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We introduce the category IRel(H) consisting of intuitionistic fuzzy relational spaces on
sets and we study structures of the category IRel(H) in the viewpoint of the topological
universe introduced by Nel. Thus we show that IRel(H) satisfies all the conditions of
a topological universe over Set except the terminal separator property and IRel(H) is
cartesian closed over Set.

1. Introduction

In 1965, Zadeh [30] introduced a concept of a fuzzy set as the generalization of a crisp
set. Also, in 1971, he introduced a fuzzy relation naturally, as a generalization of a crisp
relation in [31].

Nel [27] introduced the notion of a topological universe which implies concrete qu-
asitopos [1]. Every topological universe satisfies all the properties of a topos except one
condition on the subobject classifier. The notion of a topological universe has already
been put to effective use in several areas of mathematics in [24, 25, 28]. In 1980, Cerruti
[8] introduced the category of L-fuzzy relations and investigated some of its properties.
After that time, Hur [14] introduced the category Rel(H) of the fuzzy relational spaces
with a complete Heyting algebra H as a codomain and he studied the category Rel(H) in
the sense of a topological universe.

In 1983, Atanassov [2] introduced the concept of an intuitionistic fuzzy set as the gen-
eralization of fuzzy sets and he also investigated many properties of intuitionistic fuzzy
sets (cf. [3]). After that time, Banerjee and Basnet [4], Biswas [6], and Hur and his col-
leagues [15, 16, 17, 20] applied the concept of intuitionistic fuzzy sets to algebra. Also,
Çoker [9], Hur and his colleagues [21], and S. J. Lee and E. P. Lee [26] applied one to
topology. In particular, Hur and his colleagues [18] applied the notion of intuitionistic
fuzzy sets to topological group.

In this paper, we introduce the category IRel(H) of intuitionistic H-fuzzy relational
spaces and study the category IRel(H) in a topological universe viewpoint. In particular,
we show that IRel(H) satisfies all the conditions of a topological universe over Set except
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the terminal separator property. Also IRel(H) is shown to be cartesian closed over Set.
For general categorical background, we refer to Herrlich and Strecker [12].

2. Preliminaries

In this section, we will introduce some basic definitions and well-known results which
are needed in the next sections.

Let X be a set, let (Xi)i∈I be a family of sets indexed by a class I , and let fi be a mapping
with domain X for each i ∈ I . Then a pair (X , ( fi)I) (simply, ( fi)I) is called a source of
mappings. A sink of mappings is the dual notion of a source of mappings.

Definition 2.1 [12]. Let A be a concrete category and let I be a class.
(1) A source in A is a pair (X , ( fi)I) (simply, (X , fi) or ( fi)I), where X is an A-object and

( fi : X → Xi)I is a family of A-morphisms each with domain X . In this case, X is called
the domain of the source and the family (Xi)I is called the codomain of the source.

(2) A source (X , fi) is called a monosource provided that the fi can be simutaneously

canceled from the left; that is, provided that for any pair Y s

r
X of morphisms such

that fi ◦ r = fi ◦ s for each i∈ I , it follows that r = s.
Dual notions: sink in A and episink.

Definition 2.2 [23]. Let A be a concrete category and let ((Yi,ξi))I be a family of objects
in A indexed by a class I . For any set X , let ( fi : X → Yi)I be a source of mappings indexed
by I . An A-structure ξ on X is said to be initial with respect to (X , ( fi),((Yi,ξi))) provided
that the following conditions hold.

(1) For each i∈ I , fi : (X ,ξ)→ (Yi,ξi) is an A-morphism.
(2) If (Z,ρ) is an A-object and g : Z → X is mapping such that for each i ∈ Z, the

mapping fi ◦ g : (Z,ρ) → (Yi,ξi) is an A-morphism, then g : (Z,ρ) → (X ,ξ) is an
A-morphism. In this case, ( fi : (X ,ξ)→ (Yi,ξi))I is called an initial source in A.

Dual notions: final structure and final sink.

