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New Leray-Schauder alternatives are presented for Mönch-type maps defined between
Fréchet spaces. The proof relies on viewing a Fréchet space as the projective limit of a
sequence of Banach spaces.

1. Introduction

This paper presents new Leray-Schauder alternatives for Mönch-type maps defined be-
tween Fréchet spaces. Two approaches [1, 2, 3, 6, 7] have recently been presented in the
literature both of which are based on the fact that a Fréchet space can be viewed as a
projective limit of a sequence of Banach spaces {En}n∈N (here N = {1,2, . . .}). Both ap-
proaches are based on constructing maps Fn defined on subsets of En whose fixed points
converge to a fixed point of the original operator F. Both approaches have advantages and
disadvantages over the other [1] and in this paper, we combine the advantages of both ap-
proaches to present very general fixed point results. Our theory in particular extends and
improves the theory in [3] (in [3], the single-valued case was discussed).

Finally in this section, we gather together some definitions and a fixed point result
which will be needed in Section 2.

Now, let I be a directed set with order ≤ and let {Eα}α∈I be a family of locally convex
spaces. For each α∈ I , β ∈ I for which α≤ β, let πα,β : Eβ → Eα be a continuous map. Then
the set

{
x = (xα)∈∏

α∈I
Eα : xα = πα,β

(
xβ
)∀α,β ∈ I , α≤ β

}
(1.1)

is a closed subset of
∏

α∈I Eα and is called the projective limit of {Eα}α∈I and is denoted
by lim←Eα (or lim←{Eα,πα,β} or the generalized intersection [4, page 439]

⋂
α∈I Eα).

Next, we recall a fixed point result from the literature [9] which we will use in Section 2.

Theorem 1.1. Let K be a closed convex subset of a Banach space X , U a relatively open
subset of K , x0 ∈ U , and suppose that F : U → CK(K) is an upper semicontinuous map
(here CK(K) denotes the family of nonempty convex compact subsets of K). Also assume
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that the following conditions hold:

M ⊆U , M ⊆ co
({
x0
}∪F(M)

)
with M = C,

C ⊆M countable, implies M is compact,
(1.2)

x /∈ (1− λ)
{
x0
}

+ λFx for x ∈U \U , λ∈ (0,1). (1.3)

Then there exist a compact set
∑

of U and an x ∈∑ with x ∈ Fx.

Remark 1.2. In [9], we see that we could take
∑

to be

{
y ∈U : y ∈ (1− λ)

{
x0
}

+ λFy for some λ∈ [0,1]
}
. (1.4)

We did not show that
∑

is compact in [9] but this is easy to see as we will now
show. First, notice that

∑
is closed since F is upper semicontinuous. Now let {yn}∞1

be a sequence in
∑

. Then there exists {tn}∞1 in [0,1] with yn ∈ (1− tn){x0}+ tnF yn for
n∈N= {1,2, . . .}. Without loss of generality, assume that tn → t ∈ [0,1]. Let C = {yn}∞1 .
Notice that C is countable and C ⊆ co({x0}∪ F(C)). Now (1.2) with M = C guarantees
that C is compact (so sequentially compact). Thus there exist a subsequence N1 of N and
a y ∈ C with yn→ y as n→∞ in N1. This together with yn ∈ (1− tn){x0}+ tnF yn and the
upper semicontinuity of F guarantees that y ∈ (1− t){x0}+ tF y, so y ∈∑=∑. Conse-
quently,

∑
is sequentially compact and hence compact. In fact, one could also of course

take
∑

to be

{y ∈U : y ∈ Fy} (1.5)

for the compact set in Theorem 1.1.

2. Projective limit approach

Let E = (E,{| · |n}n∈N) be a Fréchet space with the topology generated by a family of
seminorms {| · |n : n∈N}. We assume that the family of seminorms satisfies

|x|1 ≤ |x|2 ≤ |x|3 ≤ ··· for every x ∈ E. (2.1)

To E, we associate a sequence of Banach spaces {(En,| · |n)} described as follows. For
every n∈N, we consider the equivalence relation ∼n defined by

x ∼n y iff |x− y|n = 0. (2.2)

We denote by En = (E/∼n,| · |n) the quotient space, and by (En,| · |n) the completion of
En with respect to | · |n (the norm on En induced by | · |n and its extension to En are still
denoted by | · |n). This construction defines a continuous map µn : E→ En. Now since
(2.1) is satisfied, the seminorm | · |n induces a seminorm on Em for every m ≥ n (again
this seminorm is denoted by | · |n). Also (2.2) defines an equivalence relation on Em

from which we obtain a continuous map µn,m : Em → En since Em/ ∼n can be regarded as
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a subset of En. We now assume that the following condition holds:

for each n∈N, there exist a Banach space
(
En,| · |n

)
and an isomorphism (between normed spaces) jn : En −→ En.

