1, . . . ,λk
)∈ Ck | IB(a1− λ1, . . . ,ak − λk

)∩R=∅}. (4.1)

Theorem 4.1. For an arbitrary regularity R in a commutative unital Banach algebra, σR is
a subspectrum. If K = {ϕ∈M(B) | 0 �∈ ϕ(R)}, then

σR
(
a1, . . . ,ak

)= {(ϕ(a1
)
, . . . ,ϕ

(
ak
)) | ϕ∈ K}. (4.2)
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Proof. The condition (a) defining subspectrum is obviously satisfied because G(B)⊂ R.
We introduce the operator T : B→ C(K) by the formula

T(a)= â |K . (4.3)

The operator T is a continuous homomorphism of algebras and its image A is a unital
subalgebra of C(K). If a∈ R, then T(a) nowhere vanishes on K , hence it is invertible in
C(K). Conversely, if a �∈ R, then by the property R# = R and Gleason-Kahane-Żelazko
theorem, there exists ϕ ∈ K such that ϕ(a) = 0. So â vanishes at ϕ ∈ K and T(a) is not
invertible in C(K). It follows that T(R)=G(C(K))∩A.

Theorem 3.1 in [3] states that the mapping

τ
(
f1, . . . , fk

)= {(λ1, . . . ,λk
)∈ Ck | IA( f1− λ1, . . . , fk − λk

)∩G(C(K)
)=∅} (4.4)

is a subspectrum on A. We extend T on Ak in a natural way: T(a1, . . . ,ak) = (T(a1), . . . ,
T(ak)).

Notice that

σR
(
a1, . . . ,ak

)= τ(T(a1
)
, . . . ,T

(
ak
))= τ(T(a1, . . . ,ak

))
. (4.5)

Then for an arbitrary polynomial mapping p :Ck → Cm, we have

p
(
σR
(
a1, . . . ,ak

))= p
(
τ
(
T
(
a1
)
, . . . ,T

(
ak
)))= τ(p(T(a1

)
, . . . ,T

(
ak
)))

= τ(T(p(a1, . . . ,ak
)))= σR(p(a1, . . . ,ak

))
.

(4.6)

Thus the spectral mapping formula (b) holds for σR.
For every ϕ∈ K and a1, . . . ,ak ∈ B, we have

IB
(
a1−ϕ

(
a1
)
, . . . ,ak −ϕ

(
ak
))⊂ kerϕ. (4.7)

The kernel of ϕ does not intersect R, so (ϕ(a1), . . . ,ϕ(ak))∈ σR(a1, . . . ,ak).
Now suppose that (µ1, . . . ,µk) ∈ σR(a1, . . . ,ak), which implies that (0, . . . ,0) ∈ σR(a1 −

µ1, . . . ,ak −µk). By Lemma 2.3, we know that the ideal IB(a1−µ1, . . . ,ak −µk) is contained
in the kernel of some ϕ∈M(B) and 0∈ σR(b) for all b ∈ kerϕ. It follows that ϕ∈ K and
(µ1, . . . ,µk)= (ϕ(a1), . . . ,ϕ(ak)). �

The set K is exactly the compact set which describes the subspectrum σR in the sense
of Żelazko theorem (Theorem 2.4).

In Section 3, we have studied the regularity associated with a given subspectrum. Ac-
cording to the definition, the regularity associated with σR is the set R1 = {a ∈ B | 0 �∈
σR(a)}. Obviously, R ⊂ R1. If a ∈ R1, then IB(a)∩ R �= ∅. There exists b ∈ B such that
ab ∈ R. Hence a∈ R by property (1.1). We conclude that R1 = R.
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It is well known that different subspectra can lead to the same set of regular elements.
Let τ be the approximate point spectrum. The corresponding regularity Rτ is the set of
all elements of B which are not topological zero divisors while the set Kτ defining τ via
formula (2.9) is the set of maximal ideals which consists of joint topological zero divisors.

The spectrum σRτ was studied in [4] and it corresponds to K equal to the set of all
maximal ideals consisting of topological zero divisors, which in general differs from Kτ .

If K ⊂M(B) is compact and τ is the subspectrum defined by formula (2.9), then the
regularity Rτ can be described as

{
a∈ B | 0 �∈ â(K)

}
. (4.8)

Proposition 4.2. Let K1, K2 ⊂M(B) and let

Ri =
{
a∈ B | 0 �∈ â(Ki)}, (4.9)

i= 1,2. Then R1 = R2 if and only if K̃1 = K̃2.

Proof. Suppose that R1 = R2. It means that for a ∈ B, the Gelfand transform â vanishes
on K1 if and only if it vanishes on K2. If â(ϕ)= 0, then â(K1) contains zero if and only if
â(K2) does. Hence K̃1 = K̃2.

Now suppose that K̃1 = K̃2 and that a �∈ R1. It follows that â(ϕ)= 0 for some ϕ∈ K1 ⊂
K̃2. We obtain 0∈ â(K2). So a �∈ R2. This shows that Rc1 ⊂ Rc2, and R2 ⊂ R1. Similarly, we
can prove the opposite. Then R1 = R2. �

For a given regularity R in B, the subspectrum σR is the largest subspectrum having R
as the corresponding regularity.

Proposition 4.3. Let R be a regularity and let τ be a subspectrum such that Rτ = R. Then
for every k-tuple (a1, . . . ,ak)∈ Bk,

τ
(
a1, . . . ,ak

)⊂ σR(a1, . . . ,ak
)
. (4.10)

Proof. If R is a regularity, then according to Theorem 4.1,

σR
(
a1, . . . ,ak

)= {(ϕ(a1
)
, . . . ,ϕ

(
ak
)) | ϕ∈ K}, (4.11)

where K = K̃ as Theorem 3.4 asserts.
If τ is a subspectrum of the form

τ
(
a1, . . . ,ak

)= {(ϕ(a1
)
, . . . ,ϕ

(
ak
)) | ϕ∈ K1

}
(4.12)

and Rτ = R, then K̃1 = K̃ = K by Proposition 4.2. In particular, K1 ⊂ K and

τ
(
a1, . . . ,ak

)⊂ σR(a1, . . . ,ak
)
. (4.13)

�
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