FIXED POINT THEORY FOR MÖNCH-TYPE MAPS DEFINED ON CLOSED SUBSETS OF FRÉCHET SPACES: THE PROJECTIVE LIMIT APPROACH

RAVI P. AGARWAL, JEWGENI H. DSHALALOW, AND DONAL O'REGAN

Received 17 May 2005

New Leray-Schauder alternatives are presented for Mönch-type maps defined between Fréchet spaces. The proof relies on viewing a Fréchet space as the projective limit of a sequence of Banach spaces.

1. Introduction

This paper presents new Leray-Schauder alternatives for Mönch-type maps defined between Fréchet spaces. Two approaches [1, 2, 3, 6, 7] have recently been presented in the literature both of which are based on the fact that a Fréchet space can be viewed as a projective limit of a sequence of Banach spaces $\{E_n\}_{n\in\mathbb{N}}$ (here $\mathbb{N} = \{1,2,...\}$). Both approaches are based on constructing maps F_n defined on subsets of E_n whose fixed points converge to a fixed point of the original operator F. Both approaches have advantages and disadvantages over the other [1] and in this paper, we combine the advantages of both approaches to present very general fixed point results. Our theory in particular extends and improves the theory in [3] (in [3], the single-valued case was discussed).

Finally in this section, we gather together some definitions and a fixed point result which will be needed in Section 2.

Now, let *I* be a directed set with order \leq and let $\{E_{\alpha}\}_{\alpha \in I}$ be a family of locally convex spaces. For each $\alpha \in I$, $\beta \in I$ for which $\alpha \leq \beta$, let $\pi_{\alpha,\beta} : E_{\beta} \to E_{\alpha}$ be a continuous map. Then the set

$$\left\{x = (x_{\alpha}) \in \prod_{\alpha \in I} E_{\alpha} : x_{\alpha} = \pi_{\alpha,\beta}(x_{\beta}) \ \forall \alpha, \beta \in I, \ \alpha \leq \beta\right\}$$
(1.1)

is a closed subset of $\prod_{\alpha \in I} E_{\alpha}$ and is called the projective limit of $\{E_{\alpha}\}_{\alpha \in I}$ and is denoted by $\lim_{\alpha \in I} E_{\alpha}$ (or $\lim_{\alpha \in I} \{E_{\alpha}, \pi_{\alpha,\beta}\}$) or the generalized intersection [4, page 439] $\bigcap_{\alpha \in I} E_{\alpha}$).

Next, we recall a fixed point result from the literature [9] which we will use in Section 2.

THEOREM 1.1. Let K be a closed convex subset of a Banach space X, U a relatively open subset of K, $x_0 \in U$, and suppose that $F: \overline{U} \to CK(K)$ is an upper semicontinuous map (here CK(K) denotes the family of nonempty convex compact subsets of K). Also assume

Copyright © 2005 Hindawi Publishing Corporation

International Journal of Mathematics and Mathematical Sciences 2005:17 (2005) 2775–2782 DOI: 10.1155/IJMMS.2005.2775

that the following conditions hold:

$$M \subseteq \overline{U}, \quad M \subseteq \operatorname{co}\left(\{x_0\} \cup F(M)\right) \quad \text{with } \overline{M} = \overline{C},$$

$$C \subseteq M \quad \text{countable, implies } \overline{M} \text{ is compact,}$$
(1.2)

$$x \notin (1-\lambda) \{x_0\} + \lambda Fx \quad \text{for } x \in \overline{U} \setminus U, \ \lambda \in (0,1).$$

$$(1.3)$$

Then there exist a compact set \sum *of* \overline{U} *and an* $x \in \sum$ *with* $x \in Fx$ *.*

Remark 1.2. In [9], we see that we could take \sum to be

$$\{y \in \overline{U} : y \in (1-\lambda)\{x_0\} + \lambda Fy \text{ for some } \lambda \in [0,1]\}.$$
(1.4)

