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A A1 Toda system is extended via Lax pair formulations in order to probe noncommuta-
tive variables extensions. Systems, some solvable, are built using matrix generalizations.

1. Introduction

Noncommutative theories have been studied and probed from different viewpoints (see
reviews [18, 34, 48]). For instance, a number of noncommutative generalizations of inte-
grable systems were presented (see, e.g., [9, 16, 17, 24, 39]). Solutions were investigated
using the dressing method and Riemann-Hilbert problems, formulations, and proper-
ties such as infinite sets of conserved quantities were shown, and linear systems (or Lax
pairs) were exhibited in different articles (e.g., [16, 17, 23, 30, 39, 40, 41]). Systems such as
solitons, instantons, monopoles, Yang-Mills-Higgs, and nonlinear sigma models in 2 + 1
dimensions have been explored with noncommutative variables, raising certain similari-
ties (see, e.g., [22, 29]).

Noncommutative (Yang-Mills) theories have been linked to string theories with non-
trivial B-field. It is known that self-dual Yang-Mills equations in 4-dimensional space (or
their generalizations) lead, through reductions, to many integrable systems in lower di-
mensions, and for this, they have also been initially labelled as “master equations” [52].
Similarly, supersymmetric integrable systems in dimensions smaller than 4 have also been
found to have a reduction relation with respect to supersymmetric self-dual Yang-Mills
equations. As a first step towards a (possible) noncommutative “master system,” it has
then been mentioned that a noncommutative version of self-dual supersymmetric Yang-
Mills systems could provide via reductions noncommutative generalizations of (super-
symmetric) integrable systems [35].

In the following, our general interest is twofold: noncommutativity and deformations.
Noncommutativity can be introduced using different structures, as shown in [33]. A ba-
sic noncommutativity of variables could be imposed through [xµ,xν] = iθµν, and can
be associated to a ∗-product. Use of these noncommutative variables (or ∗-product)
could also be seen as probing deformations of (integrable) systems, with a deformation

Copyright © 2005 Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences 2005:17 (2005) 2735–2747
DOI: 10.1155/IJMMS.2005.2735

http://dx.doi.org/10.1155/S0161171205411187


2736 On Lax pairs and matrix extended simple Toda systems

parameter (θ). Other noncommutative structures could as well be involved, such as a
matrix spaces, where elements could, to a certain extent, be interpreted as parameters of
deformations. Matrix structures occurred at a different level with (D0) branes, where spa-
tial coordinates of a system of such branes become (noncommuting) matrices [4, 53], and
more generally with the consideration of transverse coordinates (these aspects are related
to matrix theory [4]). A shift to such (noncommutative) structures could be adopted for
simple systems to probe their deformations and integrability. Among integrable systems,
the Toda models [37, 49] have been the objects of various (integrable) generalizations.
For instance, an integrable isospectral deformation of an arbitrary N ×N real elements
matrix, which is related to a generalization of the nonperiodic Toda lattice, has been ob-
tained [26], and integrable generalizations of the Toda chains have been formulated with
Z-gradations of classical Lie algebras using a Lax formulation [54], non-Abelian versions
of Toda models have been written (see [19, 20, 43] and references therein) as well as su-
persymmetric versions [36] and Toda-like systems [11].

In this short communication, generalizations of the simple (A1) Toda system [37, 43],
which is a system with 2 particles, is considered and probed at different levels. First as
examples, simple “toy” extensions of the Lax pairs associated to the A1-model are pre-
sented, along with solutions, by varying the time evolution part (or auxiliary matrix)
of the Lax system (or pair). Quantization would lead to a noncommutative structure
and can be studied independently. Then, in the spirit of the Moyal-Nahm equations [3]
and the (noncommutative) Toda field equations in [15, 31], a Moyal ∗-product is in-
troduced in the matrix Lax equations. The generalized Toda systems presented at the
beginning of this paper are left unchanged by this modification, but a method of solu-
tion for various generalizations is discussed within the context of the Weyl correspon-
dence.