Definition 2.3 [23]. A concrete category A is said to be topological over Set provided that
for each set X , for any family ((Yi,ξi))I of A-objects, and for any source ( fi : X → Yi)I
of mappings, there exists a unique A-structure ξ on X which is initial with respect to
(X , ( fi),((Yi,ξi))).

Dual notions: cotopological category.

Result 2.4 [23, Theorem 1.5]. A concrete category A is topological if and only if A is co-
topological.

Result 2.5 [23, Theorem 1.6]. Let A be a topological category over Set. Then A is complete
and cocomplete.

Definition 2.6 [11]. A category A is called cartesian closed provided that the following
conditions hold.

(1) For any A-objects A and B, there exists a product A×B in A.
(2) Exponential exists in A, that is, for any A-object A, the functor A×− : A → A

has a right adjoint, that is, for any A-object B, there exists an A-object BA and an
A-morphism eA,B : A×BA→ B (called the evaluation) such that for any A-object C
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and any A-morphism f : A×C→ B, there exists a unique A-morphism f : C→ BA

such that the diagram

A×BA
eA,B

B

A×C

f∃1A× f
(2.1)

commutes.

Definition 2.7 [23]. Let A be a concrete category.
(1) The A-fiber of a set X is the class of all A-structures on X .
(2) A is called properly fibered over Set provided that the following conditions hold.

(i) Fiber-smallness. For each set X , the A-fiber of X is a set.
(ii) Terminal separator property. For each singleton set X , the A-fiber of X has pre-

cisely one element.
(iii) If ξ and η are A-structures on a set X such that 1X : (X ,ξ)→ (X ,η) and 1X :

(X ,η)→ (X ,ξ) are A-morphisms, then ξ = η.

Definition 2.8 [27]. A category A is called a topological universe over Set provided that the
following conditions hold.

(1) A is well structured over Set, that is, (i) A is a concrete category; (ii) A has the
fiber-smallness condition; (iii) A has the terminal separator property.

(2) A is cotopological over Set.
(3) Final episinks in A are preserved by pullbacks, that is, for any final episink (gλ :

X → Y)Λ and any A-morphism f : W → Y , the family (eλ : Uλ →W)Λ, obtained
by taking the pullback of f and gλ for each λ, is again a final episink.

Definition 2.9 [29]. A category A is called a topos provided that the following conditions
hold.

(1) There is a terminal object U in A, that is, for each A-object A, there exists one and
only one A-morphism from A to U .

(2) A has equalizers, that is, for any A-objects A and B and A-morphisms

A g

f
B (2.2)

there exist an A-object C and an A-morphism h : C→ A such that
(a) f ◦h= g ◦h,
(b) for each A-object C′ and A-morphism h′ : C′ → A with f ◦ h′ = g ◦ h′, there

exists a unique A-morphism h′ : C′ → C such that h′ = h ◦ h′, that is, the dia-
gram

C
h

A g

f
B

C′

∃h′
h′

(2.3)

commutes;
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(3) A is cartesian closed;
(4) there is a subobject classifier in A, that is, there is an A-object Ω and A-morphism

v : U →Ω such that for each A-monomorphism m : A′ → A, there exists a unique
A-morphism φm : A→Ω such that the following diagram is a pullback:

A′

m

U

v

A
φm

Ω

(2.4)

Remark 2.10. Let A be any category with a subobject classifier. If f is any bimorphism in
A, then f is an isomorphism in A (cf. [7]).

3. The category IRel(H)

First we will list some concepts and one result which are needed in this section and the
next section. Next, we introduce the category IRel(H) of intuitionistic H-fuzzy relational
spaces and show that it has similar structures as those of ISet(H).

Definition 3.1 [5, 22]. A lattice H is called a complete Heyting algebra if H satisfies the
following conditions:

(1) H is a complete lattice;
(2) for any a,b ∈H , the set {x ∈H : x∧ a≤ b} has a greatest element denoted by a→

b (called pseudocomplement of a and b), that is, x∧ a≤ b if and only if x ≤ (a→ b).
In particular, for each a∈H , N(a)= a→ 0 is called the negation or the pseudocomple-

ment of a.

