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New Leray-Schauder alternatives are presented for Monch-type maps defined between
Fréchet spaces. The proof relies on viewing a Fréchet space as the projective limit of a
sequence of Banach spaces.

1. Introduction

This paper presents new Leray-Schauder alternatives for Monch-type maps defined be-
tween Fréchet spaces. Two approaches [1, 2, 3, 6, 7] have recently been presented in the
literature both of which are based on the fact that a Fréchet space can be viewed as a
projective limit of a sequence of Banach spaces {E,}en (here N = {1,2,...}). Both ap-
proaches are based on constructing maps F, defined on subsets of E, whose fixed points
converge to a fixed point of the original operator F. Both approaches have advantages and
disadvantages over the other [1] and in this paper, we combine the advantages of both ap-
proaches to present very general fixed point results. Our theory in particular extends and
improves the theory in [3] (in [3], the single-valued case was discussed).

Finally in this section, we gather together some definitions and a fixed point result
which will be needed in Section 2.

Now, let I be a directed set with order < and let {E,}4er be a family of locally convex
spaces. For each « € I, § € I for which & < 8, let 45 : Eg — E, be a continuous map. Then
the set

{xz (xa) € [ [ Ea: xa = map(xp) V(x,ﬁel,ocs/)’} (1.1)

acl

is a closed subset of [ [,<; Ey and is called the projective limit of {E,}4er and is denoted
by lim._ E, (or lim. {E,, map} or the generalized intersection [4, page 439] Nyes Ea).
Next, we recall a fixed point result from the literature [9] which we will use in Section 2.

THEOREM 1.1. Let K be a closed convex subset of a Banach space X, U a relatively open
subset of K, xo € U, and suppose that F: U — CK(K) is an upper semicontinuous map
(here CK(K) denotes the family of nonempty convex compact subsets of K). Also assume
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that the following conditions hold:

McU, Mcco({xo}UFM)) withM=C,

_ 1.2
C<c M countable, implies M is compact, (1.2)
x¢ (1-M{xo} +AFx forxe U\ U, L€ (0,1). (1.3)
Then there exist a compact set >, of U and an x € >, with x € Fx.
Remark 1.2. In [9], we see that we could take > to be
{yeU:ye(1-21){x} +AFy for some A € [0,1]}. (1.4)

We did not show that > is compact in [9] but this is easy to see as we will now
show. First, notice that > is closed since F is upper semicontinuous. Now let {y,}{
be a sequence in Y. Then there exists {f,}7" in [0,1] with y, € (1 —t,) {x0} + t,Fy, for
neN = {1,2,...}. Without loss of generality, assume that ¢, — t € [0,1]. Let C = {y,}7".
Notice that C is countable and C < co({xo} U F(C)). Now (1.2) with M = C guarantees
that C is compact (so sequentially compact). Thus there exist a subsequence N; of N and
a y € Cwith y, — yasn — oo in Nj. This together with y, € (1 —¢t,){xo} + t,F y, and the
upper semicontinuity of F guarantees that y € (1 —t){xo} +tFy,so y € > = 3. Conse-
quently, > is sequentially compact and hence compact. In fact, one could also of course
take >’ to be

{yeU:y€eFy} (1.5)
for the compact set in Theorem 1.1.

2. Projective limit approach

Let E = (E,{| - ln}nen) be a Fréchet space with the topology generated by a family of
seminorms {| - |, : n € N}. We assume that the family of seminorms satisfies

Ixl) <lxl, < |x|3<--- foreveryx €E. (2.1)

To E, we associate a sequence of Banach spaces {(E,,| - |,)} described as follows. For
every n € N, we consider the equivalence relation ~, defined by

X~yy iff[x—yl,=0. (2.2)

We denote by E” = (E/~,,| - |,) the quotient space, and by (E,,| - |,) the completion of
E" with respect to | - |, (the norm on E" induced by | - |, and its extension to E, are still
denoted by | - [,,). This construction defines a continuous map g, : E — E,. Now since
(2.1) is satisfied, the seminorm | - |, induces a seminorm on E,, for every m > n (again
this seminorm is denoted by | - [,). Also (2.2) defines an equivalence relation on E,,
from which we obtain a continuous map gy, : E,, — E, since E,,/ ~, can be regarded as
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a subset of E,,. We now assume that the following condition holds:

for each n € N, there exist a Banach space (Ey, | - |,,)
2.3
and an isomorphism (between normed spaces) j, : E, — E,. (2.3)

Remark 2.1. (i) For convenience, the norm on E, is denoted by | - |,,.

(ii) In our applications, E, = E" for each n € N.

(iii) Note that if x € E,, (or E"), then x € E. However if x € E,, then x is not necessarily
in E and in fact E, is easier to use in applications as we will see in Theorem 2.3 (even
though E,, is isomorphic to E,).

Finally, we assume that
Ei2E2--- andforeachn e N, |x|, <|xl,y1 Vx€E,.;. (2.4)

Letlim._ E, (or ;" E,, where (7 is the generalized intersection [4]) denote the projective
limit of {E,} sen (note that 7y, = jufinmjm' : Em — En for m = n) and note thatlim._ E, =
E, so for convenience we write E = lim._ E,,.