Pursuing generalizations with noncommutative behaviour and some type of defor-
mations, noncommutative variables such as matrices are subsequently introduced in the
equations of interest. These matrix extensions, which also preserve the coordinates split-
ting, are derived using a Lax pair formulation, extending formulations by [27], then, for
instance, one could examine their relation to integrability (spectral curves, etc.). A non-
commutative aspect is also realized through a Hamiltonian formulation, and similarly
integrability could be investigated there. But finally, an extension of the time evolution
part or auxiliary part of the Lax pair will be dictated by a new matrix, this in analogy with
the A1-model toy extensions via auxiliary matrices mentioned above. Let us note that R-
hierarchies can be generated in this manner (see, e.g., [47]), and that integrable systems
and deformations have been retrieved and generated in such a setting [8, 42, 45, 50, 51].
The classification of R-operators for simple Lie algebras would provide a good set of such
(time-evolution) auxiliary matrices. It gives rise to a model building which could explore
aspects of integrability, noncommutativity, and deformations using matrices. In the last
section, examples of matrix substitutions to probe certain of these aspects are presented
using trivial and nontrivial R-operators, where certain systems are solvable. Finally, a dis-
cussion of the results and further generalizations conclude this short communication,
with its main objective to present certain (to our knowledge new) examples of extensions
with noncommutativity and deformations.
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2. Generalized auxiliary matrix andA1 Toda model

A well-known Lax pair formulation of the one-dimensional harmonic oscillator (of unit
frequency) is simply given by [21]

L=
[
p(t) q(t)
q(t) −p(t)

]
, M = 1

2

[
0 −1
1 0

]
, (2.1)

with L̇= [L,M].
Generalizations can be obtained by allowing the time evolution associated to the M-

auxiliary matrix to take the form [21]

M = 1
2

[
0 − f (q, p, t)

f (q, p, t) 0

]
, (2.2)

where f is an arbitrary function of q, p, and t. Still in all cases, tr(L2) = 2(p2 + q2) is a
constant of motion, and these systems are integrable for f (q, p). For specific functions f ,
they can be seen as “solvable” (in the sense of [10]). It is known that for f (q, p, t) = q,
the nonperiodic or open A1 Toda system (for 2 particles) is retrieved, in usual form with
q = eφ. A Lax pair with spectral parameter λ for these Toda systems is given by [27]

L=
[

p1 q1

q1 + λq2 p2

]
, M = 1

2

[
0 −q1

q1− λq2 0

]
, (2.3)

where p1 + p2 = 0, q1q2 = 1.
If, in the original Lax pair (with auxiliary matrix (2.2)), one allows f = qn, where

n∈ Z, then the Lax equation leads to an ordinary differential equation

φ̈+ (1−n)(φ̇)2 + e2nφ = 0, (2.4)

with a “velocity-dependent” nonlinear term (φ̇), where solutions are given with simple
integrations ∫ q

q0

dq̃

q̃n
√
C− q̃2

=±(t− t0) (2.5)

with the invariant C = p2 + q2 (see, e.g., [25] using Bernoulli differential equation).
The compatibility condition for the linear system

ψ̇ =−Mψ, Lψ = Eψ, (2.6)

where ψ is a function of q, p, t, gives rise to the previously mentioned systems general-
ized from the (commutative) A1 Toda model. Some form of noncommutativity along the
above-mentioned θ basic structure could be introduced via quantization. From the La-
grangian L(q, q̇)=1/2[(q̇)2/q2n− q2], one deduces the HamiltonianH(q, p)=1/2(p2q2n +
q2), with the canonical symplectic form ω = dp∧ dq, to obtain the above q equations
(2.5), which can as well be derived from the Hamilton equations for the Hamiltonian
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H̃(q, p) = −1/2(q2 + p2), with ω̃ = (1/qn)dp∧ dq. A quantization might be of interest
via a suitable quantum H(q, p). Studies of quantization have already been carried out for
n= 1 with q = eφ (see [38, 44] and references therein).