Result 3.2 [5, Example 6, page 46]. Let H be a complete Heyting algebra and let a,b ∈H .
Then

(1) if a≤ b, then N(b)≤N(a), that is, N : H →H is an involutive order-reversing oper-
ation in (H ,≤);

(2) a≤NN(a);
(3) N(a)=NNN(a);
(4) N(a∨ b)=N(a)∧N(b) and N(a∧ b)=N(a)∧N(b).

Throughout this paper, we use H as a complete Heyting algebra.

Definition 3.3 [19]. Let X be a set. A triple (X ,µ,ν) is called an intuitionistic H-fuzzy set
(in short, IHFS) on X if the following conditions holds:

(i) µ,ν∈HX , that is, µ and ν are H-fuzzy sets;
(ii) µ≤N(ν), that is, µ(x)≤N(ν(x)) for each x ∈ X , where N : H →H is an involutive

order-reversing operation in (H ,≤).

Definition 3.4 [19]. Let (X ,µX ,νX) and (Y ,µY ,νY ) be IHFSs. A mapping f : X → Y is
called a morphism if µX ≤ µY ◦ f and νX ≥ νY ◦ f .

From Definitions 3.3 and 3.4, we can form a concrete category ISet(H) consisting of
all IHFSs and morphisms between them. In this case, each ISet(H)-morphism will be
called an ISet(H)-mapping.
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It is clear that if f : (X ,µX ,νX)→ (Y ,µY ,νY ) is an ISet(H)-mapping, then f : (X ,µX)→
(Y ,µY ) is a Set (H)-mapping (cf. [13]).

Definition 3.5 [14]. (1) Let X be a set. R is called an H-fuzzy relation (or simply, a fuzzy
relation) on X if µR : X ×X → H is a mapping. In this case, (X ,R) is called an H-fuzzy
relational space (or simply, a fuzzy relational space).

(2) Let (X ,RX) and (Y ,RY ) be any fuzzy relational spaces. A map f : X → Y is called a
relation-preserving map provided that µR ≤ µR ◦ f 2, where f 2 = f × f .

From Definition 3.5, we can form a concrete category Rel(H) consisting of all rela-
tional spaces and relation preserving mappings between them. Every Rel(H)-morphism
will be called a Rel (H)-mapping.

Definition 3.6. Let X be a set. A pair R= (µR,νR) is called an intuitionistic H-fuzzy relation
(in short, IHFR) on X if it satisfies the following conditions:

(i) µR : X ×X → H and νR : X ×X → H are mappings, where µR and νR denote the
degree of membership (namely, µR(x, y)) and the degree of nonmembership (namely,
νR(x, y)) of each (x, y)∈ X ×X to R;

(ii) µR ≤N(νR), that is, µR(x, y)≤N(νR(x, y)) for each (x, y)∈ X ×X .
In this case, (X ,R) or (X ,µR,νR) is called an intuitionistic H-fuzzy relatinal space

(in short, IHFRS).

Definition 3.7. Let (X ,RX) and (Y ,RY ) be an IHFRSs. A mapping f : X → Y is called a
relation-preserving mapping if µRX ≤ µRY ◦ f 2 and νRX ≥ νRY ◦ f 2, where f 2 = f × f .

The following is the immediate result of Definition 3.7.

Proposition 3.8. Let (X ,RX), (Y ,RY ), and (Z,RZ) be IHFRSs.
(1) 1X : (X ,RX)→ (X ,RX) is a relation-preserving mapping.
(2) If f : (X ,RX)→ (Y ,RY ) and g : (Y ,RY )→ (Z,RZ) are relation-preserving mappings,

then g ◦ f : (X ,RX)→ (Z,RZ) is a relation-preserving mapping.

From Definitions 3.6 and 3.7, and Proposition 3.8, we can form a concrete category
IRel(H) consisting of all IHFRSs and relation-preserving mappings between them. Ev-
ery IRel(H)-morphism will be called an IRel(H)-mapping. Moreover, it is clear that if
f : (X ,RX)→ (Y ,RY ) is an IRel(H)-mapping, then f : (X ,µRX )→ (Y ,µRY ) is a Rel (H)-
mapping.