We did not show that \sum is compact in [9] but this is easy to see as we will now show. First, notice that \sum is closed since *F* is upper semicontinuous. Now let $\{y_n\}_1^\infty$ be a sequence in \sum . Then there exists $\{t_n\}_1^\infty$ in [0,1] with $y_n \in (1 - t_n)\{x_0\} + t_n F y_n$ for $n \in \mathbb{N} = \{1, 2, ...\}$. Without loss of generality, assume that $t_n \to t \in [0, 1]$. Let $C = \{y_n\}_1^\infty$. Notice that *C* is countable and $C \subseteq \operatorname{co}(\{x_0\} \cup F(C))$. Now (1.2) with M = C guarantees that \overline{C} is compact (so sequentially compact). Thus there exist a subsequence N_1 of \mathbb{N} and a $y \in \overline{C}$ with $y_n \to y$ as $n \to \infty$ in N_1 . This together with $y_n \in (1 - t_n)\{x_0\} + t_n F y_n$ and the upper semicontinuity of *F* guarantees that $y \in (1 - t)\{x_0\} + tF y$, so $y \in \overline{\Sigma} = \sum$. Consequently, Σ is sequentially compact and hence compact. In fact, one could also of course take Σ to be

$$\{y \in \overline{U} : y \in Fy\} \tag{1.5}$$

for the compact set in Theorem 1.1.

2. Projective limit approach

Let $E = (E, \{|\cdot|_n\}_{n \in \mathbb{N}})$ be a Fréchet space with the topology generated by a family of seminorms $\{|\cdot|_n : n \in \mathbb{N}\}$. We assume that the family of seminorms satisfies

$$|x|_1 \le |x|_2 \le |x|_3 \le \cdots \quad \text{for every } x \in E.$$

To *E*, we associate a sequence of Banach spaces $\{(\mathbf{E}_n, |\cdot|_n)\}$ described as follows. For every $n \in \mathbb{N}$, we consider the equivalence relation \sim_n defined by

$$x \sim_n y \quad \text{iff } |x - y|_n = 0.$$
 (2.2)

We denote by $\mathbf{E}^n = (E/\sim_n, |\cdot|_n)$ the quotient space, and by $(\mathbf{E}_n, |\cdot|_n)$ the completion of \mathbf{E}^n with respect to $|\cdot|_n$ (the norm on \mathbf{E}^n induced by $|\cdot|_n$ and its extension to \mathbf{E}_n are still denoted by $|\cdot|_n$). This construction defines a continuous map $\mu_n : E \to \mathbf{E}_n$. Now since (2.1) is satisfied, the seminorm $|\cdot|_n$ induces a seminorm on \mathbf{E}_m for every $m \ge n$ (again this seminorm is denoted by $|\cdot|_n$). Also (2.2) defines an equivalence relation on \mathbf{E}_m from which we obtain a continuous map $\mu_{n,m} : \mathbf{E}_m \to \mathbf{E}_n$ since \mathbf{E}_m/\sim_n can be regarded as

a subset of E_n . We now assume that the following condition holds:

for each
$$n \in \mathbb{N}$$
, there exist a Banach space $(E_n, |\cdot|_n)$
and an isomorphism (between normed spaces) $j_n : \mathbf{E}_n \longrightarrow E_n$. (2.3)

Remark 2.1. (i) For convenience, the norm on E_n is denoted by $|\cdot|_n$.

(ii) In our applications, $\mathbf{E}_n = \mathbf{E}^n$ for each $n \in \mathbb{N}$.

(iii) Note that if $x \in \mathbf{E}_n$ (or \mathbf{E}^n), then $x \in E$. However if $x \in E_n$, then x is not necessarily in *E* and in fact E_n is easier to use in applications as we will see in Theorem 2.3 (even though E_n is isomorphic to \mathbf{E}_n).

Finally, we assume that

$$E_1 \supseteq E_2 \supseteq \cdots$$
 and for each $n \in \mathbb{N}$, $|x|_n \le |x|_{n+1}$ $\forall x \in E_{n+1}$. (2.4)

Let $\lim_{t \to \infty} E_n$ (or $\bigcap_1^{\infty} E_n$, where \bigcap_1^{∞} is the generalized intersection [4]) denote the projective limit of $\{E_n\}_{n \in \mathbb{N}}$ (note that $\pi_{n,m} = j_n \mu_{n,m} j_m^{-1} : E_m \to E_n$ for $m \ge n$) and note that $\lim_{t \to \infty} E_n \cong E$, so for convenience we write $E = \lim_{t \to \infty} E_n$.

For each $X \subseteq E$ and each $n \in \mathbb{N}$, we set $X_n = j_n \mu_n(X)$ and we let $\overline{X_n}$ and ∂X_n denote, respectively, the closure and the boundary of X_n with respect to $|\cdot|_n$ in E_n . Also the pseudointerior of X is defined by [2]

$$pseudo-int(X) = \{x \in X : j_n \mu_n(x) \in \overline{X_n} \setminus \partial X_n \text{ for every } n \in \mathbb{N}\}.$$
(2.5)

Our main result in this paper is the extension of Theorem 1.1 to an applicable result in the Fréchet space setting (we refer the reader to [1]; in applications, usually the set U is bounded and as a result has *empty* interior in the nonnormable situation).