3. Moyal or noncommutative Lax equations

Versions of the Lax equations with the insertion of the ∗-product in a pseudodifferen-
tial operator setting (e.g., [12, 28, 46]) or in a matrix formulation have been presented.
Moreover, the (non-Abelian) Toda field equations can in fact be generalized to a non-
commutative version with the ∗-product using a matrix Lax pair [15, 31]. But in the
latter situation, the noncommutativity between the two variables disappears with one-
dimensional translational reductions. However, a noncommutativity could be introduced
for the phase space variables, as it was done for the Moyal-Nahm equations in [3].

Let q, p denote the phase space variables, and let us define the product ∗ as follows
between two functions f and g on phase space:

f (q, p)∗ g(q, p)= f (q, p)eiθ(
←−
∂ q
−→
∂ p−

←−
∂ p
−→
∂ q)g(q, p), (3.1)

where θ is a noncommutative or deformation parameter. One can then define an (n×n)
matrix Lax pair L(q, p, t), M(q, p, t) with noncommutative Lax equation

L̇= [L,∗M
]= L∗M−M∗L, (3.2)

where the matrix∗-product between two (n×n) matricesA and B is given by (A∗B)i j =∑
k Aik ∗Bk j , with i, j,k = 1, . . . ,n. A solution could be written as

M =−ġ ∗ g−1, L= g ∗L0∗ g−1, (3.3)

where g ∗ g−1 = 1n, with g = g(q, p, t). These Lax equations could be seen as compatibility
conditions of a ∗-extended linear system L∗ψ = E∗ψ, ψ̇ =−M∗ψ, where Ė = 0 and
ψ = ψ(q, p, t) are n-column vectors. The Lax equations still have a gauge invariance:

L̃= h∗L∗h−1, M̃ = h∗M∗h−1− ḣ∗ (h−1), (3.4)

where h∗h−1 = 1n, but tr(Lm), where m is a positive integer are not necessarily constants
of motion.

For the above auxiliary M matrix generalizations of the A1-model, the Lax equations
lead to

q̇ =−1
2

(
qn∗ p+ p∗ qn), ṗ = qn+1, (3.5)

which reduce to the known commutative equations. Let us comment that for generaliza-
tions with various functions of q, p, t in the Lax matrix L and its auxiliary matrix M in
(3.2), one can use the Weyl correspondence. Since for any element of L, denoted Li j ,

dLi j
dt
= ∂Li j

∂t
+
∂Li j
∂q

q̇+
∂Li j
∂p

ṗ = ∂Li j
∂t

+
{
H ,Li j

}
P. B., (3.6)
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where H is a suitable Hamiltonian such that the Hamilton equations of motion are q̇ =
∂H/∂p, ṗ =−∂H/∂q, where {·,·}P. B. stands for the associated Poisson bracket. Applying
the inverse Weyl transformation (�−1), one can derive [13, 14] the following relation:

∂L̂

∂t
+ �−1[{H ,L}P.B.

]= [L̂,M̂], (3.7)

with �[L̂i j] = Li j , �[M̂i j] =Mij where L̂i j , M̂i j are operators on a Hilbert space, the

element i j of L̂ being denoted by L̂i j . One notes that

�
[
− i

2θ
[Ĥ , L̂]

]
= 1
θ
H sin

(
θ
(←−
∂ q
−→
∂ p−

←−
∂ p
−→
∂ q

))
L, (3.8)

which could be useful for small θ approximations. Many generalizations can be consid-
ered, but a focus on different aspects, thought to be of more interest, follows.

4. Matrix generalizations of theA1-Toda model

Since the above simple ∗-product generalizations of the Lax equations lead to known
equations, and since (L⊗̇1)= [L⊗ 1,M⊗ 1], with the unit matrix 1, is equivalent to the
previous ordinary (non-Moyal) Lax equations, one could explore extensions involving
noncommutative objects such as matrices, in the spirit of D0 branes. Isospectral defor-
mations related to nonperiodic Toda lattices have been studied by [26], with L̇= [M,L],
where M = L>0 − L<0, with strictly upper (> 0) and lower (< 0) triangular parts of L.
Different avenues are explored in what follows. First, a Hamiltonian description can be
attempted.