(2.3)

Remark 2.1. (i) For convenience, the norm on En is denoted by | · |n.
(ii) In our applications, En = En for each n∈N.
(iii) Note that if x ∈ En (or En), then x ∈ E. However if x ∈ En, then x is not necessarily

in E and in fact En is easier to use in applications as we will see in Theorem 2.3 (even
though En is isomorphic to En).

Finally, we assume that

E1 ⊇ E2 ⊇ ··· and for each n∈N, |x|n ≤ |x|n+1 ∀x ∈ En+1. (2.4)

Let lim←En (or
⋂∞

1 En, where
⋂∞

1 is the generalized intersection [4]) denote the projective
limit of {En}n∈N (note that πn,m = jnµn,m j−1

m : Em→ En form≥ n) and note that lim←En ∼=
E, so for convenience we write E = lim←En.

For each X ⊆ E and each n ∈N, we set Xn = jnµn(X) and we let Xn and ∂Xn denote,
respectively, the closure and the boundary of Xn with respect to | · |n in En. Also the
pseudointerior of X is defined by [2]

pseudo− int(X)= {x ∈ X : jnµn(x)∈ Xn \ ∂Xn for every n∈N}. (2.5)

Our main result in this paper is the extension of Theorem 1.1 to an applicable result
in the Fréchet space setting (we refer the reader to [1]; in applications, usually the set U
is bounded and as a result has empty interior in the nonnormable situation).

Theorem 2.2. Let E and En be as described above and let F : X → 2E, where X ⊆ E (here
2E denotes the family of nonempty subsets of E). Suppose that the following conditions are
satisfied:

x0 ∈ pseudo− int(X), (2.6)

for each n∈N, F : Xn −→ CK
(
En
)

is an upper semicontinuous map, (2.7)

for each n∈N, M ⊆ Xn with M ⊆ co
({

jnµn
(
x0
)}∪F(M)

)
,

with M = C and C ⊆M countable, implies that M is compact
(2.8)

for each n∈N, y /∈ (1− λ) jnµn
(
x0
)

+ λFy in En ∀λ∈ (0,1), y ∈ ∂Xn, (2.9)

for each n∈ {2,3, . . .} if y ∈ Xn solves y ∈ Fy in En, then y ∈ Xk,

for k ∈ {1, . . . ,n− 1}.
(2.10)

Then F has a fixed point in X .



2778 Fixed point theory

Proof. Fix n ∈ N. Let
∑

n = {x ∈ Xn : x ∈ Fx in En}. Now Theorem 1.1 (note that (2.6)
implies that jnµn(x0)∈ Xn \ ∂Xn) guarantees that there exists yn ∈

∑
n with yn ∈ Fyn. We

look at {yn}n∈N. Now y1 ∈
∑

1. Also yk ∈
∑

1 for k ∈N \ {1} since yk ∈ X1 from (2.10)
(see also (2.4)). As a result, yn ∈

∑
1 for n∈N and since

∑
1 is compact (see Remark 1.2),

there exist a subsequence N�1 of N and a z1 ∈
∑

1 with yn → z1 in E1 as n→∞ in N�1 .
Let N1 = N�1 \ {1}. Now yn ∈

∑
2 for n ∈ N1 so there exist a subsequence N�2 of N1

and a z2 ∈
∑

2 with yn → z2 in E2 as n→∞ in N�2 . Note from (2.4) that z2 = z1 in E1

since N�2 ⊆ N1. Let N2 = N�2 \ {2}. Proceed inductively to obtain subsequences of inte-
gers

N�1 ⊇N�2 ⊇ ··· , N�k ⊆ {k,k+ 1, . . .} (2.11)

and zk ∈
∑

k with yn→ zk in Ek as n→∞ inN�k . Note that zk+1 = zk in Ek for k ∈ {1,2, . . .}.
Also let Nk =N�k \ {k}.

