ON SOME EQUATIONS RELATED TO DERIVATIONS IN RINGS

JOSO VUKMAN AND IRENA KOSI-ULBL

Received 30 December 2004 and in revised form 21 July 2005

Let m and n be positive integers with $m+n \neq 0$, and let R be an (m+n+2)!-torsion free semiprime ring with identity element. Suppose there exists an additive mapping D: $R \to R$, such that $D(x^{m+n+1}) = (m+n+1)x^mD(x)x^n$ is fulfilled for all $x \in R$, then D is a derivation which maps R into its center.

Throughout this paper, R will represent an associative ring with center Z(R). A ring R is *n*-torsion free, where n > 1 is an integer, in case nx = 0, $x \in R$ implies x = 0. As usual the commutator xy - yx will be denoted by [x, y]. We will use basic commutator identities [xy,z] = [x,z]y + x[y,z] and [x,yz] = [x,y]z + y[x,z]. Recall that a ring R is prime if aRb = (0) implies that either a = 0 or b = 0, and is semiprime if aRa = (0) implies a = 0. An additive mapping $D: R \to R$ is called a derivation if D(xy) = D(x)y + xD(y)for all pairs $x, y \in R$, and is called a Jordan derivation in case $D(x^2) = D(x)x + xD(x)$ for all $x \in R$. Every derivation is a Jordan derivation. The converse is in general not true. A classical result of Herstein [11, Theorem 3.1] asserts that any Jordan derivation on a 2-torsion free prime ring is a derivation (see [7] for an alternative proof). Cusack [9, Corollary 5] has generalized Herstein's theorem to 2-torsion free semiprime rings (see [4] for an alternative proof). A mapping F of a ring R into itself is called commuting (centralizing) on R in case [F(x),x] = 0 ($[F(x),x] \in Z(R)$) holds for all $x \in R$. The theory of commuting and centralizing mappings was initiated by a result of Posner [12, Theorem 2] (Posner's second theorem), which states that the existence of a nonzero centralizing derivation $D: R \to R$, where R is a prime ring, forces the ring to be commutative.

Vukman has proved the following result.

THEOREM 1 [13, Theorem 3]. Let R be a 2- and 3-torsion free noncommutative prime ring with identity element, and let $D: R \to R$ be an additive mapping such that $D(x^3) = 3xD(x)x$ holds for all $x \in R$. In this case D = 0.

Let us point out that any commuting derivation on an arbitrary ring satisfies the relation $D(x^3) = 3xD(x)x$. Theorem 1 was the motivation for the result.

Copyright © 2005 Hindawi Publishing Corporation International Journal of Mathematics and Mathematical Sciences 2005:17 (2005) 2703–2710 DOI: 10.1155/IJMMS.2005.2703

THEOREM 2. For integers m, n with $m \ge 0$, $n \ge 0$, and $m + n \ne 0$, let R be an (m + n + 2)!-torsion free semiprime ring with identity element. Suppose there exists an additive mapping $D: R \to R$, such that $D(x^{m+n+1}) = (m+n+1)x^mD(x)x^n$ is fulfilled for all $x \in R$. In this case, D is a derivation, which maps R into its center. In case R is a noncommutative prime ring, we have D = 0.

In case m = 1, n = 0 (we adopt the convention $x^0 = e$, for all $x \in R$, where e denotes the identity element), we have an additive mapping satisfying the relation $D(x^2) = 2xD(x)$, $x \in R$. Such mappings are called left Jordan derivations (see [8, 10, 15]). Brešar and Vukman [8, Corollary1.3] have proved that the existence of a nonzero Jordan derivation on a 2- and 3-torsion free prime ring forces the ring to be commutative. For the proof of Theorem 2, we need Theorem 4, which is of independent interest. For the proof of Theorem 4 the lemma below will be needed. We refer the reader to [3] for the definitions and an account of the theory of the extended centroid and central closure as well as related topics and to [6] for an introductory survey on functional identities.