5. Matrix Hamiltonian generalizations

Let q = eφ, and let p, φ be Hermitian (p† = p and φ† = φ, or φ, p ∈ u(n)), where u(n) is
the Lie algebra of the unitary group U(n). Let us define a Hamiltonian

H(q, p)= 1
2

tr
(
p2 + e(2φ)), (5.1)

and a canonical symplectic form ω =∑
i, j
dpi j ∧ dφji. The Hamilton equations are conse-

quently

φ̇i j = ∂H

∂pji
= pi j , ṗi j =− ∂H

∂φji
=−(e2φ)

i j , (5.2)

leading to the coupled ordinary differential equations

φ̈i j =−
(
e2φ)

i j , (5.3)

for i, j = 1, . . . ,n. This system is not known to be completely integrable for n �= 1 positive
integer values, but it provides a simple noncommutativity of the variables.
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6. Lax equations generalizations

Instead of working with the φ variable, we here implement the matrix generalization at
the level of the variable q. A straightforward generalization uses the Lie algebra sl(2,R)
for L and M matrices in the following manner:

L=
[

P(t) Q(t)ζ
Q(t)ζ−1 −P(t)

]
, M = 1

2

[
0 −Q(t)ζ

Q(t)ζ−1 0

]
, (6.1)

where ζ is a parameter and P† = P, Q† =Q, that is Q,P ∈ u(n) again. The Lax equations
L̇ = [L,M] then lead to a noncommutative extension when n > 1 integer of the A1 Toda
equations

Ṗ =Q2, Q̇ =−1
2

(PQ+QP), (6.2)

L and M can be seen as valued in u(n)⊗ sl(2,R)⊗C. Note that tr(L2) = 2tr(P2 +Q2)
is a nontrivial invariant, as well as tr(L4), but the expressions tr(L2m+1), where m is a
nonnegative integer, vanish. The above generalization lacks the presence of the parameter
ζ in the characteristic equation det(L−E1n)= 0.

Another formulation close to the Lax equations (6.1) presented previously involves
n× n matrices on R: p1, p2, and q1, q2, which both belong to the Lie group GL(n,R)
(matrix fundamental representations of GL, gl and sl are used in the following). The
matrices L and M belong to sl(2n,R), with the constraints q2 = q−1

1 , p1 + p2 = 0, and are
given by (2.3) with the substitution of matrix valued elements. Their Lax equations can
be written as

ṗ1 = q2
1, q̇1 =−1

2

(
q1p1 + p1q1

)
. (6.3)

It is found that tr(L2)= 2tr(p2
1 + q2

1 + λ1n), tr(L3)= 0, and that tr(L4) includes terms such
as tr((p2

1 + q2
1)2− (q1p1− p1q1)2) and tr(2q1p1q

−1
1 p1− p2

1). For n= 2 or L∈ sl(4,C), the
spectral curve det(L− E14) = 0 leads to a vanishing polynomial P(E4,E2,λ,λ2) = 0, as
characteristic curve, which confirms that there is not enough constants of motion found
via the traces of powers of L to justify the complete integrability of this system. The cor-
responding algebraic curve is closer to a hyperelliptic one, and certain singularities might
be avoided for certain sets of (matrix elements) coefficients. Eigenvalues (e.g., bundles
on (part of) the spectral curves) can be considered for the Lax systems described. The N
particles AN−1 Toda Lax equations could as well be extended using the Lax pairs in [27],
using the substitution of the pi’s and qi’s with matrices. It is noted that the general open
AN−1 Toda system has been handled in [27] (with (reducible singular) algebraic curves).