Fix k ∈ N. Let y = zk in Ek. Notice that y is well defined and y ∈ lim←En = E. Now
yn ∈ Fyn in En for n ∈ Nk and yn → y in Ek as n→∞ in Nk (since y = zk in Ek) to-
gether with the fact that F : Xk → CK(Ek) is upper semicontinuous (note that yn ∈

∑
k

for n∈Nk) imply that y ∈ Fy in Ek. We can do this for each k ∈N so as a result, we have
y ∈ Fy in E. �

Next, we present an application of Theorem 2.2. We discuss the differential equation

y′(t)= f
(
t, y(t)

)
a.e. t ∈ [0,T),

y(0)= y0 ∈R,
(2.12)

where 0 < T ≤∞ is fixed. First we introduce some notation. If u∈ C[0,T), then for every
n∈N, we define the seminorms ρn(u) by

ρn(u)= sup
t∈[0,tn]

∣∣u(t)
∣∣, (2.13)

where tn ↑ T . Note that C[0,T) is a locally convex linear topological space. The topology
on C[0,T), induced by the seminorms {ρn}n∈N, is the topology of uniform convergence
on every compact interval of [0,T).

Recall that a function g : [a,b]×R→R is an L1-Carathéodory function if
(a) the map t �→ g(t, y) is measurable for all y ∈R,
(b) the map y �→ g(t, y) is continuous for a.e. t ∈ [a,b].

Now, g : [a,b]×R→R is said to be an Lp-Carathéodory function (1≤ p ≤∞) if g is a
Carathéodory function and

(c) for any r > 0, there exists µr ∈ Lp[a,b] such that |y| ≤ r implies that |g(t, y)| ≤
µr(t) for a.e. t ∈ [a,b].

Finally, a function g : [0,T)×R→R is an L
p
loc-Carathéodory function if (a), (b), and

(c) above hold when g is restricted to [0, tn]×R for any n∈N.



Ravi P. Agarwal et al. 2779

Theorem 2.3. Suppose that the following conditions are satisfied:

for each n∈N, f :
[
0, tn

]×R−→R is a Carathéodory function, (2.14)

there exists an L1
loc[0,T)−Carathéodory function g : [0,T)× [0,∞)−→ [0,∞)

such that
∣∣ f (t,x)

∣∣≤ g
(
t,|x|) for a.e. t ∈ [0,T) and all x ∈R,

(2.15)

for each n∈N, the problem

v′(t)= g
(
t,v(t)

)
, a.e. t ∈ [0, tn

]
,

v(0)= ∣∣y0
∣∣

has a maximal solution rn(t) on
[
0, tn

](
here rn ∈ C

[
0, tn

])
.

(2.16)

Then (2.12) has at least one solution y ∈ C[0,T).

Remark 2.4. One could also obtain a multivalued version of Theorem 2.3 (with (2.12)
replaced by a differential inclusion) by using the ideas in the proof below with the ideas
in [6].

Proof. Here E = C[0,T), Ek consists of the class of functions in E which coincide on the
interval [0, tk], Ek = C[0, tk] with of course πn,m = jnµn,m j−1

m : Em → En for m≥ n defined
by πn,m(x)= x|[0,tn]. We will apply Theorem 2.2 with

X = {u∈ C[0,T) : |u|n ≤wn for each n∈N}; (2.17)

here |u|n = supt∈In |u(t)|, where In = [0, tn] and wn = supt∈In rn(t) + 1. On any interval
In = [0, tn] (n∈N), we let F on C(In) be defined by

Fy(t)= y0 +
∫ t

0
f
(
s, y(s)

)
ds. (2.18)

Fix n∈N. Notice that

Xn =
{
u∈ C

[
0, tn

]
: |u|n ≤wn

}
. (2.19)

Clearly, (2.6) holds with x0 = 0 and a standard argument from the literature [8] guaran-
tees that

F : Xn −→ En is continuous and compact, (2.20)

so (2.7) and (2.8) hold.
To show that (2.9), fix n∈N and let y ∈ C(In) be such that y = λFy for λ∈ (0,1). We

claim |y|n < wn and if this is true, then y /∈ ∂Xn and hence (2.9) is true. Let t ∈ In and we
now show that |y(t)| < wn. If |y(t)| ≤ |y0|, we are finished so it remains to discuss the
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case when |y(t)| > |y0|. In this case, there exists a∈ [0, t) with

∣∣y(s)
∣∣ > ∣∣y0

∣∣ for s∈ (a, t],
∣∣y(a)

∣∣= ∣∣y0
∣∣. (2.21)

Also

∣∣y(s)
∣∣′ ≤ ∣∣y′(s)∣∣≤ g

(
s,
∣∣y(s)

∣∣) a.e. on (a, t), (2.22)

so

∣∣y(s)
∣∣′ ≤ g

(
s,
∣∣y(s)

∣∣), a.e. on (a, t),∣∣y(a)
∣∣= ∣∣y0

∣∣. (2.23)

Now a standard comparison theorem for ordinary differential equations in the real case
[5, Theorem 1.10.2] guarantees that |y(s)| ≤ rn(s) for s∈ [a, t], so in particular |y(t)| ≤
rn(t) < wn, so (2.9) is true.