Theorem 3.9. IRel(H) is topological over Set.

Proof. Let X be any set and let ((Xα,Rα))Γ be any family of IHFRSs indexed by a class Γ.
Let ( fα : X → Xα)Γ be any source of mappings. We define two mappings µR : X ×X →H
and νR : X ×X →H by µR =

∧
ΓµRα ◦ f 2

α and νR =
∨

Γ νRα ◦ f 2
α . Then, by the definition of

R = (µR,νR), µR ≤ N(νR). Thus (X ,R) ∈ IRel(H). Moreover, fα : (X ,R)→ (Xα,Rα) is an
IRel(H)-mapping for each α∈ Γ.

For any (Y ,RY )∈ IRel(H), let g : Y → X be any mapping for which fα ◦ g : (Y ,RY )→
(Xα,Rα) is an IRel(H)-mapping for each α∈ Γ. Then we can easily check that g : (Y ,RY )→
(X ,R) is an IRel(H)-mapping. HenceR= (µR,νR) is the initial structure onX with respect
to (X , ( fα),((Xα,Rα))). This completes the proof. �
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Example 3.10. (1) Inverse image of an IHFR. Let X be a set, let (Y ,RY ) be an IHFRS,
and let f : X → Y be any mapping. Then there exists the initial IHFR R on X for which
f : (X ,R)→ (Y ,RY ) is an IRel(H)-mapping. In this case, R is called the inverse image of
RY under f . In particular, if X ⊂ Y and f : X → Y is the canonical mapping, then (X ,R)
is called an intuitionistic H-fuzzy relational subspace of (Y ,RY ), where R= (µR,νR) is the
inverse image of RY under f . In fact, µR = µRY |X×X and νR = νRY |X×X .

(2) Intuitionistic fuzzy product structure. Let ((Xα,Rα))Γ be any family of IHFRSs and
let X =∏Xα be the product set of (Xα)Γ. Then there exists the initial IHFR R on X for
which each projection πα : (X ,R) → (Xα,Rα) is an IRel(H)-mapping. In this case, R is
called the product of (Rα)Γ and is denoted by R =∏Rα and (

∏
Xα,
∏
Rα) is called the

intuitionistic H-fuzzy product relational space of ((Xα,Rα))Γ. In fact, µΠR =
∧

ΓµRα ◦π2
α and

νΠR =
∨

Γ νRα ◦π2
α .

In particular, if H = {1,2}, then µR1×R2 ((x1, y1),(x2, y2))= µR1 (x1,x2)∧µR2 (y1, y2) and
νR1×R2 ((x1, y1),(x2, y2))= νR1 (x1,x2)∨ νR2 (y1, y2) for any (x1, y1),(x2, y2)∈ X1×X2.

Corollary 3.11. IRel(H) is complete and cocomplete. Moreover, by definition, it is easy to
show that IRel(H) is well powered and co-well-powered.

From Result 2.4 and Theorem 3.9, it is clear that IRel(H) is cotopological. However, we
show directly that IRel(H) is cotopological.

Theorem 3.12. IRel(H) is cotopological over Set.

Proof. Let X be any set and let ((Xα,Rα))Γ be any family of IHFRSs indexed by a class Γ.
Let ( fα : Xα→ X)Γ be any sink of mappings. We define two mappings µR : X ×X →H and
νR : X ×X →H by, for each (x, y)∈ X ×X ,

µR(x, y)=
∨
Γ

∨
(xα,yα)∈ f −12

α (x,y)

µRα

(
xα, yα

)
,

νR(x, y)=
∧
Γ

∧
(xα,yα)∈ f −12

α (x,y)

νRα

(
xα, yα

)
,

(3.1)

where f −12

α = f −1
α × f −1

α . Then clearly (X ,R)∈ IRel(H). Moreover, fα : (Xα,Rα)→ (X ,R)
is an IRel(H)-mapping for each α∈ Γ.