THEOREM 2.2. Let *E* and *E_n* be as described above and let $F : X \to 2^E$, where $X \subseteq E$ (here 2^E denotes the family of nonempty subsets of *E*). Suppose that the following conditions are satisfied:

$$x_0 \in \text{pseudo} - \text{int}(X),$$
 (2.6)

for each
$$n \in \mathbb{N}$$
, $F: \overline{X_n} \longrightarrow CK(E_n)$ is an upper semicontinuous map, (2.7)

for each
$$n \in \mathbb{N}$$
, $M \subseteq X_n$ with $M \subseteq \operatorname{co}(\{j_n\mu_n(x_0)\} \cup F(M)),$

(2.8)

with
$$\overline{M} = \overline{C}$$
 and $C \subseteq M$ countable, implies that \overline{M} is compact

for each
$$n \in \mathbb{N}$$
, $y \notin (1-\lambda)j_n\mu_n(x_0) + \lambda Fy$ in $E_n \quad \forall \lambda \in (0,1), y \in \partial X_n$, (2.9)

for each
$$n \in \{2, 3, ...\}$$
 if $y \in \overline{X_n}$ solves $y \in Fy$ in E_n , then $y \in \overline{X_k}$,
(2.10)

for
$$k \in \{1, ..., n-1\}$$
.

Then F has a fixed point in X.

Proof. Fix $n \in \mathbb{N}$. Let $\sum_{n} = \{x \in \overline{X_n} : x \in Fx \text{ in } E_n\}$. Now Theorem 1.1 (note that (2.6) implies that $j_n\mu_n(x_0) \in \overline{X_n} \setminus \partial X_n$) guarantees that there exists $y_n \in \sum_n \text{ with } y_n \in Fy_n$. We look at $\{y_n\}_{n \in \mathbb{N}}$. Now $y_1 \in \sum_1$. Also $y_k \in \sum_1$ for $k \in \mathbb{N} \setminus \{1\}$ since $y_k \in \overline{X_1}$ from (2.10) (see also (2.4)). As a result, $y_n \in \sum_1$ for $n \in \mathbb{N}$ and since \sum_1 is compact (see Remark 1.2), there exist a subsequence N_1^* of \mathbb{N} and a $z_1 \in \sum_1$ with $y_n \to z_1$ in E_1 as $n \to \infty$ in N_1^* . Let $N_1 = N_1^* \setminus \{1\}$. Now $y_n \in \sum_2$ for $n \in N_1$ so there exist a subsequence N_2^* of N_1 and a $z_2 \in \sum_2$ with $y_n \to z_2$ in E_2 as $n \to \infty$ in N_2^* . Note from (2.4) that $z_2 = z_1$ in E_1 since $N_2^* \subseteq N_1$. Let $N_2 = N_2^* \setminus \{2\}$. Proceed inductively to obtain subsequences of integers

$$N_1^* \supseteq N_2^* \supseteq \cdots, \quad N_k^* \subseteq \{k, k+1, \ldots\}$$

$$(2.11)$$

and $z_k \in \sum_k \text{ with } y_n \to z_k \text{ in } E_k \text{ as } n \to \infty \text{ in } N_k^*$. Note that $z_{k+1} = z_k \text{ in } E_k \text{ for } k \in \{1, 2, ...\}$. Also let $N_k = N_k^* \setminus \{k\}$.

Fix $k \in \mathbb{N}$. Let $y = z_k$ in E_k . Notice that y is well defined and $y \in \lim_{k \to \infty} E_n = E$. Now $y_n \in Fy_n$ in E_n for $n \in N_k$ and $y_n \to y$ in E_k as $n \to \infty$ in N_k (since $y = z_k$ in E_k) together with the fact that $F : \overline{X_k} \to CK(E_k)$ is upper semicontinuous (note that $y_n \in \sum_k$ for $n \in N_k$) imply that $y \in Fy$ in E_k . We can do this for each $k \in \mathbb{N}$ so as a result, we have $y \in Fy$ in E.