LEMMA 3. Let R be a 2-torsion free prime ring and let A be its central closure. Suppose that an additive mapping $F: R \to A$ satisfies [[F(x), x], x] = 0 for all $x \in R$. Then, [F(x), x] = 0 holds for all $x \in R$.

Proof. In the case when F maps into R, the lemma was first proved by Brešar in [5, Theorem 2]. Fortunately, the same proof works in the case when F maps into A (on the other hand, see, e.g., [2] for a more general result).

THEOREM 4. Let R be a 2-torsion free semiprime ring. Suppose that an additive mapping $F: R \to R$ satisfies [[F(x), x], x] = 0 for all $x \in R$. Then, [F(x), x] = 0 holds for all $x \in R$.

Proof. Since R is semiprime, there exists a family of prime ideals $\{P_{\alpha}; \alpha \in A\}$ such that $\cap_{\alpha}P_{\alpha}=(0)$. Moreover, without loss of generality, we may assume that the prime rings $R_{\alpha}=R/P_{\alpha}$ are 2-torsion free (see, e.g., [1, page 459]). Now fix some $P=P_{\alpha}, \alpha \in A$. The theorem will be proved by showing that $[F(x),x] \in P$ for every $x \in R$. Given $x \in R$, we will write \overline{x} for the coset $x+P \in R/P$. By C, we denote the extended centroid of the prime ring R/P, and by A the central closure of R/P. One can consider A as a vector space over the field C. Since C can be regarded as a subspace of A, there exists a subspace B of A such that A=B+C. We denote by π the canonical projection of A onto B. Substituting x+p for x in [F(x),x],x]=0, it follows at once that $[F(p),x],x]\in P$ for all $x\in R$, $p\in P$, that is, $[F(p),\overline{x}],\overline{x}]=0$. Using Posner's theorem [12, Theorem 2] (or just [5, Lemma 2] for that matter), it follows that $[F(p),\overline{x}]=0$ for all $x\in R$, $p\in P$, that is, $\overline{F(p)}$ lies in the center of R/P. In particular, $\pi F(p)=0$. Using this, we see that the mapping $\overline{F}:R/P\to A$, $\overline{F(x)}=\pi F(x)$ is well defined. Note that \overline{F} is additive and satisfies $[[\overline{F}(\overline{x}),\overline{x}],\overline{x}]=0$ for all $x\in R$. But then the lemma shows that $[\overline{F}(\overline{x}),\overline{x}]=0$ for all $x\in R$, which implies that $[F(x),x]\in P$. The proof of the theorem is complete.

Theorem 4 generalizes Theorem 2 proved by Brešar [5] and Theorem 2 proved by Vukman in [14].

Proof of Theorem 2. From the relation

$$D(x^{m+n+1}) = (m+n+1)x^m D(x)x^n, \quad x \in R,$$
(1)

it follows immediately that

$$D(e) = 0, (2)$$

where e denotes the identity element. Putting x + e for x in the relation (1) and using (2), we obtain

$$\sum_{i=0}^{m+n+1} {m+n+1 \choose i} D(x^{m+n+1-i})$$

$$= (m+n+1) \left(\sum_{i=0}^{m} {m \choose i} x^{m-i} \right) D(x) \left(\sum_{i=0}^{n} {n \choose i} x^{n-i} \right), \quad x \in R.$$
(3)

Using (1) and collecting together terms of (3) involving the same number of factors of e, we obtain

$$\sum_{i=1}^{m+n} f_i(x, e) = 0, \quad x \in R,$$
(4)

where $f_i(x,e)$ stands for the expression of terms involving *i* factors of *e*.