For any (Y ,RY )∈ IRel(H), let g : X → Y be any mapping for which g ◦ fα : (Xα,Rα)→
(Y ,RY ) is an IRel(H)-mapping for each α∈ Γ. Then we can easily check that g : (X ,R)→
(Y ,RY ) is an IRel(H)-mapping. HenceR= (µR,νR) is the final structure onX with respect
to (((Xα,Rα)),( fα),X). This completes the proof. �

Example 3.13. (1) Intuitionistic H-fuzzy quotient relation. Let (X ,R)∈ IRel(H), let ∼ be
an equivalence relation on X , and let ϕ : X → X/R the canonical mapping. Then there
exists the final intuitionistic H-fuzzy relation (µX/∼,νX/∼) on X/ ∼ for which ϕ : (X ,R)→
(X/ ∼,µX/∼,νX/∼) is an IRel(H)-mapping. In this case, (µX/∼,νX/∼) is called the intuition-
istic H-fuzzy quotient relation of X by R.

(2) Sum of intuitionistic H-fuzzy relations. Let ((Xα,Rα))Γ be a family of IHFRSs, let
X be the sum of (Xα)Γ and let jα : Xα → X be the canonical (injection) mapping for
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each α∈ Γ. Then there exists the final IHFR R on X . In fact, for each ((xα,α),(yβ,β)) ∈
X × X , µR((xα,α),(yβ,β)) = ∨ΓµRα(x, y) and νR((xα,α),(yβ,β)) = ∧Γ νRα(x, y). In this
case, R is called the sum of (Rα)Γ and (X ,R) is called the sum of ((Xα,Rα))Γ.

Theorem 3.14. Final episinks in IRel(H) are preserved by pullbacks.

Proof. Let (gα : (Xα,Rα)→ (Y ,RY ))Γ be any final episink in IRel(H) and let f : (W ,RW )→
(Y ,RY ) be any IRel(H)-mapping. For each α ∈ Γ, let Uα = {(w,xα) ∈W ×Xα : f (w) =
gα(xα)} and let us define two mappings µRUα

: Uα ×Uα → H and νRUα
: Uα ×Uα → H by

for each ((w,xα),(w′,x′α))∈Uα×Uα,

µRUα

((
w,xα

)
,
(
w′,x′α

))= µRW (w,w′)∧µRα

(
xα,x′α

)
,

νRUα

((
w,xα

)
,
(
w′,x′α

))= νRW (w,w′)∨ νRα

(
xα,x′α

)
.

(3.2)

Let eα : Uα →W and pα : Uα → Xα denote the usual projections of Uα. Then clearly (Uα,
RUα)∈ IRel(H) for each α∈ Γ. Moreover, eα : (Uα,RUα)→ (W ,RW ) and pα : (Uα,RUα)→
(Xα,Rα) are IRel(H)-mappings for each α ∈ Γ. And the following diagram is a pullback
square in IRel(H):

(
Uα,Rµα

) pα

eα

(
Xα,Rα

)
gα

(
W ,RW

)
f

(
Y ,RY

) (3.3)

We will show that (eα : (Uα,RUα)→ (W ,Rw))Γ is a final episink in IRel(H). By the process
of the proof of [14, Theorem 2.5], (eα)Γ is an episink in IRel(H). Suppose R = (µR,νR)
is another final IHFR on W with respect to (eα)Γ. By the process of the proof of [14,
Theorem 2.5], µR = µRW . Thus it is sufficient to show that νR = νRW . Let (w,w′)∈W ×W .
Then

νRW (w,w′)= νRW (w,w′)∨ νRW (w,w′)

≥ νRW (w,w′)∨ [νRY ◦ f 2(w,w′)
]

(
since f :

(
W ,Rw

)−→ (Y ,RY
)
is an IRel(H)-mapping

)
= νRW (w,w′)∨ νRY

(
f (w), f (w′)

)

= νRW (w,w′)∨
[∧

Γ

∧
(xα,x′α)∈g−12

α ( f (w), f (w′))

νRα

(
xα,x′α

)]

(
since

(
gα
)
Γ is final

)
=
∧
Γ

∧
(xα,x′α)∈g−12

α ( f (w), f (w′))

[
νRW (w,w′)∨ νRα

(
xα,x′α

)]

=
∧
Γ

∧
((w,xα),(w′,x′α))∈e−1

α (w,w′)

νRUα

((
w,xα

)
,
(
w′,x′α

))
.