7. R-operators and matrix Lax equations extensions

In a manner similar to the introductory considerations in Section 2 on generalizations
of time evolution of the Lax pair associated to nonperiodic Toda systems, matrix exten-
sions of the A1 Toda model will rely as well on generalizations of the auxiliary matrix M
(which could be seen as deformations) through an R-operator. It can also be recalled that
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the R-operator can lead to a set of hierarchies once given a set of invariants based on L.
The Lax equations obtained through these generalizations still would have to be probed
independently for consistency and nontrivial solutions, but a classification of R-operators
provides a large range of possible extensions of the auxiliary matrix M, and thus possible
nontrivial systems.

In order to set our notation, let us introduce a Lie algebra �, which in the following will
be either a semisimple Lie algebra or the Lie algebra gl(n,R), with its dual denoted �∗.

An R-operator is obtained when the linear mapping R : �→ � gives rise to a new Lie
algebra, denoted �R, via the bracket

[X ,Y]R =
[
R(X),Y

]
+
[
X ,R(Y)

]
. (7.1)

It brings a new Lie-Poisson bracket {·,·}R on �∗ [47]. It is also known that R satisfying
the modified Yang-Baxter equations leads to such new Lie-Poisson bracket structure. If
R is equal to half the identity isomorphism on �, then the usual Lie algebra bracket is
retrieved.

For a Hamiltonian H belonging to the set of smooth functions on �∗, which is a
coadjoint invariant of the algebra �, the Hamilton equations of motion, given a scalar
product (〈·,·〉) nondegenerate and invariant (i.e., invariant if 〈X , [Y ,Z]〉 = 〈[X ,Y],Z〉,
for any X ,Y ,Z ∈�), can be given in Lax form L̇= [L,M], [2, 43, 47] where

M = R(∇H(L)
)
, (7.2)

with coadjoint invariants in involution with respect to the new Poisson bracket ({·,·}R).
Let us recall [47] that a structure of Poisson submanifold of the Poisson manifold � as-
sociated with the Poisson bracket {·,·}R is desired to write an r-matrix interpretation of
the latter Lax equations with M as in (7.2). A bi-Hamiltonian structure could lead to fur-
ther invariants in involution [47]. Many R-operators arise from the direct sum splitting
of � = �+ ⊕�−, as vector space, of two subalgebras �+, �− of �, with factorization for
solutions [2, 43, 47].

One could also consider generalizations of the equations of motion based on quadratic
r-matrices, such as those leading to Sklyanin brackets, where, for instance, the latter can
be obtained for skew-symmetric R-operators obeying the modified Yang-Baxter equa-
tions (let us mention that cubic structures could also be formulated with corresponding
Lax equations, see, e.g., [32]). In the quadratic case, given a coadjoint invariant Hamil-
tonian H(L), the Hamilton equations of motion have the usual Lax form L̇ = [L,M],
where [47]

M = R(L ·∇H(L)
)
, (7.3)

provided � has a multiplication (·) with Lie bracket [X ,Y] = X · Y − Y · X , and is
equipped with a bi-invariant scalar product 〈X ,Y ·Z〉 = 〈X ·Y ,Z〉 = 〈Z ·X ,Y〉. This is
satisfied for the Lie algebra � = gl(n,R), with the matrix multiplication in its n×nmatrix
representation endowed with the trace (tr) as scalar product. More general R-operators
related to quadratic structures can be used.
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Certains types of R-operators generalizations have previously been carried out (see
[8, 51] and references therein). For example, generalizations using R-operators to gen-
erate Toda-like integrable systems have been discussed in [50], more recently Toda type
discrete hierachies have been examined with R-matrix solutions of the modified Yang-
Baxter equations [1].

