EXPANSION OF α -OPEN SETS AND DECOMPOSITION OF α -CONTINUOUS MAPPINGS

M. RAJAMANI AND K. BAGYALAKSHMI

Received 6 November 2004 and in revised form 22 June 2005

We introduce the notions of expansion \mathcal{A}_{α} of α -open sets and \mathcal{A}_{α} -expansion α continuous mappings in topological spaces. The main result of this paper is that a map f is α -continuous if and only if it is \mathcal{A}_{α} -expansion α -continuous and \mathcal{B}_{α} -expansion α continuous, where \mathcal{A}_{α} , \mathcal{B}_{α} are two mutually dual expansions.

1. Introduction

In 1965, Njastad [2] introduced the notion of α -sets in topological space. In 1983, Mashhour et al. [1] introduced, with the help of α -sets, a weak form of continuity which they termed as α -continuity. Noiri [3] introduced the same concept, but under the name strong semicontinuity. Noiri [4] defined with the aid of α -sets a new weakened form of continuous mapping called weakly α -continuous mapping. Sen and Bhattacharyya [5] introduced another new weakened form of continuity called weak * α -continuity and proved that a mapping is α -continuous if and only if it is weakly α -continuous and weak * α -continuous.

In this paper, we give a general setting for such decompositions of α -continuity by using expansion of α -open sets, whereas in [6], Tong used expansion of open sets to give a general setting for the decomposition of continuous mapping into weakly continuous and weak * continuous mappings.

2. Preliminaries

Throughout this paper, (X, τ) , (Y, σ) , and so forth (or simply X, Y, etc.) will always denote topological spaces. The family of all α -open sets in X is denoted by τ_{α} .

We recall the definition of weakly α -continuous and weak * α -continuous mappings.

Definition 2.1 [1]. A mapping $f : X \to Y$ is said to be α -continuous if for each open set V in Y, $f^{-1}(V) \in \tau_{\alpha}$.

Definition 2.2 [3]. A mapping $f : X \to Y$ is said to be weakly α -continuous if for each x in X and for each open set V in Y containing f(x), there exists a set $U \in \tau_{\alpha}$ containing x such that $f(U) \subseteq \operatorname{Cl} V$, where $\operatorname{Cl} V$ means the closure of V.

Copyright © 2005 Hindawi Publishing Corporation

International Journal of Mathematics and Mathematical Sciences 2005:16 (2005) 2575–2578 DOI: 10.1155/IJMMS.2005.2575

PROPOSITION 2.3 [5]. A mapping $f : X \to Y$ is weakly α -continuous if and only if $f^{-1}(V) \subseteq \alpha$ int $[f^{-1}(\operatorname{Cl} V)]$, for every open set V in Y, where α int(A) means α -interior of A.

Definition 2.4 [5]. A mapping $f : X \to Y$ is said to be weak * α -continuous if and only if for every open set $V \subseteq Y$, f^{-1} (FrV) is α -closed in X, where $FrV = ClV \setminus V$ is the boundary operator for open sets.

3. Decompositions of α -continuity

Definition 3.1. Let (X, τ) be a topological space, let 2^x be the set of all subsets in *X*. A mapping $\mathcal{A}_{\alpha} : \tau_{\alpha} \to 2^x$ is said to be an expansion on *X* if $U \subseteq \mathcal{A}_{\alpha}U$ for each $U \in \tau_{\alpha}$.

Remark 3.2. If γ_{α} is the identity expansion, then γ_{α} is defined by $\gamma_{\alpha}U = U$. μ_{α} defined by $\mu_{\alpha}U = (\alpha \operatorname{int} U \cap U^c)^c$ is an expansion. $\operatorname{Cl}_{\alpha}$ defined by $\operatorname{Cl}_{\alpha}U = \operatorname{Cl}U$ and $\mathcal{F}_{\alpha}U$ defined by $\mathcal{F}_{\alpha}U = (\operatorname{Fr}U)^c$ are expansions.

