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Let m and n be positive integers with m + n �= 0, and let R be an (m + n + 2)!-torsion
free semiprime ring with identity element. Suppose there exists an additive mapping D :
R→ R, such that D(xm+n+1) = (m+ n+ 1)xmD(x)xn is fulfilled for all x ∈ R, then D is a
derivation which maps R into its center.

Throughout this paper, R will represent an associative ring with center Z(R). A ring R
is n-torsion free, where n > 1 is an integer, in case nx = 0, x ∈ R implies x = 0. As usual
the commutator xy− yx will be denoted by [x, y]. We will use basic commutator iden-
tities [xy,z]= [x,z]y + x[y,z] and [x, yz]= [x, y]z+ y[x,z]. Recall that a ring R is prime
if aRb = (0) implies that either a = 0 or b = 0, and is semiprime if aRa = (0) implies
a = 0. An additive mapping D : R→ R is called a derivation if D(xy) = D(x)y + xD(y)
for all pairs x, y ∈ R, and is called a Jordan derivation in case D(x2)=D(x)x+ xD(x) for
all x ∈ R. Every derivation is a Jordan derivation. The converse is in general not true.
A classical result of Herstein [11, Theorem 3.1] asserts that any Jordan derivation on a
2-torsion free prime ring is a derivation (see [7] for an alternative proof). Cusack [9,
Corollary 5] has generalized Herstein’s theorem to 2-torsion free semiprime rings (see
[4] for an alternative proof). A mapping F of a ring R into itself is called commuting
(centralizing) on R in case [F(x),x] = 0 ([F(x),x] ∈ Z(R)) holds for all x ∈ R. The the-
ory of commuting and centralizing mappings was initiated by a result of Posner [12,
Theorem 2] (Posner’s second theorem), which states that the existence of a nonzero cen-
tralizing derivation D : R→ R, where R is a prime ring, forces the ring to be commuta-
tive.

Vukman has proved the following result.

Theorem 1 [13, Theorem 3]. Let R be a 2- and 3-torsion free noncommutative prime ring
with identity element, and let D : R→ R be an additive mapping such that D(x3)= 3xD(x)x
holds for all x ∈ R. In this case D = 0.

Let us point out that any commuting derivation on an arbitrary ring satisfies the rela-
tion D(x3)= 3xD(x)x. Theorem 1 was the motivation for the result.
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Theorem 2. For integers m, n with m≥ 0, n≥ 0, and m+n �= 0, let R be an (m+n+ 2)!-
torsion free semiprime ring with identity element. Suppose there exists an additive mapping
D : R→ R, such that D(xm+n+1)= (m+n+ 1)xmD(x)xn is fulfilled for all x ∈ R. In this case,
D is a derivation, which maps R into its center. In case R is a noncommutative prime ring,
we have D = 0.

In case m= 1, n= 0 (we adopt the convention x0 = e, for all x ∈ R, where e denotes the
identity element), we have an additive mapping satisfying the relation D(x2) = 2xD(x),
x ∈ R. Such mappings are called left Jordan derivations (see [8, 10, 15]). Brešar and Vuk-
man [8, Corollary1.3] have proved that the existence of a nonzero Jordan derivation on
a 2- and 3-torsion free prime ring forces the ring to be commutative. For the proof
of Theorem 2, we need Theorem 4, which is of independent interest. For the proof of
Theorem 4 the lemma below will be needed. We refer the reader to [3] for the defini-
tions and an account of the theory of the extended centroid and central closure as well as
related topics and to [6] for an introductory survey on functional identities.

Lemma 3. Let R be a 2-torsion free prime ring and let A be its central closure. Suppose that
an additive mapping F : R→ A satisfies [[F(x),x],x]= 0 for all x ∈ R. Then, [F(x),x]= 0
holds for all x ∈ R.

Proof. In the case when F maps into R, the lemma was first proved by Brešar in [5, Theo-
rem 2]. Fortunately, the same proof works in the case when F maps into A (on the other
hand, see, e.g., [2] for a more general result). �
Theorem 4. Let R be a 2-torsion free semiprime ring. Suppose that an additive mapping
F : R→ R satisfies [[F(x),x],x]= 0 for all x ∈ R. Then, [F(x),x]= 0 holds for all x ∈ R.

Proof. Since R is semiprime, there exists a family of prime ideals {Pα; α ∈ A} such that
∩αPα = (0). Moreover, without loss of generality, we may assume that the prime rings
Rα = R/Pα are 2-torsion free (see, e.g., [1, page 459]). Now fix some P = Pα, α ∈ A. The
theorem will be proved by showing that [F(x),x] ∈ P for every x ∈ R. Given x ∈ R, we
will write x for the coset x+P ∈ R/P. By C, we denote the extended centroid of the prime
ring R/P, and by A the central closure of R/P . One can consider A as a vector space over
the field C. Since C can be regarded as a subspace of A, there exists a subspace B of A such
that A= B +C. We denote by π the canonical projection of A onto B. Substituting x+ p
for x in [[F(x),x],x] = 0, it follows at once that [[F(p),x],x] ∈ P for all x ∈ R, p ∈ P,
that is, [[F(p),x],x]= 0. Using Posner’s theorem [12, Theorem 2] (or just [5, Lemma 2]
for that matter), it follows that [F(p),x]= 0 for all x ∈ R, p ∈ P, that is, F(p) lies in the
center of R/P. In particular, πF(p)= 0. Using this, we see that the mapping F : R/P→ A,
F(x) = πF(x) is well defined. Note that F is additive and satisfies [[F(x),x],x] = 0 for
all x ∈ R. But then the lemma shows that [F(x),x]= 0 for all x ∈ R, which implies that
[F(x),x]∈ P. The proof of the theorem is complete. �

Theorem 4 generalizes Theorem 2 proved by Brešar [5] and Theorem 2 proved by
Vukman in [14].

Proof of Theorem 2. From the relation

D
(
xm+n+1)= (m+n+ 1)xmD(x)xn, x ∈ R, (1)
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it follows immediately that

D(e)= 0, (2)

where e denotes the identity element. Putting x+ e for x in the relation (1) and using (2),
we obtain

m+n+1∑
i=0

(
m+n+ 1

i

)
D
(
xm+n+1−i)

= (m+n+ 1)

( m∑
i=0

(
m

i

)
xm−i

)
D(x)

( n∑
i=0

(
n

i

)
xn−i

)
, x ∈ R.

(3)

Using (1) and collecting together terms of (3) involving the same number of factors
of e, we obtain

m+n∑
i=1

fi(x,e)= 0, x ∈ R, (4)

where fi(x,e) stands for the expression of terms involving i factors of e.
Replacing x by x+ 2e,x+ 3e, . . . ,x+ (m+n)e in turn in (1) and expressing the resulting

system of m+n homogeneous equations, we see that the coefficient matrix of the system
is a van der Monde matrix



1 1 ··· 1
2 22 ··· 2m+n

...
...

...
...

m+n (m+n)2 ··· (m+n)m+n


 . (5)

Since the determinant of the matrix is different from zero, it follows that the system
has only a trivial solution.

In particular,

fm+n−1(x,e)=
(
m+n+ 1
m+n− 1

)
D
(
x2)

− (m+n+ 1)

((
m

m− 1

)(
n

n

)
xD(x) +

(
m

m

)(
n

n− 1

)
D(x)x

)
= 0, x ∈ R,

(6)

fm+n−2(x,e)=
(
m+n+ 1
m+n− 2

)
D
(
x3)

− (m+n+ 1)

((
m

m− 2

)(
n

n

)
x2D(x) +

(
m

m− 1

)(
n

n− 1

)
xD(x)x

+

(
m

m

)(
n

n− 2

)
D(x)x2

)
= 0, x ∈ R.

(7)
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Since R is a (m+n+ 2)!-torsion free ring, the above equations reduce to

(m+n)D
(
x2)= 2mxD(x) + 2nD(x)x, x ∈ R, (8)

(m+n)(m+n− 1)D
(
x3)= 3m(m− 1)x2D(x) + 6mnxD(x)x

+ 3n(n− 1)D(x)x2, x ∈ R,
(9)

respectively. We intend to prove that the mapping x �→ [D(x),x] is commuting on R. For
this purpose, we write in x+ y for x in (8), which gives

(m+n)D(xy + yx)= 2mxD(y) + 2myD(x) + 2nD(x)y + 2nD(y)x, x, y ∈ R. (10)

Putting y = (m+n)x2 in the relation above, we obtain

(m+n)2D
(
x3)=m(m+n)xD

(
x2)+m(m+n)x2D(x)

+n(m+n)D(x)x2 +n(m+n)D
(
x2)x, x ∈ R.

(11)

According to (8), the above relation reduces to

(m+n)2D
(
x3)= (3m2 +mn

)
x2D(x) + 4mnxD(x)x+

(
3n2 +mn

)
D(x)x2, x ∈ R.

(12)

Subtracting (9) from (12), we obtain

(m+n)D
(
x3)=m(n+ 3)x2D(x)− 2mnxD(x)x+n(m+ 3)D(x)x2, x ∈ R. (13)

From the above relation, we obtain

(m+n)2D
(
x3)= (m+n)m(n+ 3)x2D(x)− 2(m+n)mnxD(x)x

+ (m+n)n(m+ 3)D(x)x2, x ∈ R.
(14)

Subtracting (14) from (12), one obtains

mn(m+n+ 2)x2D(x)− 2mn(m+n+ 2)xD(x)x+mn(m+n+ 2)D(x)x2 = 0, x ∈ R.
(15)

Since R is (m+n+ 2)!-torsion free ring, the above relation reduces to

D(x)x2 + x2D(x)− 2xD(x)x = 0, x ∈ R, (16)

which can be written in the form

[[
D(x),x

]
,x
]= 0, x ∈ R. (17)