Replacing x by x + 2e, x + 3e,...,x + (m + n)e in turn in (1) and expressing the resulting system of m + n homogeneous equations, we see that the coefficient matrix of the system is a van der Monde matrix

$$\begin{bmatrix} 1 & 1 & \cdots & 1 \\ 2 & 2^2 & \cdots & 2^{m+n} \\ \vdots & \vdots & \vdots & \vdots \\ m+n & (m+n)^2 & \cdots & (m+n)^{m+n} \end{bmatrix}.$$
 (5)

Since the determinant of the matrix is different from zero, it follows that the system has only a trivial solution.

In particular,

$$f_{m+n-1}(x,e) = \binom{m+n+1}{m+n-1} D(x^2) - (m+n+1) \left(\binom{m}{m-1} \binom{n}{n} x D(x) + \binom{m}{m} \binom{n}{n-1} D(x) x \right) = 0, \quad x \in R,$$
(6)

$$f_{m+n-2}(x,e) = \binom{m+n+1}{m+n-2} D(x^3) - (m+n+1) \left(\binom{m}{m-2} \binom{n}{n} x^2 D(x) + \binom{m}{m-1} \binom{n}{n-1} x D(x) x \right) + \binom{m}{m} \binom{n}{n-2} D(x) x^2 = 0, \quad x \in \mathbb{R}.$$
 (7)

Since R is a (m+n+2)!-torsion free ring, the above equations reduce to

$$(m+n)D(x^2) = 2mxD(x) + 2nD(x)x, \quad x \in R,$$
 (8)

$$(m+n)(m+n-1)D(x^3) = 3m(m-1)x^2D(x) + 6mnxD(x)x + 3n(n-1)D(x)x^2, \quad x \in R,$$
(9)

respectively. We intend to prove that the mapping $x \mapsto [D(x), x]$ is commuting on R. For this purpose, we write in x + y for x in (8), which gives

$$(m+n)D(xy+yx) = 2mxD(y) + 2myD(x) + 2nD(x)y + 2nD(y)x, \quad x, y \in R.$$
 (10)

Putting $y = (m+n)x^2$ in the relation above, we obtain

$$(m+n)^2 D(x^3) = m(m+n)xD(x^2) + m(m+n)x^2 D(x) + n(m+n)D(x)x^2 + n(m+n)D(x^2)x, \quad x \in R.$$
(11)

According to (8), the above relation reduces to

$$(m+n)^2 D(x^3) = (3m^2 + mn)x^2 D(x) + 4mnxD(x)x + (3n^2 + mn)D(x)x^2, \quad x \in \mathbb{R}.$$
(12)

Subtracting (9) from (12), we obtain

$$(m+n)D(x^3) = m(n+3)x^2D(x) - 2mnxD(x)x + n(m+3)D(x)x^2, \quad x \in \mathbb{R}.$$
 (13)

From the above relation, we obtain

$$(m+n)^{2}D(x^{3}) = (m+n)m(n+3)x^{2}D(x) - 2(m+n)mnxD(x)x + (m+n)n(m+3)D(x)x^{2}, \quad x \in R.$$
 (14)

Subtracting (14) from (12), one obtains

$$mn(m+n+2)x^{2}D(x) - 2mn(m+n+2)xD(x)x + mn(m+n+2)D(x)x^{2} = 0, \quad x \in \mathbb{R}.$$
(15)

Since R is (m+n+2)!-torsion free ring, the above relation reduces to

$$D(x)x^{2} + x^{2}D(x) - 2xD(x)x = 0, \quad x \in \mathbb{R},$$
(16)

which can be written in the form

$$[[D(x),x],x] = 0, \quad x \in R.$$

$$(17)$$

Now Theorem 4 makes it possible to conclude that

$$[D(x), x] = 0, \quad x \in R. \tag{18}$$

In other words, D is commuting on R. The fact that D is commuting on R makes it possible to replace D(x)x in (8) by xD(x). The relation (8) reduces to $D(x^2) = 2xD(x)$, $x \in R$. Using again the fact that D is commuting, we obtain $D(x^2) = D(x)x + xD(x)$, $x \in R$. R. In other words, D is a Jordan derivation. Let us recall that any Jordan derivation on a 2-torsion free semiprime ring is a derivation. It is well known and easy to prove that any commuting derivation on a semiprime ring R maps R into Z(R) (see [15]). In case R is a noncommutative prime ring, Posner's second theorem completes the proof of the theorem.