As an example of this type of model building with respect to matrix generalizations of
Toda sytems, let L∈ sl(4,R) be of the form

L=
[
p1 q1

q1 −p1

]
, (7.4)

where the matrices q1 and p1 are both 2× 2 matrices on R, and are expressed as follows:

q1 =
[
a b
c d

]
, p1 =

[
p β̃
β p̃

]
. (7.5)

Given H(L) = (1/2)tr(L2), one has M = R(L). A classification of (skew-symmetric with
respect to an orthonormal basis in the Lie algebra and constant) R-operators obeying the
modified Yang-Baxter equations has been obtained by Belavin and Drinfeld for finite-
dimensional simple Lie algebras [5, 6, 7]. For simplicity, on can use the trivial R-operator
(or R-matrix) for sl(4,R) : R(h̃) = 0, R(Eα) = (1/2)Eα, for any positive root α, R(Eα) =
−1/2Eα, for any negative root α, where h̃ is any element of the Cartan subalgebra, and Eα
is the element corresponding to the root α. This R-operator satisfies the modified Yang-
Baxter equation [2, 43, 47] for c = 1/4:

[
R(X),R(Y)

]−R([X ,Y]R
)

+ c[X ,Y]= 0, (7.6)

where c is a nonvanishing constant, and it corresponds to the triple ∆1 = 0, ∆2 = 0, τ, of
the above-mentioned characterization [5, 6, 7] of R-matrices.

Thus, L leads to

M = 1
2

[
m q1

−q1 −m
]

, where m=
[

0 β̃
−β 0

]
. (7.7)

The Lax equation L̇= [L,M] implies a system

ṗ1 =−q2
1,

[
m, p1

]= 0, q̇1 = 1
2

(
q1p1 + p1q1

)
,

{
m,q1

}= 0, (7.8)

where {A,B} stands for AB +BA. One finds that [m, p1] = 0 and {m,q1} = 0 can be si-
multaneously satisfied if either (1) β = β̃ = 0, that is, m = 0, or if (2) β = c = 0, p = p̃,
a=−d (or equivalently β̃ = b = 0, p = p̃, a=−d). For the case (1), one obtains

p = p̃, ṗ =−(a2 + bc
)
,

ȧ= ap, ḃ = bp, ċ = cp. (7.9)
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These equations lead to ṗ − p2 = C, where C is a constant of integration. This set of
equations is “solvable.” Finally, the Lax pair L,M is given by

L=


p 0 a b
0 p c −a
a b −p 0
c −a 0 −p

 , M = R(L)= 1
2


0 0 a b
0 0 c −a
−a −b 0 0
−c a 0 0

 , (7.10)

with tr(L2) = 4(p2 + a2 + bc). The constraints imposed by the Lax equations have re-
moved certain variables, but still the equations obtained differ from the simple q1 ∈
GL(1,R) and p1 ∈ R situation, which corresponds to the nonperiodic Toda model with
only 2 particles (see (2.3)). Roughly, the above could be seen as a simple extension via
Lax pairs of the A1 Toda system. No Hamiltonian interpretation is here presented and a
Dirac reduction might be useful, but nonetheless the model is solvable.

For the case (2), one derives a “solvable” system

ṗ =−a2, α̇= 0, p = p̃, ȧ= ap, ḃ = bp, (7.11)

with the resulting Lax pair

L=


p α a b
0 p 0 −a
a b −p −α
0 −a 0 −p

 , M = R(L)= 1
2


0 α a b
0 0 0 −a
−a −b 0 −α
0 a 0 0

 . (7.12)

Let us note that still one might wish to derive Poisson submanifold interpretations of the
above systems with the Poisson structure associated to the Poisson bracket determined by
the R-operator, but this is not the intention in this short article. It is thought that non-
trivial generalizations could arise for L belonging to sl(2n,R), n > 2, but more constraint
equations would appear. Different R-operators could also lead to different extensions,
where the classification of Belavin and Drinfeld [5, 6, 7] can be used. We limit ourselves
here with the presentation of first examples, indicating solvable (new) systems, and how
they can be derived.

Let us add that the Lax matrix L could belong as well to gl(2n,R), and then nontrivial
R-operators such as those presented in [50] can be used either to generate systems with
an R-operator related to a linear r-matrix (such as the Lax pair with M given by (7.2)),
or to provide models via an R-operator associated to a Sklyanin structure, as mentioned
previously.