For each X < E and each n € N, we set X, = j,u,(X) and we let X,, and 9X,, denote,
respectively, the closure and the boundary of X,, with respect to | - |, in E,. Also the
pseudointerior of X is defined by [2]

pseudo —int(X) = {x € X : jupn(x) € X,, \ 0X,, for every n € N}. (2.5)

Our main result in this paper is the extension of Theorem 1.1 to an applicable result
in the Fréchet space setting (we refer the reader to [1]; in applications, usually the set U
is bounded and as a result has empty interior in the nonnormable situation).

THEOREM 2.2. Let E and E, be as described above and let F : X — 2E, where X < E (here
2 denotes the family of nonempty subsets of E). Suppose that the following conditions are
satisfied:

xo € pseudo —int(X), (2.6)
foreachn € N, F:X, — CK(E,) is an upper semicontinuous map, (2.7)

foreachn e N, M <X, with M < co ({jupn(x0)} U F(M)),
. _ (2.8)
with M = C and C = M countable, implies that M is compact

foreachn €N, y & (1—A)jnpn(x0) +AFy inE, VA€ (0,1), y €0X,, (2.9)
oreachn € {2,3,...} ify € X,, solves y € Fy in E,,, then y € X,
y y y y

(2.10)
forke{l,...,n—1}.

Then F has a fixed point in X.
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Proof. Fix n € N. Let >, = {x € X,, : x € Fx in E,}. Now Theorem 1.1 (note that (2.6)
implies that j,u,(xo) € X,, \ 0X,,) guarantees that there exists y, € >, with y, € Fy,. We
look at {y,}nen. Now y; € 3. Also yx € >, for k € N\ {1} since yx € X; from (2.10)
(seealso (2.4)). As aresult, y, € D) for n € N and since >, is compact (see Remark 1.2),
there exist a subsequence Ni* of N and a z; € >} with y, — z; in E; as n — o in N{*.
Let Ny = N{" \ {1}. Now y, € >, for n € N; so there exist a subsequence N,* of N;
and a z; € >, with y, — z; in E; as n — co in N;". Note from (2.4) that z, = z; in E;
since N;* = Nj. Let N, = N;° \ {2}. Proceed inductively to obtain subsequences of inte-
gers

N*2Ny=2---, N cikk+1,..} (2.11)

and zx € > with y, — zx in Ex as n — oo in N/ Note that zx, = zx in E fork € {1,2,...}.
Also let N = N\ {k}.

Fix k € N. Let y = z; in Eg. Notice that y is well defined and y € lim. E, = E. Now
yn € Fy, in E, for n € Ny and y, — y in Ex as n — o in Ni (since y = zx in Ej) to-
gether with the fact that F : X; — CK(Ex) is upper semicontinuous (note that y, € >,
for n € Ni) imply that y € Fy in E;. We can do this for each k € N so as a result, we have
y€FyinE. 0

Next, we present an application of Theorem 2.2. We discuss the differential equation

y' () =f{ty(t) aetel0,T),

7(0) = yo € R, (2.12)

where 0 < T < o is fixed. First we introduce some notation. If u € C[0, T'), then for every
n € N, we define the seminorms p,(u) by

pn(u) = sup |u(t)], (2.13)

te(0,t,]

where t, 1 T. Note that C[0, T) is a locally convex linear topological space. The topology
on C[0,T), induced by the seminorms {p,}.en; is the topology of uniform convergence
on every compact interval of [0, T).
Recall that a function g : [a,b] X R — R is an L!'-Carathéodory function if
(a) the map t — g(t, y) is measurable for all y € R,
(b) the map y — g(#, y) is continuous for a.e. t € [a,b].
Now, g: [a,b] X R — R is said to be an LP-Carathéodory function (1 < p < o) ifgisa
Carathéodory function and
(c) for any r > 0, there exists y, € LP[a,b] such that |y| < r implies that |g(¢, y)| <
ur(t) fora.e. t € [a,b].
Finally, a function g : [0,T) X R — R is an Lf;C-Carathéodory function if (a), (b), and
(c) above hold when g is restricted to [0,t,] X R for any n € N.
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THEOREM 2.3. Suppose that the following conditions are satisfied:

foreachne N, f:[0,t,] Xx R — R is a Carathéodory function, (2.14)
there exists an LIIOC[O, T) — Carathéodory function g : [0,T) x [0,00) — [0, 00)
2.15
such that | f(t,x)| <g(t,|x|) fora.e t€[0,T)andall x € R, 2.15)
for each n € N, the problem
V() =g(t,v(t)), ae te[0,t,],
& (2.16)

v(0) = | o]

has a maximal solution r,(t) on [0,t,] (here r, € C[0,t,]).

Then (2.12) has at least one solution y € C[0,T).

Remark 2.4. One could also obtain a multivalued version of Theorem 2.3 (with (2.12)
replaced by a differential inclusion) by using the ideas in the proof below with the ideas
in [6].