In the proof of Theorem 2, we met an additive mapping D satisfying the relation below

$$(m+n)D(x^{2}) = 2mD(x)x + 2nxD(x).$$
(19)

In case n = 0 and R is an m-torsion free ring, we have an additive mapping D satisfying the relation $D(x^2) = 2xD(x)$, $x \in R$. In other words, D is a left Jordan derivation. It was proved (see [15, Theorem 1]) that left Jordan derivations on a 2- and 3-torsion free semiprime ring are derivations which map the ring into its center. These observations lead to the conjecture.

Conjecture 5. Let R be a semiprime ring with suitable torsion restrictions. Suppose there exists an additive mapping $D: R \to R$ satisfying the relation

$$(m+n)D(x^2) = 2nD(x)x + 2mxD(x),$$
 (20)

for all $x \in R$ and some integers $m \ge 0$, $n \ge 0$, $m + n \ne 0$. In case $m \ne n$, the mapping D is a *derivation which maps* R *into* Z(R).

Our next result is related to the conjecture above.

Theorem 6. Let R be a 2, m, n, m + n, and |m - n|-torsion free semiprime ring, and let $D: R \rightarrow R$ be an additive mapping satisfying the relation

$$(m+n)D(xy) = 2mD(x)y + 2nxD(y),$$
 (21)

for all pairs $x, y \in R$ and some integers $m \ge 0$, $n \ge 0$, $m + n \ne 0$. In case $m \ne n$, we have D=0.

Proof. We have the relation

$$(m+n)D(xy) = 2mD(x)y + 2nxD(y), \quad x, y \in R.$$
(22)

We compute the expression $(m+n)^2D(xyx)$ in two ways. First we obtain (using (22))

$$(m+n)^{2}D(x(yx)) = 2m(m+n)D(x)yx + 2n(m+n)xD(yx)$$

$$= 2m(m+n)D(x)yx + 2nx(2mD(y)x + 2nyD(x)), \quad x, y \in R.$$
(23)

Thus we have

$$(m+n)^{2}D(xyx) = 2m(m+n)D(x)yx + 4mnxD(y)x + 4n^{2}xyD(x), \quad x, y \in R.$$
 (24)

On the other hand, we have (using (22))

$$(m+n)^{2}D((xy)x) = 2m(m+n)D(xy)x + 2n(m+n)xyD(x)$$

$$= 2m(2mD(x)y + 2nxD(y))x + 2n(m+n)xyD(x), \quad x, y \in R.$$
(25)

Thus we have

$$(m+n)^{2}D(xyx) = 4m^{2}D(x)yx + 4mnxD(y)x + 2n(m+n)xyD(x), \quad x, y \in R.$$
 (26)

Subtracting the relation (24) from the relation (26), we obtain

$$m(m-n)D(x)yx + n(m-n)xyD(x) = 0, \quad x, y \in R,$$
 (27)

which reduces to

$$mD(x)yx + nxyD(x) = 0, \quad x, y \in R.$$
 (28)

Putting yx for y in the relation (28), we obtain

$$mD(x)yx^2 + nxyxD(x) = 0, \quad x, y \in R.$$
(29)

Right multiplication of the relation (28) by *x* gives

$$mD(x)yx^{2} + nxyD(x)x = 0, \quad x, y \in R.$$
 (30)

Subtracting the relation (29) from the relation (30), we obtain

$$n(xy(D(x)x - xD(x))) = 0, \quad x, y \in R,$$
 (31)

which gives

$$xy[D(x),x] = 0, \quad x,y \in R.$$
 (32)