(3.4)
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Thus νRW (w,w′)≥ νR(w,w′) for each (w,w′)∈W ×W . So νRW ≥ νR. On the other hand,
since (eα : (Uα,RUα)→ (W ,R))Γ is final, 1W : (W ,R)→ (W ,RW ) is an IRel(H)-mapping.
Thus νR ≥ νRW . So νR = νRW . Hence R= RW . This completes the proof. �

For any singleton set {a}, since the IHFR R on {a} is not unique, the category IRel(H)
is not properly fibered over Set. Hence, by Theorems 3.12 and 3.14, we obtain the follow-
ing result.

Theorem 3.15. IRel(H) satisfies all the conditions of a topological universe over Set except
the terminal separator property.

Theorem 3.16. IRel(H) is cartesian closed over Set.

Proof. It is clear that IRel(H) has products by Corollary 3.11. We will show that IRel(H)
has exponential objects.

For any IHFRSs X = (X ,RX) and Y= (Y ,RY ), let YX be the set of all mappings from
X into Y . We define two mappings µR : YX ×YX →H and νR : YX ×YX →H as follows:
for each ( f ,g)∈ YX ×YX ,

µR( f ,g)=
∧{

h∈H : µRX (x, y)∧h≤ µRY

(
f (x),g(y)

)
for each (x, y)∈ X ×X

}
,

νR( f ,g)=
∨{

h∈H : νRX (x, y)∨h≥ νRY

(
f (x),g(y)

)
for each (x, y)∈ X ×X

}
.

(3.5)

Then clearly (YX ,R)∈ IRel(H). Let YX = (YX ,R). Then, by the definition of R,

µRX (x, y)∧µR( f ,g)≤ µRY

(
f (x),g(y)

)
,

νRX (x, y)∨ νR( f ,g)≥ νRY

(
f (x),g(y)

) (3.6)

for each ( f ,g)∈ YX and (x, y)∈ X ×X .
Define eX ,Y : X ×YX → Y by eX ,Y (x, f ) = f (x) for each (x, f ) ∈ X ×YX . Let ((x, f ),

(y,g)) ∈ (X × YX) × (X × YX). Then, by the process of the proof of [14, Theorem
2.7], µRX×R((x, f ),(y,g)) ≤ µRY ◦ e2

X ,Y ((x, f ),(y,g)). So µRX×R ≤ µRY ◦ e2
X ,Y . On the other

hand,

νRX×R
(
(x, f ),(y,g)

)= νRX (x, y)∨ νR( f ,g)

≥ νRY

(
f (x),g(y)

)
= νRY

(
eX ,Y (x, f ),eX ,Y (y,g)

)
= νRY ◦ e2

X ,Y

(
(x, f ),(y,g)

)
.

(3.7)

Thus νRX×R ≥ νRY ◦ e2
X ,Y . Hence eX ,Y : X×YX → Y is an IRel(H)-mapping.

For any Z = (Z,RZ) ∈ IRel(H), let h : X× Z → Y be an IRel(H)-mapping. We de-
fine h : Z → YX by [h(z)](x) = h(x,z) for each z ∈ Z and each x ∈ X . Let z,z′ ∈ Z and
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let x,x′ ∈ X . Then, by the process of the proof of [14, Theorem 2.7], µRZ (z,z′) ≤ µR ◦
h

2
(z,z′). So µRZ ≤ µR ◦h2

. On the other hand,

νRX×RZ

(
(x,z),(x′,z′)

)= νRX (x,x′)∨ νRZ (z,z′)

≥ νRY ◦h2((x,z),(x′,z′)
)

(
since h : X×Z−→ Y is an IRel(H)-mapping

)
= νRY

(
h(x,z),h(x′,z′)

)
= νRY

([
h(z)

]
(x),

[
h(z′)

]
(x′)

)
.