Definition 3.3 [6]. Let (X, τ) be a topological space. A pair of expansions \mathcal{A} and \mathcal{B} on X is said to be mutually dual if $\mathcal{A}U \cap \mathcal{B}U = U$ for each $U \in \tau$.

Remark 3.4. Let (X, τ) be a topological space. Then Cl_{α} and \mathcal{F}_{α} are mutually dual. This follows from [6, Proposition 2].

Example 3.5. Let $X = \{a, b, c\}$ with topologies $\tau = \{\phi, \{a\}, X\}, \tau_{\alpha} = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}$. $\mathcal{A}_{\alpha}(\phi) = \phi, \mathcal{A}_{\alpha}\{a\} = \{a\}, \mathcal{A}_{\alpha}\{a, b\} = \{a, b\}, \mathcal{A}_{\alpha}\{a, c\} = X$, and $\mathcal{A}_{\alpha}(X) = X$. Then \mathcal{A}_{α} is an expansion. Let $\mathcal{B}_{1}(\phi) = X, \mathcal{B}_{1}\{a\} = \{a, c\}, \mathcal{B}_{1}\{a, b\} = X, \mathcal{B}_{1}\{a, c\} = \{a, c\},$ and $\mathcal{B}_{1}(X) = X. \mathcal{B}_{2}(\phi) = X, \mathcal{B}_{2}\{a\} = \{a, b\}, \mathcal{B}_{2}\{a, b\} = \{a, b\}, \mathcal{B}_{2}\{a, c\} = \{a, c\},$ and $\mathcal{B}_{2}(X) = X$. Then $\mathcal{B}_{1}, \mathcal{B}_{2}$ are both mutually dual to \mathcal{A}_{α} .

PROPOSITION 3.6. Let (X, τ) be a topological space. Then γ_{α} and μ_{α} are mutually dual. *Proof.*

$$(\gamma_{\alpha}U) \cap (\mu_{\alpha}U) = U \cap (\alpha \operatorname{int} U \cap U^{c})^{c}$$

= $(\alpha \operatorname{int} U) \cap (\alpha \operatorname{int} U \cap U^{c})^{c}$
= $(\alpha \operatorname{int} U) \cap ((\alpha \operatorname{int} U)^{c} \cup U)$ (3.1)
= $((\alpha \operatorname{int} U) \cap (\alpha \operatorname{int} U)^{c}) \cup (\alpha \operatorname{int} U \cap U)$
= $\phi \cup U = U.$

Definition 3.7. Let (X, τ) and (Y, σ) be two topological spaces and let A_{α} be an expansion on Y. Then the mapping $f : X \to Y$ is said to be \mathcal{A}_{α} -expansion α -continuous if $f^{-1}(V) \subseteq \alpha$ int $[f^{-1}(\mathcal{A}_{\alpha}V)]$, for each $V \in \sigma$.

Remark 3.8. A weakly α -continuous mapping $f : X \to Y$ can be renamed as Cl_{α} -expansion α -continuous mapping.

THEOREM 3.9. Let (X, τ) and (Y, σ) be two topological spaces and \mathcal{A}_{α} , \mathfrak{B}_{α} are two mutually dual expansions on Y. Then the mapping $f : X \to Y$ is α -continuous if and only if f is \mathcal{A}_{α} -expansion α -continuous and \mathfrak{B}_{α} -expansion α -continuous.

Proof. Necessity. Suppose that f is α -continuous. Since \mathcal{A}_{α} , \mathcal{B}_{α} are mutually dual on Y, $\mathcal{A}_{\alpha}V \cap \mathcal{B}_{\alpha}V = V$ for each $V \in \sigma$.