Next, we present an application of Theorem 2.2. We discuss the differential equation

$$y'(t) = f(t, y(t))$$
 a.e. $t \in [0, T),$
 $y(0) = y_0 \in \mathbb{R},$ (2.12)

where $0 < T \le \infty$ is fixed. First we introduce some notation. If $u \in C[0, T)$, then for every $n \in \mathbb{N}$, we define the seminorms $\rho_n(u)$ by

$$\rho_n(u) = \sup_{t \in [0, t_n]} |u(t)|, \qquad (2.13)$$

where $t_n \uparrow T$. Note that C[0, T) is a locally convex linear topological space. The topology on C[0, T), induced by the seminorms $\{\rho_n\}_{n \in \mathbb{N}}$, is the topology of uniform convergence on every compact interval of [0, T).

Recall that a function $g : [a, b] \times \mathbb{R} \to \mathbb{R}$ is an L^1 -Carathéodory function if

(a) the map $t \mapsto g(t, y)$ is measurable for all $y \in \mathbb{R}$,

(b) the map $y \mapsto g(t, y)$ is continuous for a.e. $t \in [a, b]$.

Now, $g : [a, b] \times \mathbb{R} \to \mathbb{R}$ is said to be an L^p -Carathéodory function $(1 \le p \le \infty)$ if g is a Carathéodory function and

(c) for any r > 0, there exists $\mu_r \in L^p[a,b]$ such that $|y| \le r$ implies that $|g(t,y)| \le \mu_r(t)$ for a.e. $t \in [a,b]$.

Finally, a function $g : [0,T) \times \mathbb{R} \to \mathbb{R}$ is an L^p_{loc} -Carathéodory function if (a), (b), and (c) above hold when g is restricted to $[0,t_n] \times \mathbb{R}$ for any $n \in \mathbb{N}$.

THEOREM 2.3. Suppose that the following conditions are satisfied:

for each
$$n \in \mathbb{N}$$
, $f: [0, t_n] \times \mathbb{R} \longrightarrow \mathbb{R}$ is a Carathéodory function, (2.14)

there exists an $L^1_{\text{loc}}[0,T)$ – Carathéodory function $g:[0,T) \times [0,\infty) \longrightarrow [0,\infty)$ (2.15)

such that $|f(t,x)| \leq g(t,|x|)$ for a.e. $t \in [0,T)$ and all $x \in \mathbb{R}$,

for each $n \in \mathbb{N}$, the problem

$$v'(t) = g(t, v(t)), \quad a.e. \ t \in [0, t_n],$$

 $v(0) = |y_0|$
(2.16)

has a maximal solution $r_n(t)$ on $[0,t_n]$ (here $r_n \in C[0,t_n]$).

Then (2.12) *has at least one solution* $y \in C[0, T)$ *.*

Remark 2.4. One could also obtain a multivalued version of Theorem 2.3 (with (2.12) replaced by a differential inclusion) by using the ideas in the proof below with the ideas in [6].

Proof. Here E = C[0, T), \mathbf{E}^k consists of the class of functions in E which coincide on the interval $[0, t_k]$, $E_k = C[0, t_k]$ with of course $\pi_{n,m} = j_n \mu_{n,m} j_m^{-1} : E_m \to E_n$ for $m \ge n$ defined by $\pi_{n,m}(x) = x|_{[0,t_n]}$. We will apply Theorem 2.2 with

$$X = \{ u \in C[0,T) : |u|_n \le w_n \text{ for each } n \in \mathbb{N} \};$$

$$(2.17)$$

here $|u|_n = \sup_{t \in I_n} |u(t)|$, where $I_n = [0, t_n]$ and $w_n = \sup_{t \in I_n} r_n(t) + 1$. On any interval $I_n = [0, t_n]$ ($n \in \mathbb{N}$), we let *F* on $C(I_n)$ be defined by

$$Fy(t) = y_0 + \int_0^t f(s, y(s)) ds.$$
 (2.18)

Fix $n \in \mathbb{N}$. Notice that

$$\overline{X_n} = \{ u \in C[0, t_n] : |u|_n \le w_n \}.$$
(2.19)

Clearly, (2.6) holds with $x_0 = 0$ and a standard argument from the literature [8] guarantees that

$$F: \overline{X_n} \longrightarrow E_n$$
 is continuous and compact, (2.20)

so (2.7) and (2.8) hold.