Proof. Here E = C[0,T), E* consists of the class of functions in E which coincide on the
interval [0, #], Ex = C[0,#] with of course 7ym = jufinmjm' : Em — En for m > n defined
by mm(x) = xl[0,¢,1. We will apply Theorem 2.2 with

X ={ueC[0,T):|ul, <w, foreachn € N}; (2.17)

here |ul, = sup,; |u(t)l, where I, = [0,,] and w, = sup,.; r,(t) + 1. On any interval
I, = [0,t,] (n € N), we let F on C(I,) be defined by

t
Fy(t) = y0+Lf(s,y(s))ds. (2.18)
Fix n € N. Notice that
X, = {ue C[0,t,] : lul, <w,}. (2.19)

Clearly, (2.6) holds with xy = 0 and a standard argument from the literature [8] guaran-
tees that

F: X, — E, is continuous and compact, (2.20)

s0 (2.7) and (2.8) hold.

To show that (2.9), fix n € N and let y € C(I,) be such that y = AFy for A € (0,1). We
claim |y|, < w, and if this is true, then y € 0X,, and hence (2.9) is true. Let t € I,, and we
now show that |y(£)| < w,. If [y(t)| < |y0l, we are finished so it remains to discuss the
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case when | y(t)| > | yo|. In this case, there exists a € [0,) with

|y(s)| > [yo| forse (at], |y@)]| =]yl (2.21)

Also

[ y(s) | "< [y (s)| <g(s,|y(s)|) ae. on(aib), (2.22)
)

[ y(s) |’ <g(s|y(s)]), ae. on(at),

(2.23)
ly@)] = 1|yl

Now a standard comparison theorem for ordinary differential equations in the real case
[5, Theorem 1.10.2] guarantees that | y(s)| < r,(s) for s € [a,t], so in particular |y(t)| <
r.(t) < wy, so (2.9) is true.

It remains to show that (2.10). To see this, fix n € {2,3,...} and suppose that y € X,
solves

y' ()= f(t,y(t)), ae on0,t],

2(0) = y. (2.24)

Next, fix k € {1,...,n — 1}. We must show that y € X;. Now since t, 1 T, notice that
[0,2] < [0,£,] so as a result,

Yy ()= f(t,y(t)), ae onl0,t],

y(0) = yo. (2.25)

Let t € [0, 1] and essentially the same argument as above guarantees that | y(f)| < wy so
| ¥k < wk. Thus y € Xi and (2.10) holds.
The result now follows immediately from Theorem 2.2. g

Our final result was motivated by Urysohn-type operators.

THEOREM 2.5. Let E and E,, be as described in the beginning of Section 2 and let F : X — 2E,
where X < E. Suppose that the following conditions are satisfied:

Xo € pseudo —int(X), (2.26)
Xi2X%2---, (2.27)
foreachn € N, F,:X, — CK(E,) is upper semicontinuous, (2.28)

foreachneN, McX, withM < co({jupn(x0)} UE,(M))
— _ (2.29)
withM = Cand C< M  countable, implies that M is compact,

foreachneN, y& (1 —A)jupn(x0) +AF,y inE, VAe€(0,1), y€0dX,,  (2.30)
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for each n € N, the map ¥, : X,, — 25, given by
Haly) = U Fu(y) (see Remark 2.6), satisfies that (2.31)

if C < X,, is countable with C < I,,(C), then C is compact,
if there exist a w € X and a sequence {y,}, .y With y, € X, and y, € F,y, in E,

such that for every k € N there exists a subsequence S < {k+ 1,k +2,...} of N

with y, — win Ex asn — o in S, then w € Fw in E.
(2.32)

Then F has a fixed point in X.

Remark 2.6. The definition of ¥, is as follows. If y € X, and y & X,;11, then H,,(y) =
F,(y), whereas if y € Xj41 and y € X,42, then H,(y) = F,(y) U Fp41(y), and so on.

Proof. FixneN.Let X, ={x € X, :x € F,x in E,}. Now, Theorem 1.1 guarantees that
there exists y, € >, with y,, € F,y, in E,.. We look at {y,}.en. Note that y, € X; forn €
N from (2.27). In addition with C = {y,}{°, we have from assumption (2.31) that C(< E;)
is compact; note that y, € J{,(y,) in E; for each n € N. Thus there exist a subsequence
N of Nand a z; € X; with y, — z; in E; as n — o0 in Ny". Let N; = N;* \ {1}. Proceed
inductively to obtain subsequences of integers

N2Ny2..., Nfcikk+l,..} (2.33)

and zx € Xk with y, — z; in Ex as n — oo in N;*. Note that zx4; = 2 in Ex for k € N. Also
let Ny = N\ {k}.

Fix k € N. Let y = z; in Ej. Notice that y is well defined and y € lim. E,, = E. Now
yYn € Fyyn in E, for n € Ny and y, — y in Ex as n — oo in N (since y = z in Ex) together
with (2.32) imply that y € Fy in E. O
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