Then

$$f^{-1}(V) = f^{-1}(\mathscr{A}_{\alpha}V \cap \mathscr{B}_{\alpha}V)$$

= $f^{-1}(\mathscr{A}_{\alpha}V) \cap f^{-1}(\mathscr{B}_{\alpha}V).$ (3.2)

Since *f* is α -continuous, $f^{-1}(V) = \alpha \operatorname{int} f^{-1}(V)$. Therefore,

$$f^{-1}(V) = \alpha \operatorname{int} f^{-1}(V) = \alpha \operatorname{int} (f^{-1}) (\mathscr{A}_{\alpha} V \cap \mathscr{B}_{\alpha} V)$$

= $\alpha \operatorname{int} f^{-1} (\mathscr{A}_{\alpha} V) \cap \alpha \operatorname{int} f^{-1} (\mathscr{B}_{\alpha} V).$ (3.3)

This implies that $f^{-1}(V) \subseteq \alpha$ int $f^{-1}(\mathcal{A}_{\alpha}V)$ and $f^{-1}(V) \subseteq \alpha$ int $f^{-1}(\mathcal{B}_{\alpha}V)$. This shows that f is \mathcal{A}_{α} -expansion α -continuous and \mathcal{B}_{α} -expansion α -continuous.

Sufficiency. Since f is \mathcal{A}_{α} -expansion α -continuous, $f^{-1}(V) \subseteq \alpha$ int $f^{-1}(\mathcal{A}_{\alpha}V)$ for each $V \in \sigma$. Since f is \mathcal{B}_{α} -expansion α -continuous, $f^{-1}(V) \subseteq \alpha$ int $f^{-1}(\mathcal{B}_{\alpha}V)$ for each $V \in \sigma$. As \mathcal{A}_{α} and \mathcal{B}_{α} are two mutually dual expansions on Y, $\mathcal{A}_{\alpha}V \cap \mathcal{B}_{\alpha}V = V$,

$$f^{-1}(V) = f^{-1}(\mathscr{A}_{\alpha}V \cap \mathscr{B}_{\alpha}V) = f^{-1}(\mathscr{A}_{\alpha}V) \cap f^{-1}(\mathscr{B}_{\alpha}V),$$

$$\alpha \operatorname{int} f^{-1}(V) = \alpha \operatorname{int} f^{-1}(\mathscr{A}_{\alpha}V) \cap \alpha \operatorname{int} f^{-1}(\mathscr{B}_{\alpha}V) \supseteq f^{-1}(V) \cap f^{-1}(V) = f^{-1}(V).$$

(3.4)

This implies that $f^{-1}(V) \subseteq \alpha$ int $f^{-1}(V)$. Always, α int $f^{-1}(V) \subseteq f^{-1}(V)$. So $f^{-1}(V) = \alpha$ int $f^{-1}(V)$. Therefore, $f^{-1}(V)$ is an α -open set in X for each $V \in \sigma$. Hence f is α -continuous.

Definition 3.10. Let (X, τ) and (Y, σ) be two topological spaces, \mathfrak{B}_{α} an expansion on Y. Then a mapping $f: X \to Y$ is said to be α -closed \mathfrak{B}_{α} -continuous if $f^{-1}((\mathfrak{B}_{\alpha}V)^c)$ is an α -closed set in X for each $V \in \sigma$.

Remark 3.11. A weak * α -continuous mapping can be renamed as α -closed \mathcal{F}_{α} continuous mapping since $(\mathcal{F}_{\alpha}V)^c = (FrV)^c = FrV$.

PROPOSITION 3.12. An α -closed \mathcal{B}_{α} -continuous mapping is \mathcal{B}_{α} -expansion α -continuous.

Proof. First, we prove that $(f^{-1}((\mathfrak{B}_{\alpha}V)^{c}))^{c} = f^{-1}(\mathfrak{B}_{\alpha}V)$. Let $x \in (f^{-1}((\mathfrak{B}_{\alpha}V)^{c}))^{c}$. Then $x \notin (f^{-1}(\mathfrak{B}_{\alpha}V)^{c})$. Hence $f(x) \notin (\mathfrak{B}_{\alpha}V)^{c}$, $f(x) \in \mathfrak{B}_{\alpha}V$, and $x \in f^{-1}(\mathfrak{B}_{\alpha}V)$.