For instance, let us consider instead q1, p1 ∈ gl(n,R), this allows us to have L∈ gl(2n,
R), with the simple R-operator on the elements of gl(2n,R) of the form

R
(
Eii
)= 0, R

(
Eij
)= 1

2
Eij when i < j, R

(
Eij
)=−1

2
Eij when i > j, (7.13)

which satisfies the modified Yang-Baxter equation with c = 1/4, and where i, j = 1, . . . ,2n
with the following matrix basis of gl(2n,R) : [Eij]lm = δilδ jm. The Lax equations are then
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written as

L̇= [L,R
(
L2)], (7.14)

for

H(L)= 1
2

tr
(
L2), L=

[
p1 q1

q1 −p1

]
. (7.15)

They lead to the system ṗ1 = [p1, R̃], q̇1 = [q1, R̃], with the conditions [q1, [p1,q1]] = 0,
{p1, [p1,q1]} = 0, where R̃ denotes the resulting matrix from the action of the R-matrix
on the gl(n,R) blocks q2

1 + p2
1, of L2. The conditions are quite stringent. For example, a

solution is [p1,q1]= 0, which itself is satisfied when p1 = p1n, with q1 arbitrary, as for the
previous case. But then ṗ1 = 0, which forces p to be a constant.

However, the nontrivial R-operators of [50] based on a simple triple can be tried for
L∈ gl(2n,R). For gl(4,R), the linear map obeying the above modified Yang-Baxter equa-
tion for c = 1/4 has the form [50]

R
(
Eij
)= 1

2

[(
θ( j− i)− θ(i− j)

)
Eij + 2δi1δj2E34− 2δi4δj3E21 + δi j

4∑
k=1

Rkio Ekk

]
, (7.16)

where

[
Ro
]ik = 1

2


0 0 −1 1
0 0 1 −1
1 −1 0 0
−1 1 0 0

 . (7.17)

Using the Lax matrix L of (7.15) above, an auxiliary matrix M = R(L) can then be ex-
pressed as

M = 1
2

[
R1 q1

−q1 R1

]
, with R1 =

1
2

(p− p̃) β̃

β
1
2

( p̃− p)

 . (7.18)

The Lax equations L̇= [L,M] bring one equation encountered before ṗ1 =−q2
1 and the

equation q̇1 = 1/2({p1,q1}+ [q1,R1]), with a supplementary [q1,R1] term compared to
(6.3), (7.8), but with no initial algebraic constraints, differently from previous examples.
Already, these equations are more difficult to solve.

This approach can also be applied to gl(2n,R)-valued L. As mentioned, different R-
operators can be attempted, either within the linear or quadratic r-matrix structures,
with more complex resulting differential equations.

8. Summary and conclusions

In this short communication, possible noncommutative structures that could provide
extensions and deformations of the A1 Toda system, a simple integrable model, have
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been explored. At first, toy generalizations of the auxiliary matrix via (non-)commutative
functions have been considered. Their quantization could be of interest in future stud-
ies. Later, in the spirit of matrices associated with branes coordinates in certain aspects
of string theory, some matrix generalizations through a Lax pair preserving the origi-
nal coordinates splitting have been presented. For instance, R-matrix-based terms for the
auxiliary matrix have been used to provide examples (some solvable) with (matrix) non-
commutativity and deformations. Let us mention that deformations may not be there
characterized by a unique parameter such as θ, one can, to a certain extent, see the pa-
rameters as related to a set of matrix elements. Studying integrability (and r-matrices)
by examining Poisson submanifolds would be a possible development, in addition to
the consideration of different R-matrices in the building of new Lax equations, which
can also be associated to other integrable systems. Questions about the description and
classification of subspaces of Lax matrices (or operators) leading to nontrivial Lax equa-
tions given sets of R-operators, and also about Poisson submanifold interpretations can
be considered in future works. Let us recall that in the above, the Lax matrices were set to
belong to a subspace of sl(2n,R) leading to (nonlinear) coupled equations, but different
(L-matrices, R) settings could be examined as well.
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