(3.8)

Thus, by the definition of R, νRZ (z,z′)≥ νR(h(z),h(z′))= νRY ◦h
2
(z,z′). So νRZ ≥ νR ◦h2

.
Hence h : Z→ YX is an IRel(H)-mapping. Moreover, h is the unique IRel(H)-mapping
such that eX ,Y ◦ (1X ×h)= h. This completes the proof. �

Remark 3.17. IRel(H) has no subobject classifier. Hence IRel(H) is not topos.

Example 3.18. LetH = {0,1} be the two points chain and letX = {a}. LetR1 andR2 be the
IHFRs on X given by µR1 (a,a) = 0, νR1 (a,a) = 1 and µR2 (a,a) = 1, νR2 (a,a) = 0. Let 1X :
(X ,R1)→ (X ,R2) be the identity mapping. Then clearly, 1X is both a monomorphism and
an epimorphism in IRel(H). But, 1X is not an isomorphism in IRel(H). Hence IRel(H)
has no subobject classifier (see [7]).

4. The relations between IRel(H) and Rel (H)

Lemma 4.1. Define G1,G2 : IRel(H)→ Rel(H) by

G1
(
X ,µR,νR

)= (X ,µR
)
,

G2
(
X ,µR,νR

)= (X ,N
(
νR
))

,

G1( f )=G2( f )= f .

(4.1)

Then G1 and G2 are functors.

Proof. Clearly G1(X ,µRX ,νRX )= (X ,µRX )∈ Rel(H) for each (X ,µR,νR)∈ IRel(H). Let (X ,
µRX ,νRX ),(Y ,µRY ,νRY ) ∈ IRel(H) and let f : (X ,µRX ,νRX )→ (Y ,µRY ,νRY ) be an IRel(H)-
mapping. Then µRX ≤µRY ◦ f 2. ThusG1( f )= f : (X ,µRX )→ (Y ,µRY ) is a Rel(H)-mapping.
Hence G1 : IRel(H)→ Rel(H) is a functor. Also G2(X ,µRX ,νRX )= (X ,N(νRX ))∈ Rel(H)
for each (X ,µRX ,νRX )∈ IRel(H). Now let (X ,µRX ,νRX ),(Y ,µRY ,νRY )∈ IRel(H) and let f :
(X ,µRX ,νRX )→ (Y ,µRY ,νRY ) be an IRel(H)-mapping. Then νRX ≥ νRY ◦ f 2. ThusN(νRX )≤
N(νRY ) ◦ f 2. So G2( f )= f : (X ,N(νRX ))→ (Y ,N(νRY )) is a Rel(H)-mapping. Hence G2 :
IRel(H)→ Rel(H) is a functor. �

Lemma 4.2. Define F1 : Rel(H)→ IRel(H) by F1(X ,µR) = (X ,µR,N(µR)) and F1( f ) = f .
Then F1 is a functor.
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Proof. For each (X ,µRX ) ∈ Rel(H), µ ≤ NN(µRX ). Thus F1(X ,µRX ) = (X ,µRX ,N(µRX )) ∈
IRel(H). Let (X ,µRX ),(Y ,µRY ) ∈ Rel(H) and let f : (X ,µRX ) → (Y ,µRY ) be an Rel(H)-
mapping. Then µRX ≤ µRY ◦ f . Consider the mapping F1( f )= f : (X ,µRX ,N(µRX ))→ (Y ,
µRY ,N(µRY )). Since µRX ≤ µRY ◦ f , N(µRX ) ≥ N(µRY ) ◦ f . So f : (X ,µRX ,N(µRX )) → (Y ,
µRY ,N(µRY )) is an IRel(H)-mapping. Hence F1 is a functor. �

Lemma 4.3. Define F2 : Rel(H)→IRel(H) by F2(X ,µR)=(X ,NN(µR),N(µR)) and F2( f )=
f . Then F2 is a functor.