Conversely, if $x \in f^{-1}(\mathfrak{B}_{\alpha}V)$, then $f(x) \in \mathfrak{B}_{\alpha}V$. Hence $f(x) \notin (\mathfrak{B}_{\alpha}V)^{c}$, $x \notin f^{-1}(\mathfrak{B}_{\alpha}V)^{c}$, $x \in (f^{-1}((\mathfrak{B}_{\alpha}V)^{c}))^{c}$. Therefore, $(f^{-1}((\mathfrak{B}_{\alpha}V)^{c}))^{c} = f^{-1}(\mathfrak{B}_{\alpha}V)$.

Since $f^{-1}((\mathfrak{B}_{\alpha}V)^{c})$ is an α -closed set in X, $(f^{-1}((\mathfrak{B}_{\alpha}V)^{c}))^{c}$ is an α -open set in X. Hence $f^{-1}(\mathfrak{B}_{\alpha}V)$ is an α -open in X and $f^{-1}(\mathfrak{B}_{\alpha}V) = \alpha \inf f^{-1}(\mathfrak{B}_{\alpha}V)$.

Since \mathscr{B}_{α} is an expansion on $Y, V \subseteq \mathscr{B}_{\alpha}V$, we have $f^{-1}(V) \subseteq f^{-1}(\mathscr{B}_{\alpha}V) = \alpha \operatorname{int} f^{-1}(\mathscr{B}_{\alpha}V)$. ($\mathscr{B}_{\alpha}V$). Therefore, f is \mathscr{B}_{α} -expansion α -continuous.

By Theorem 3.9 and Proposition 3.12, we have the following corollary.

COROLLARY 3.13. Let (X, τ) and (Y, σ) be two topological spaces and \mathcal{A}_{α} , \mathcal{B}_{α} are two mutually dual expansions on Y. Then a mapping $f : X \to Y$ is α -continuous if and only if f is \mathcal{A}_{α} -expansion α -continuous, and α -closed \mathcal{B}_{α} -continuous.

By Remarks 3.8, 3.11, and by the above corollary, we have the following corollary.

COROLLARY 3.14 [5]. A mapping is α -continuous if and only if it is weakly α -continuous and weak * α -continuous.

References

- A. S. Mashhour, I. A. Hasanein, and S. N. El-Deeb, α-continuous and α-open mappings, Acta Math. Hungar. 41 (1983), no. 3-4, 213–218.
- [2] O. Njastad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), no. 3, 961–970.
- [3] T. Noiri, A function which preserves connected spaces, Časopis Pěst. Mat. 107 (1982), no. 4, 393– 396, 428.
- [4] _____, *Weakly* α*-continuous functions*, Int. J. Math. Math. Sci. **10** (1987), no. 3, 483–490.
- [5] A. K. Sen and P. Bhattacharyya, On weakly α-continuous functions, Tamkang J. Math. 24 (1993), no. 4, 445–460.
- [6] J. C. Tong, Expansion of open sets and decomposition of continuous mappings, Rend. Circ. Mat. Palermo (2) 43 (1994), no. 2, 303–308.

M. Rajamani: Post Graduate and Research Department of Mathematics, N.G.M. College (Autonomous), Bharathiar University, Coimbatore, Pollachi-642 001, Tamil Nadu, India *E-mail address*: rajkarthy@yahoo.com

K. Bagyalakshmi: Post Graduate and Research Department of Mathematics, N.G.M. College (Autonomous), Bharathiar University, Coimbatore, Pollachi-642 001, Tamil Nadu, India

E-mail address: rajkarthy@yahoo.com