To show that (2.9), fix $n \in \mathbb{N}$ and let $y \in C(I_n)$ be such that $y = \lambda F y$ for $\lambda \in (0, 1)$. We claim $|y|_n < w_n$ and if this is true, then $y \notin \partial X_n$ and hence (2.9) is true. Let $t \in I_n$ and we now show that $|y(t)| < w_n$. If $|y(t)| \le |y_0|$, we are finished so it remains to discuss the

case when $|y(t)| > |y_0|$. In this case, there exists $a \in [0, t)$ with

$$y(s) | > |y_0|$$
 for $s \in (a,t], |y(a)| = |y_0|.$ (2.21)

Also

$$|y(s)|' \le |y'(s)| \le g(s, |y(s)|)$$
 a.e. on (a, t) , (2.22)

so

$$|y(s)|' \le g(s, |y(s)|), \text{ a.e. on } (a,t),$$

 $|y(a)| = |y_0|.$ (2.23)

Now a standard comparison theorem for ordinary differential equations in the real case [5, Theorem 1.10.2] guarantees that $|y(s)| \le r_n(s)$ for $s \in [a, t]$, so in particular $|y(t)| \le r_n(t) < w_n$, so (2.9) is true.

It remains to show that (2.10). To see this, fix $n \in \{2, 3, ...\}$ and suppose that $y \in \overline{X_n}$ solves

$$y'(t) = f(t, y(t)),$$
 a.e. on $[0, t_n],$
 $y(0) = y_0.$ (2.24)

Next, fix $k \in \{1, ..., n-1\}$. We must show that $y \in \overline{X_k}$. Now since $t_n \uparrow T$, notice that $[0, t_k] \subseteq [0, t_n]$ so as a result,

$$y'(t) = f(t, y(t)),$$
 a.e. on $[0, t_k],$
 $y(0) = y_0.$ (2.25)

Let $t \in [0, t_k]$ and essentially the same argument as above guarantees that $|y(t)| < w_k$ so $|y|_k < w_k$. Thus $y \in \overline{X_k}$ and (2.10) holds.

The result now follows immediately from Theorem 2.2.

Our final result was motivated by Urysohn-type operators.

THEOREM 2.5. Let *E* and *E*_n be as described in the beginning of Section 2 and let $F : X \to 2^E$, where $X \subseteq E$. Suppose that the following conditions are satisfied:

$$x_0 \in \text{pseudo} - \text{int}(X),$$
 (2.26)

$$\overline{X_1} \supseteq \overline{X_2} \supseteq \cdots, \qquad (2.27)$$

for each
$$n \in \mathbb{N}$$
, $F_n : \overline{X_n} \longrightarrow CK(E_n)$ is upper semicontinuous, (2.28)

for each
$$n \in \mathbb{N}$$
, $M \subseteq \overline{X_n}$ with $M \subseteq \operatorname{co}\left(\{j_n\mu_n(x_0)\} \cup F_n(M)\right)$

(2.29)

with
$$\overline{M} = \overline{C}$$
 and $C \subseteq M$ countable, implies that \overline{M} is compact,

for each $n \in \mathbb{N}$, $y \notin (1-\lambda)j_n\mu_n(x_0) + \lambda F_n y$ in $E_n \quad \forall \lambda \in (0,1), y \in \partial X_n$, (2.30)

for each
$$n \in \mathbb{N}$$
, the map $\mathscr{K}_n : \overline{X_n} \longrightarrow 2^{E_n}$, given by
 $\mathscr{K}_n(y) = \bigcup_{m=n}^{\infty} F_m(y)$ (see Remark 2.6), satisfies that (2.31)

if $C \subseteq \overline{X_n}$ *is countable with* $C \subseteq \mathcal{K}_n(C)$ *, then* \overline{C} *is compact,*

if there exist a $w \in X$ *and a sequence* $\{y_n\}_{n \in \mathbb{N}}$ *with* $y_n \in \overline{X_n}$ *and* $y_n \in F_n y_n$ *in* E_n

such that for every $k \in \mathbb{N}$ there exists a subsequence $S \subseteq \{k+1, k+2, ...\}$ of \mathbb{N} with $y_n \longrightarrow w$ in E_k as $n \longrightarrow \infty$ in S, then $w \in Fw$ in E.

(2.32)

Then F has a fixed point in X.

Remark 2.6. The definition of \mathcal{K}_n is as follows. If $y \in \overline{X_n}$ and $y \notin \overline{X_{n+1}}$, then $\mathcal{K}_n(y) = F_n(y)$, whereas if $y \in \overline{X_{n+1}}$ and $y \notin \overline{X_{n+2}}$, then $\mathcal{K}_n(y) = F_n(y) \cup F_{n+1}(y)$, and so on.