Now Theorem 4 makes it possible to conclude that

[
D(x),x

]= 0, x ∈ R. (18)
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In other words, D is commuting on R. The fact that D is commuting on R makes it
possible to replace D(x)x in (8) by xD(x). The relation (8) reduces to D(x2) = 2xD(x),
x ∈ R. Using again the fact that D is commuting, we obtain D(x2)=D(x)x + xD(x), x ∈
R. In other words, D is a Jordan derivation. Let us recall that any Jordan derivation on
a 2-torsion free semiprime ring is a derivation. It is well known and easy to prove that
any commuting derivation on a semiprime ring R maps R into Z(R) (see [15]). In case
R is a noncommutative prime ring, Posner’s second theorem completes the proof of the
theorem. �

In the proof of Theorem 2, we met an additive mapping D satisfying the relation below

(m+n)D
(
x2)= 2mD(x)x+ 2nxD(x). (19)

In case n= 0 and R is an m-torsion free ring, we have an additive mapping D satisfy-
ing the relation D(x2) = 2xD(x), x ∈ R. In other words, D is a left Jordan derivation. It
was proved (see [15, Theorem 1]) that left Jordan derivations on a 2- and 3-torsion free
semiprime ring are derivations which map the ring into its center. These observations
lead to the conjecture.

Conjecture 5. Let R be a semiprime ring with suitable torsion restrictions. Suppose there
exists an additive mapping D : R→ R satisfying the relation

(m+n)D
(
x2)= 2nD(x)x+ 2mxD(x), (20)

for all x ∈ R and some integers m≥ 0, n≥ 0, m+n �= 0. In case m �= n, the mapping D is a
derivation which maps R into Z(R).

Our next result is related to the conjecture above.

Theorem 6. Let R be a 2, m, n, m+ n, and |m− n|-torsion free semiprime ring, and let
D : R→ R be an additive mapping satisfying the relation

(m+n)D(xy)= 2mD(x)y + 2nxD(y), (21)

for all pairs x, y ∈ R and some integers m ≥ 0, n ≥ 0, m+ n �= 0. In case m �= n, we have
D = 0.

Proof. We have the relation

(m+n)D(xy)= 2mD(x)y + 2nxD(y), x, y ∈ R. (22)

We compute the expression (m+n)2D(xyx) in two ways. First we obtain (using (22))

(m+n)2D
(
x(yx)

)= 2m(m+n)D(x)yx+ 2n(m+n)xD(yx)

= 2m(m+n)D(x)yx+ 2nx
(
2mD(y)x+ 2nyD(x)

)
, x, y ∈ R.

(23)

Thus we have

(m+n)2D(xyx)= 2m(m+n)D(x)yx+ 4mnxD(y)x+ 4n2xyD(x), x, y ∈ R. (24)
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On the other hand, we have (using (22))

(m+n)2D
(
(xy)x

)= 2m(m+n)D(xy)x+ 2n(m+n)xyD(x)

= 2m
(
2mD(x)y + 2nxD(y)

)
x+ 2n(m+n)xyD(x), x, y ∈ R.

(25)

Thus we have

(m+n)2D(xyx)= 4m2D(x)yx+ 4mnxD(y)x+ 2n(m+n)xyD(x), x, y ∈ R. (26)

Subtracting the relation (24) from the relation (26), we obtain

m(m−n)D(x)yx+n(m−n)xyD(x)= 0, x, y ∈ R, (27)

which reduces to

mD(x)yx+nxyD(x)= 0, x, y ∈ R. (28)

Putting yx for y in the relation (28), we obtain

mD(x)yx2 +nxyxD(x)= 0, x, y ∈ R. (29)

Right multiplication of the relation (28) by x gives

mD(x)yx2 +nxyD(x)x = 0, x, y ∈ R. (30)

Subtracting the relation (29) from the relation (30), we obtain

n
(
xy
(
D(x)x− xD(x)

))= 0, x, y ∈ R, (31)

which gives

xy
[
D(x),x

]= 0, x, y ∈ R. (32)

Writing in the relation (32) D(x)y for y, then multiplying the relation (32) by D(x)
from the left-hand side and comparing the relations so obtained, we obtain

[
D(x),x

]
y
[
D(x),x

]= 0, x, y ∈ R, (33)

whence it follows

[
D(x),x

]= 0, x ∈ R, (34)

by semiprimeness of R. Putting y = x in the relation (22) and using the relation (34),
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we obtain D(x2)= 2D(x)x, x ∈ R, which can be written in the form

D
(
x2)=D(x)x+ xD(x), x ∈ R, (35)

because of (34). In other words, D is a Jordan derivation. As we have already mentioned,
any Jordan derivation on a 2-torsion free semiprime ring is a derivation. Now one can
replace D(xy) with D(x)y + xD(y) in the left-hand side of (22), which gives

D(x)y = xD(y), x, y ∈ R. (36)

Substituting zx for x in (36) gives

D(z)xy = 0, x, y,z ∈ R, (37)

whence it follows first D(z)xD(z)= 0 for all x,z ∈ R, and then by semiprimeness D = 0.
The proof of the theorem is complete. �
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