Writing in the relation (32) D(x)y for y, then multiplying the relation (32) by D(x) from the left-hand side and comparing the relations so obtained, we obtain

$$[D(x),x]y[D(x),x] = 0, \quad x,y \in R,$$
 (33)

whence it follows

$$[D(x),x] = 0, \quad x \in R, \tag{34}$$

by semiprimeness of R. Putting y = x in the relation (22) and using the relation (34),

we obtain $D(x^2) = 2D(x)x$, $x \in R$, which can be written in the form

$$D(x^2) = D(x)x + xD(x), \quad x \in R,$$
(35)

because of (34). In other words, D is a Jordan derivation. As we have already mentioned, any Jordan derivation on a 2-torsion free semiprime ring is a derivation. Now one can replace D(xy) with D(x)y + xD(y) in the left-hand side of (22), which gives

$$D(x)y = xD(y), \quad x, y \in R. \tag{36}$$

Substituting zx for x in (36) gives

$$D(z)xy = 0, \quad x, y, z \in R,$$
(37)

whence it follows first D(z)xD(z) = 0 for all $x, z \in R$, and then by semiprimeness D = 0. The proof of the theorem is complete. П

Acknowledgments

The authors would like to thank Professor Matej Brešar for helpful information on the subject of this paper. This research has been supported by the Research Council of Slovenia.

References

- W. E. Baxter and W. S. Martindale, III, Jordan homomorphisms of semiprime rings, J. Algebra 56 (1979), no. 2, 457-471.
- K. I. Beidar, Y. Fong, P.-H. Lee, and T.-L. Wong, On additive maps of prime rings satisfying the [2] Engel condition, Comm. Algebra 25 (1997), no. 12, 3889–3902.
- [3] K. I. Beidar, W. S. Martindale, III, and A. V. Mikhalev, Rings with Generalized Identities, Monographs and Textbooks in Pure and Applied Mathematics, vol. 196, Marcel Dekker, New York, 1996.
- [4] M. Brešar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), no. 4,
- _____, On a generalization of the notion of centralizing mappings, Proc. Amer. Math. Soc. 114 (1992), no. 3, 641-649.
- _____, Functional identities: a survey, Algebra and Its applications (Athens, Ohio, 1999), Contemp. Math., vol. 259, American Mathematical Society, Rhode Island, 2000, pp. 93–109.
- M. Brešar and J. Vukman, Jordan derivations on prime rings, Bull. Austral. Math. Soc. 37 (1988), [7] no. 3, 321-322.
- , On left derivations and related mappings, Proc. Amer. Math. Soc. 110 (1990), no. 1, 7-16.
- [9] J. M. Cusack, Jordan derivations on rings, Proc. Amer. Math. Soc. 53 (1975), no. 2, 321–324.
- [10] Q. Deng, On Jordan left derivations, Math. J. Okayama Univ. 34 (1992), 145–147 (1994).
- [11] I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104-1110.
- [12] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093–1100.
- J. Vukman, Commuting and centralizing mappings in prime rings, Proc. Amer. Math. Soc. 109 [13] (1990), no. 1, 47–52.
- [14] ______, Derivations on semiprime rings, Bull. Austral. Math. Soc. 53 (1996), no. 3, 353–359.

2710 On some equations related to derivations in rings

[15] ______, On some additive mappings in semiprime rings and Banach algebras, Aequationes Math. 58 (1999), 1–10.

Joso Vukman: Department of Mathematics, Faculty of Education (PEF), University of Maribor, Koroška 160, 2000 Maribor, Slovenia

E-mail address: joso.vukman@uni-mb.si

Irena Kosi-Ulbl: Department of Mathematics, Faculty of Education (PEF), University of Maribor, Koroška 160, 2000 Maribor, Slovenia

E-mail address: irena.kosi@uni-mb.si