Proof. Fix $n \in \mathbb{N}$. Let $\sum_{n} = \{x \in \overline{X_n} : x \in F_n x \text{ in } E_n\}$. Now, Theorem 1.1 guarantees that there exists $y_n \in \sum_n \text{ with } y_n \in F_n y_n \text{ in } E_n$. We look at $\{y_n\}_{n \in \mathbb{N}}$. Note that $y_n \in \overline{X_1}$ for $n \in \mathbb{N}$ from (2.27). In addition with $C = \{y_n\}_1^\infty$, we have from assumption (2.31) that $\overline{C} \subseteq E_1$) is compact; note that $y_n \in \mathcal{K}_1(y_n)$ in E_1 for each $n \in \mathbb{N}$. Thus there exist a subsequence N_1^* of \mathbb{N} and a $z_1 \in \overline{X_1}$ with $y_n \to z_1$ in E_1 as $n \to \infty$ in N_1^* . Let $N_1 = N_1^* \setminus \{1\}$. Proceed inductively to obtain subsequences of integers

$$N_1^* \supseteq N_2^* \supseteq \dots, \quad N_k^* \subseteq \{k, k+1, \dots\}$$
 (2.33)

and $z_k \in \overline{X_k}$ with $y_n \to z_k$ in E_k as $n \to \infty$ in N_k^* . Note that $z_{k+1} = z_k$ in E_k for $k \in \mathbb{N}$. Also let $N_k = N_k^* \setminus \{k\}$.

Fix $k \in \mathbb{N}$. Let $y = z_k$ in E_k . Notice that y is well defined and $y \in \lim_{k \to \infty} E_n = E$. Now $y_n \in F_n y_n$ in E_n for $n \in N_k$ and $y_n \to y$ in E_k as $n \to \infty$ in N_k (since $y = z_k$ in E_k) together with (2.32) imply that $y \in Fy$ in E.

References

- R. P. Agarwal, M. Frigon, and D. O'Regan, *A survey of recent fixed point theory in Fréchet spaces*, Nonlinear Analysis and Applications: to V. Lakshmikantham on His 80th Birthday. Vol. 1, 2, Kluwer Academic, Dordrecht, 2003, pp. 75–88.
- M. Frigon, Fixed point results for compact maps on closed subsets of Fréchet spaces and applications to differential and integral equations, Bull. Belg. Math. Soc. Simon Stevin 9 (2002), no. 1, 23–37.
- [3] M. Frigon and D. O'Regan, A Leray-Schauder alternative for Mönch maps on closed subsets of Fréchet spaces, Z. Anal. Anwendungen 21 (2002), no. 3, 753–760.
- [4] L. V. Kantorovich and G. P. Akilov, *Functional Analysis in Normed Spaces*, International Series of Monographs in Pure and Applied Mathematics, vol. 46, The Macmillan, New York, 1964.
- [5] V. Lakshmikantham and S. Leela, *Differential and Integral Inequalities: Theory and Applications.* Vol. I: Ordinary Differential Equations, Mathematics in Science and Engineering, vol. 55, Academic Press, New York, 1969.
- [6] D. O'Regan, Maximal solutions and multivalued differential and integral inclusions on a noncompact interval, to appear in Nonlinear Funct. Anal. Appl.

2782 Fixed point theory

- [7] D. O'Regan and R. P. Agarwal, Fixed point theory for admissible multimaps defined on closed subsets of Fréchet spaces, J. Math. Anal. Appl. 277 (2003), no. 2, 438–445.
- [8] D. O'Regan and M. Meehan, Existence Theory for Nonlinear Integral and Integrodifferential Equations, Mathematics and Its Applications, vol. 445, Kluwer Academic, Dordrecht, 1998.
- [9] D. O'Regan and R. Precup, Fixed point theorems for set-valued maps and existence principles for integral inclusions, J. Math. Anal. Appl. 245 (2000), no. 2, 594–612.

Ravi P. Agarwal: Department of Mathematical Sciences, College of Science, Florida Institute of Technology, Melbourne, FL 32901–6975, USA

E-mail address: agarwal@fit.edu

Jewgeni H. Dshalalow: Department of Mathematical Sciences, College of Science, Florida Institute of Technology, Melbourne, FL 32901–6975, USA

E-mail address: eugene@winnie.fit.edu

Donal O'Regan: Department of Mathematics, National University of Ireland, Galway, University Road, Galway, Ireland

E-mail address: donal.oregan@nuigalway.ie