Proof. It is clear that F2(X ,µRX ) ∈ IRel(H) for each (X ,µRX ) ∈ Rel(H). Let (X ,µRX ),
(Y ,µRY ) ∈ Rel(H) and let f : (X ,µRX )→ (Y ,µRY ) be an Rel(H)-mapping. Consider the
mapping F2( f ) = f : F2(X ,µRX ) → (Y ,NN(µRY ),N(µRY )), where F2(X ,µRX ) = (X ,
NN(µRX ),N(µRX )) and F2(Y ,µRY ) = (Y ,NN(µRY ),N(µRY )). Since f : (X ,µRX )→ (Y ,µRY )
is a Rel(H)-mapping, µRX ≤ µRY ◦ f 2. Thus NN(µRX ) ≤ NN(µRY ) ◦ f 2. Moreover
N(µRX ) ≥ N(µRY ) ◦ f 2. So F2( f ) = f : F2(X ,µRX ) → F2(Y ,µRY ) is an IRel(H)-mapping.
Hence F2 is a functor. �

Theorem 4.4. The functor F1 : Rel(H) → IRel(H) is a left adjoint of the functor G1 :
IRel(H)→ Rel(H).

Proof. For each (X ,µR) ∈ Rel(H), 1X : (X ,µR) → G1F1(X ,µR) = (X ,µR) is a Rel(H)-
mapping. Let (Y ,µRY ,νRY )∈ IRel(H) and let f : (X ,µR)→G1(Y ,µRY ,νRY ) be an IRel(H)-
mapping. We will show that f : F1(X ,µR)= (X ,µR,N(µR))→ (Y ,µRY ,νRY ) is an IRel(H)-
mapping. Since f : (X ,µR)=G1(Y ,µRY ,µRY )→ (Y ,µRY ) is a Rel(H)-mapping, µR ≤ µRY ◦
f 2. Then N(µR) ≥ N(µRY ) ◦ f 2. Since µRY ≤ N(νRY ), νRY ≤ NN(νRY ) ≤ N(µRY ). Thus
N(µR) ≥ νRY ◦ f 2. So f : F1(X ,µR) = (Y ,µRY ,νRY ) is an IRel(H)-mapping. Hence 1X is
a G1-universal map for (X ,µR) in Rel(H). This completes the proof. �

For each (X ,µR) ∈ Rel(H), F1(X ,µR) = (X ,µR,N(µR)) is called an intuitionistic H-
fuzzy set in X induced by (X ,µR). Let us denote the category of all induced intuitionis-
tic H-fuzzy sets and IRel(H)-mappings as IRel∗(H). Then it is clear IRel∗(H) is a full
subcategory of IRel(H).

Theorem 4.5. Two categories Rel(H) and IRel∗(H) are isomorphic.

Proof. It is clear that F1 : Rel(H)→ IRel∗(H) is a functor by Lemma 4.2. Consider the re-
striction G1 : IRel∗(H)→ Rel(H) of the functor G1 in Lemma 4.1. Let (X ,µR)∈ Rel(H).
Then, by Lemma 4.2, F1(X ,µR)= (X ,µR,N(µR)). Thus G1F1(X ,µR)=G1(X ,µR,N(µR))=
(X ,µR). So G1 ◦ F = 1 Rel(H). Now let (X ,µR,N(µR)) ∈ ISet∗(H). Then, by Lemma 4.1,
G1(X ,µR,N(µR)) = (X ,µR). Thus FG1(X ,µR,N(µR)) = (X ,µR,N(µR)). So F ◦ G1 =
1ISet∗(H). Hence F : Rel(H)→ ISet∗(H) is an isomorphism. This completes the proof. �
Remark 4.6. We are going to investigate “intuitionistic H-fuzzy reflexive relations,” “some
subcategories of the category IRelk (H),” and “intuitionistic H-fuzzy relations on intu-
itionistic H-fuzzy sets” in the viewpoint of topological universe.
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