It remains to show that (2.10). To see this, fix n ∈ {2,3, . . .} and suppose that y ∈ Xn

solves

y′(t)= f
(
t, y(t)

)
, a.e. on

[
0, tn

]
,

y(0)= y0.
(2.24)

Next, fix k ∈ {1, . . . ,n− 1}. We must show that y ∈ Xk. Now since tn ↑ T , notice that
[0, tk]⊆ [0, tn] so as a result,

y′(t)= f
(
t, y(t)

)
, a.e. on

[
0, tk

]
,

y(0)= y0.
(2.25)

Let t ∈ [0, tk] and essentially the same argument as above guarantees that |y(t)| < wk so
|y|k < wk. Thus y ∈ Xk and (2.10) holds.

The result now follows immediately from Theorem 2.2. �

Our final result was motivated by Urysohn-type operators.

Theorem 2.5. Let E and En be as described in the beginning of Section 2 and let F : X → 2E,
where X ⊆ E. Suppose that the following conditions are satisfied:

x0 ∈ pseudo− int(X), (2.26)

X1 ⊇ X2 ⊇ ··· , (2.27)

for each n∈N, Fn : Xn −→ CK
(
En
)

is upper semicontinuous, (2.28)

for each n∈N, M ⊆ Xn with M ⊆ co
({

jnµn
(
x0
)}∪Fn(M)

)
with M = C and C ⊆M countable, implies that M is compact,

(2.29)

for each n∈N, y /∈ (1− λ) jnµn
(
x0
)

+ λFny in En ∀λ∈ (0,1), y ∈ ∂Xn, (2.30)
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for each n∈N, the map �n : Xn −→ 2En , given by

�n(y)=
∞⋃

m=n
Fm(y) (see Remark 2.6), satisfies that

if C ⊆ Xn is countable with C ⊆�n(C), then C is compact,

(2.31)

if there exist a w ∈ X and a sequence
{
yn
}
n∈N with yn ∈ Xn and yn ∈ Fnyn in En

such that for every k ∈N there exists a subsequence S⊆ {k+ 1,k+ 2, . . .} of N

with yn −→w in Ek as n−→∞ in S, then w ∈ Fw in E.
(2.32)

Then F has a fixed point in X .

Remark 2.6. The definition of �n is as follows. If y ∈ Xn and y /∈ Xn+1, then �n(y) =
Fn(y), whereas if y ∈ Xn+1 and y /∈ Xn+2, then �n(y)= Fn(y)∪Fn+1(y), and so on.

Proof. Fix n ∈N. Let
∑

n = {x ∈ Xn : x ∈ Fnx in En}. Now, Theorem 1.1 guarantees that
there exists yn ∈

∑
n with yn ∈ Fnyn in En. We look at {yn}n∈N. Note that yn ∈ X1 for n∈

N from (2.27). In addition with C = {yn}∞1 , we have from assumption (2.31) that C(⊆ E1)
is compact; note that yn ∈�1(yn) in E1 for each n ∈N. Thus there exist a subsequence
N�1 of N and a z1 ∈ X1 with yn → z1 in E1 as n→∞ in N�1 . Let N1 = N�1 \ {1}. Proceed
inductively to obtain subsequences of integers

N�1 ⊇N�2 ⊇ . . . , N�k ⊆ {k,k+ 1, . . .} (2.33)

and zk ∈ Xk with yn→ zk in Ek as n→∞ in N�k . Note that zk+1 = zk in Ek for k ∈N. Also
let Nk =N�k \ {k}.

Fix k ∈ N. Let y = zk in Ek. Notice that y is well defined and y ∈ lim←En = E. Now
yn ∈ Fnyn in En for n∈Nk and yn→ y in Ek as n→∞ in Nk (since y = zk in Ek) together
with (2.32) imply that y ∈ Fy in E. �
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